
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weighing up the new kid on the block: Impressions of using Vitis
for HPC software development
Citation for published version:
Brown, N 2020, Weighing up the new kid on the block: Impressions of using Vitis for HPC software
development. in 2020 30th International Conference on Field-Programmable Logic and Applications (FPL).
Institute of Electrical and Electronics Engineers (IEEE), pp. 335 - 340, 30th International Conference on
Field Programmable Logic and Applications, Gottenburg, Sweden, 31/08/20.
https://doi.org/10.1109/FPL50879.2020.00062

Digital Object Identifier (DOI):
10.1109/FPL50879.2020.00062

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 30th International Conference on Field-Programmable Logic and Applications (FPL)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. May. 2023

https://doi.org/10.1109/FPL50879.2020.00062
https://doi.org/10.1109/FPL50879.2020.00062
https://www.research.ed.ac.uk/en/publications/9b1df25d-45d8-4c95-b4a2-6d51096b32d7


Weighing up the new kid on the block: Impressions
of using Vitis for HPC software development

Nick Brown
EPCC, The University of Edinburgh

Bayes Centre, 47 Potterrow, Edinburgh, EH8 9BT, UK
n.brown@epcc.ed.ac.uk

Abstract—The use of reconfigurable computing, and FPGAs in
particular, has strong potential in the field of High Performance
Computing (HPC). However the traditionally high barrier to
entry when it comes to programming this technology has, until
now, precluded widespread adoption. To popularise reconfig-
urable computing with communities such as HPC, Xilinx have
recently released the first version of Vitis, a platform aimed at
making the programming of FPGAs much more a question of
software development rather than hardware design. However
a key question is how well this technology fulfils the aim,
and whether the tooling is mature enough such that software
developers using FPGAs to accelerate their codes is now a more
realistic proposition, or whether it simply increases the conve-
nience for existing experts. To examine this question we use the
Himeno benchmark as a vehicle for exploring the Vitis platform
for building, executing and optimising HPC codes, describing
the different steps and potential pitfalls of the technology. The
outcome of this exploration is a demonstration that, whilst Vitis is
an excellent step forwards and significantly lowers the barrier to
entry in developing codes for FPGAs, it is not a silver bullet and
an underlying understanding of dataflow style algorithmic design
and appreciation of the architecture is still key to obtaining good
performance on reconfigurable architectures.

Index Terms—FPGAs, Reconfigurable computing, Vitis, Alveo,
Himeno benchmark

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are configurable
integrated circuits that can be programmed to represent, at
the electronic gate level, software algorithms. Executing code
directly at the gate level, rather than via a general purpose
CPU or GPU, provides the opportunity to deliver impor-
tant performance advantages and potential energy efficiencies.
Demanding ever more accurate simulations and faster times
to solution, scientists and engineers are placing expectations
on High Performance Computing (HPC) resources like never
before. But whilst scientific ambition expands very rapidly,
we are also seeing a stagnation in the reduction of CMOS
fabrication size, and with this comes a prediction of an overall
deceleration in CPU and GPU raw performance growth. A key
question is therefore what role other technologies, and in this
paper we focus specifically on FPGAs, can play in accelerating
future HPC workloads.

There have been numerous efforts over the years to popu-
larise FPGAs in HPC, however factors such as a reliance on
esoteric programming technologies proved to be substantial
barriers. In the last few years however, there have been exciting
developments at both the hardware (larger, more capable chips)

and software (much improved programming environments)
levels. This potentially means that the use of FPGAs to
accelerate HPC codes is now a more realistic proposition than
ever before, and they could be key in obtaining a step change
in performance, much like GPUs provided over a decade ago.

In November 2019 Xilinx introduced the Vitis Platform [1]
which is aimed at making the programming of FPGAs much
more a question of software development rather than hardware
design. Targeted towards software programmers and users, this
platform promises to deliver an environment which is far more
familiar to these individuals, and hence lower the barrier to
entry in programming FPGAs and their use in accelerating
high performing codes.

Whilst Vitis is in active development, with many updates
promised, a key question is whether the current version of
this platform, as of May 2020, makes the use of FPGAs in
HPC a more realistic proposition. This paper explores that
question, and exploits the Himeno Benchmark as a vehicle for
examining the programmability properties of the Vitis platform
within the context of HPC. The remainder of this paper is
organised as follows, in Section II we describe the back-
ground to programming FPGAs in more detail, and specifically
the Vitis platform, along with a description of the Himeno
benchmark. What follows is an exploration of the workflow
required when building and running code using the Vitis
platform in Section III. For HPC the ability to optimise code
is crucial, which is often relies upon a rich source of insight
generated by profiling. Therefore in Section IV we discuss
the use of Vitis’s profiling tooling to gain critical insights
about our port of this benchmark to FPGAs, and explore
how such information can be used to optimise performance.
Lastly, Section V draws some conclusions around the use
of this platform for developing HPC codes, and highlights
observations that software developers looking to utilise Vitis
for FPGA development should be aware of.

II. BACKGROUND

Whilst traditionally one would use RTL languages, such as
VHDL or Verilog to program FPGAs, there have been numer-
ous efforts to improve the programmability of reconfigurable
architectures. High Level Synthesis (HLS), which translates
kernel code written in C, C++ or SystemC into the RTL,
was a big step in enabling more rapid FPGA development
and expanded the user community. Based on HLS, Xilinx



proposed their High-Level Productivity Design Methodology
[2] which combines HLS with Vivado block design. Using
the methodology, once HLS translates a programmer’s code
into RTL, a corresponding IP block is then generated, which
is imported into the Vivado tool. This tool provides the
abstraction of a block design, where the different support
functionality including the PCIe bridge, memory controllers,
and bus interconnects are all placed and connected. Known as
the shell, the programmer then imports their own IP block into
this design and must manually connect it to other components
and ensure interoperability. However the programmer must
still understand the hardware details and direct cooperation
between different block components, and on the host side write
driver code at a low level.

There are also other programming technologies for FPGAs,
including Intel’s Quartus Prime [3] for Intel FPGAs and
Xilinx’s previous SDAccel [4], both of which enable host code
to be written in OpenCL, these have not reached the level of
maturity required for viewing the programming of FPGAs as
a software problem.

A. Vitis

The Vitis platform was released in late 2019 and in many
ways is the next generation of SDAccel, which itself as a
technology has been deprecated. Vitis exposes existing core
FPGA development components, such as the tooling provided
by HLS and Vivado, as a much more convenient unified
development environment. The aim is to enable an approach
of not only leveraging reconfigurable computing from the
software perspective, but also provide tooling such as profiling
and debuggers such that development can be driven in a high
level manner. Furthermore, Xilinx have invested heavily in
developing a rich set of open-source libraries, documentation,
and tutorials that the community are encouraged to contribute
towards. These tutorials and examples not only present a walk
through of using the platform, but also provide concrete code
snippets and examples for a variety of algorithms.

From a software development perspective, hiding the com-
plex aspects of the Vivado tooling, such as partial reconfigura-
tion, enable the programmer to concentrate on their code rather
than the esoteric nature of programming FPGAs. Furthermore,
the tooling works hand in hand with Xilinx cards, such as the
Alveo family, where shells for these cards are supplied and
the programmer’s generated kernel is automatically integrated
by the platform. Not needing to interact at the block design
level not only increases productivity, but also enables the pro-
grammer to view the architecture as a computational resource
rather than hardware system. For the experiments described in
this paper we are using an Alveo U280.

B. Himeno benchmark

The Himeno benchmark [5] measures the performance of
a linear solve of the Poisson equation using a point-Jacobi
iterative method. Originally developed to evaluate the perfor-
mance of CPUs for incompressible fluid analysis codes, the
computation required for each grid cell involves 34 single

precision floating point operations (13 multiplications and
21 additions or subtractions), and the solver utilises seven
data structures; a, b, and c which represent the coefficient
matrix with a holding four single precision floating point
values per grid cell and b, and c containing three. A further
array, wrk1, is the source term of the Poisson equation, the
p array represents pressure, and bnd is a control variable for
boundaries. Each of wrk1, p, and bnd arrays contain a single,
single precision floating point value per grid cell, and there
is an additional result array that the calculations are written
into. The benchmark reports performance in (single precision)
Million Floating Point Operations Per Second (MFLOPs).

It is the mix of computation and data movement that
we believe makes the benchmark interesting for this work.
Efficient data movement is key to getting good performance
on FPGAs [6], but also requires more manual control than
software developers are commonly used to on CPUs or GPUs.
A key question is therefore how well Vitis can guide us
in this regard. Some previous studies including [7] and [8]
explored the acceleration of this benchmark for FPGAs. For
instance [7] ran on Maxeler’s MAX3 acceleration card (Virtex-
6 FPGA) and the authors demonstrated impressive single
kernel performance figures for the time of 2700 MFLOPs
running entirely from the on-chip BRAM. Differently to their
approach, which relied on streaming between the host and
device, in this paper we structure the kernel such that all
the input data is initially transferred to the card, the kernel
executed, and then result data copied back to the host. This
places more strain on the link between the kernel and on-card
memory, along with the dataflow aspects of our HLS code,
and it is these that we are interested in optimising based upon
the insights provided by Vitis.

III. BUILDING AND RUNNING WITH VITIS

In comparison to explicitly using HLS and Vivado block
design, as per Xilinx’s high-level productivity design method-
ology, Vitis is driven by the command line with code being
built using the v++ script. Not only is this far closer to what
software developers are already familiar with, but there is also
some parity with common compiler arguments. This includes
-O levels which instruct the tooling to perform automatic
optimisation during building. Using the v++ tool one compiles
each of their HLS kernels into object files, and these are
then linked together, again using v++, into a final package,
which in this case is a bitstream rather than executable. In
addition to promoting familiarity, this also works with standard
software development tools, such as make, and is much more
streamlined than having to interact with Vivado explicitly.

Building upon the capabilities of SDAccel, Vitis enables
programmers to write their host code in OpenCL which is
more convenient than previous approaches that often de-
manded superfluous boilerplate. This also abstracts the pro-
grammer from lower level architectural details, enabling the
expression of dependencies between kernels and data in a sim-
ple and standard manner. Furthermore, unlike Intel’s Quartus
Prime, in Vitis the device code need not be written in OpenCL,



Description MFLOPs Energy (W)
CPU core (Skylake Xeon) 3754.49 42.30

Initial FPGA version 77.82 27.20
Split out ports across HBM 220.23 30.90

512 bit-width on ports 1452.13 31.60
Removed pipeline stalls 5773.25 32.10

Increase frequency to 450Mhz 8658.42 33.90

Fig. 1: Performance and energy usage of Himeno benchmark
as optimisations were applied based on Vitis profiling

although Vitis does support this, and instead can still follow
Xilinx’s HLS style.

One of the most welcome features from our perspective is
the more convenient way in which emulation is provided by
Vitis. The platform provides both software and hardware emu-
lation, and from a compilation perspective the only difference
is a single command line argument and then configuration of
an environment variable. Moreover, the host and device code
can remain unchanged between different emulation modes,
although especially for hardware emulation one might wish
to reduce the problem size due to the considerable runtime
involved. In comparison against using HLS and Vivado block
design, via the high-level productivity design methodology,
this approach feels much simpler and more convenient. Bear-
ing in mind the sizeable bitstream build time required to run on
the actual hardware, it is now much easier to quickly develop
code by iterative improvement, relying on emulation to test
and validate correctness in the short term, and running on the
FPGA less frequently. Whilst the real hardware is often needed
for accurate performance measurement, hardware emulation
does also provide some estimates about performance too.

A limitation is that Vitis software emulation is prone to
throw cryptic error messages at runtime due to underlying
issues in the HLS kernels that have not been identified by the
tooling. This is because it does not build the full RTL from
the HLS kernels in software emulation mode, and as such we
found that one has to compile for hardware emulation mode,
which does build the kernel’s RTL, to identify many of the
potential code level errors.

Generally we found the platform reliable, but there were
a small number of instances where Vitis threw unexpected
errors, for instance segfaults or licencing errors. We found in
all cases that by simply rerunning the command in question
the error did not recur.

IV. OPTIMISING PERFORMANCE WITH VITIS

Using version 2019.2 of the Vitis platform with an Alveo
U280, compiling at optimisation level three for both the
host and device code, and GCC version 7.4, we explored
the performance of the Himeno benchmark with the middle
problem size of x=256, y=128, z=128 over 200 iterations.
Figure 1 provides an overview of the performance in MFLOPs
and energy usage in Watts obtained by different configurations
of this experiment. The energy usage is the entire usage of
either the FPGA or CPU, and for context the CPU idles at

Fig. 2: Himeno kernel dataflow structure, streaming values
between stages, each of which is pipelined internally

around 18 Watts. All reported kernel versions are running on
the FPGA hardware and timings include both kernel execution
and data transfer between the host and device. Host to device
data transfer accounts for a tiny percentage of the overall
runtime, less than 0.05%, so we concentrate in this section on
optimisation at the kernel level. For comparison the standard,
CPU, version of this benchmark was initially run on a single
core of Skylake Xeon (single threaded) which delivered a
performance of 3754 MFLOPs. Whilst it might seem naive
to focus on a single core, we are most interested in the
performance optimisations that Vitis can enable at the FPGA
kernel level, and as such believe that comparing a single
FPGA kernel against a single CPU core is most realistic for
this purpose. We believe this is reasonable because the tricky
part is often minimising overhead within a kernel to obtain
good performance, and it is this aspect that we are interested
in exploring how well Vitis can assist with by identifying
bottlenecks.

Our initial FPGA version comprised of a single HLS kernel
with five separate dataflow regions running concurrently and
connected via HLS streams. Illustrated in Figure 2, each stage
operates on the grid and provides data between stages on a cell
by cell basis. The first stage, read data, reads grid cell values
for each of the six input data structures and via HLS streams
of depth 16 these are then passed on a cell by cell basis to
package data which builds up a data package structure. This
structure contains all values needed for calculation on a single
grid cell and includes 19 values for p, required due to the
box stencil. Each data package is then passed to the Jacobi
calculation stage which performs the calculations involved for
the Jacobi iteration for each grid cell as its data package
arrives. The result of this for each cell is then passed to
the write results stage which writes back to memory. The
Jacobi calculation stage also passes the ss resulting value, used
for calculating the residual gosa, to a separate stage which
accumulates the value for each cell and upon completion of
each full iteration writes a single floating point result value to
memory. We found that this separation of the physical memory
access from data generation or consumption can optimise
memory accesses (for instance reducing the number of write
or read requests issued), and it also provides a more complex
code as a vehicle for exploring the tooling.

As each stage is running concurrently then effectively
there is one very long pipeline, where each dataflow stage
is continually passing data to the next stage, and the loops
contained within each stage are also running as pipelines
internally. The performance of our initial version of this kernel,
as described in this section, was 77.82 MFLOPs, around 49



times slower than a single core of the Skylake Xeon CPU.
Assuming a clock frequency of 300Mhz and perfect conditions
where the pipeline is filled for the entire run and there are no
stalls due to factors such as external memory bottlenecks, we
estimate that the theoretical peak performance of a single, non-
vectorised, Himeno benchmark kernel on the FPGA is around
10000 MFLOPs, which the initial version fell far short of!

Unless otherwise stated, all profiling discussed in this sec-
tion is based upon runs made on the actual FPGA hardware,
and enabling this simply involves a number of additional flags
be provided to Vitis during compilation and linking. Upon
code termination, CSV files are written by Vitis and these
can be loaded up into the Vitis analysis tool for detailed
exploration, or even read directly via a text editor. When using
this profile to examine the performance of our initial kernel
version it was found that the kernel was stalling for over 98%
of the runtime due to external memory accesses. This could
be further seen in the application timeline, which is part of the
Vitis analysis tool, where external memory stall was depicted
across the entire execution of the kernel and from zooming in
it could be seen that individual accesses to external memory
were occupying tiny slivers of space between these stalls.

Vitis analyser also provides advice, known as the guidance
pane, for optimising code based upon the results of profiling.
This highlighted low data transfer speeds that we were expe-
riencing between the kernel and device memory. Whilst the
suite reported that Vitis had automatically selected the use of
High Bandwidth Memory (HBM), rather than the slower on-
card DRAM, it also highlighted that we were only managing a
reading rate of 27 MB/s (0.2% of bandwidth) and write rate of
50 MB/s (0.4% of bandwidth). However we also noticed from
profiling that, whilst there were six kernel input variables and
two output variables, they were all sharing the same single
kernel port. As such, we added the bundle decorator to the
interface HLS pragma to create individual kernel ports for
each variable. There were two reasons for this, firstly as the
HLS kernel can only issue one access per cycle on a port,
so with many variables sharing the same port this severely
limited the concurrency of reads and writes within our kernel
across the input and output variables. Secondly, the HBM on
the Alveo U280 is partitioned into thirty two, 256 MB chunks
across two banks. The HBM itself contains sixteen memory
controllers, where each controller services two of these 256
MB chunks and links to each chunk via an explicit channel.

Vitis defaults to using the first HBM chunk only, with all ac-
cesses going through a single memory controller and channel.
By adopting separate HLS kernel ports, and connecting each to
different HBM chunks, the HBM can be better utilised and this
almost trebled the performance of our initial FPGA version,
split out ports across HBM in Figure 1. Profiling reported that
the aggregate read bandwidth had now increased to 429 MB/s
and whilst this is still nowhere near the theoretical HBM peak
bandwidth, by splitting apart and distributing HBM access
we significantly increased performance. Xilinx documentation,
[9], explains this but the guidance of Vitis analyser only
reported the memory bandwidth and fact that HBM was being

used. It could be said that Vitis was somewhat misleading
here, as the guidance pane reported healthy against the fact
that HBM was being used, with no indication that a simple
configuration change could provide much greater bandwidth.

At this point profiling still reported that a large proportion
of time was being spent in HBM memory access, and the
guidance pane advised that we should increase the number and
size of burst transfers, and increase the data width of our kernel
ports from 32 bits (single precision floating point) to 512
bits. Following this guidance, we modified the HLS code to
increase the width of kernel ports from 32 to 512 bits. This was
achieved by packing 16 single precision floating point values
into a C structure and applying HLS’s DATA PACK directive.
Whilst it added somewhat to the code complexity, having to
unpack these wide structures and consider edge-cases at the
boundaries where data ran beyond the area of interest, this not
only followed the guidance of Vitis but also more general best
practice [6] to fully utilise the memory controllers. We also
decorated the AXI4 ports with appropriate pragmas for the
bursting of memory transfers. At this point profiling reported
an aggregate read bandwidth of 61 GB/s, with all individual
kernel ports reporting a bandwidth utilisation of around 90%.
Furthermore, profiling data reported that memory stalls now
accounted for only 0.06% of the overall runtime.

We were now confident that, by using the insights provided
by the Vitis platform, the overheads associated with memory
stalls to and from the HBM had been addressed. However,
we were still achieving less than half the performance of a
single Skylake Xeon CPU core. Whilst the Vitis profiling tool
had been very useful, it was unable to provide more insight.
Namely, whilst the profiler can provide detailed information
external to the kernel HLS IP, it is more limited inside the IP
and, even though Vitis reported less than 0.001% of runtime
lost due to intra-kernel dataflow stalls, a question was how well
the different dataflow regions inter-operated and for how much
time our pipeline was fully filled. A concern was that different
dataflow regions of the HLS code could be poorly load
balanced, causing an excessive number of stalls internally, but
unfortunately whilst Vitis profiling provides some information
around intra-kernel stalls, it does not break this down to the
granularity required to understand where exactly stalls are
occurring, and how well occupied are the pipelined loops.

We therefore realised that we would obtain far more insight
about performance of our code by splitting apart the dataflow
functions of our single, monolithic, kernel into separate HLS
kernels connected via inter-kernel HLS streams. The hypoth-
esis was that this refactoring effort would result in a structure
more easily measured by the profiling tool, with increased
information on a kernel by kernel basis, and thus more
effectively help us quantify and understand additional kernel
stalls. This separation added slightly to the code complexity,
for instance our streams were now AXIS kernel ports and
of type ap axiu, requiring some packing and unpacking of
data. However, it was very convenient to connect the streams
of kernels together in Vitis using the stream connect linker
option via a configuration file.



By separating the dataflow regions into individual kernels,
Vitis analyser now reported detailed statistics around inter-
kernel pipe stalls based on runs carried out on the FPGA
and from this data it could be seen that some of the kernels
were stalling for up to 25% of their runtime due to stream
stalls, and from looking at the streams themselves the stall
rate ranged from 19% to 60%. This indicated that there were
some crucial inefficiencies, and bearing in mind the good
utilisation of HBM, we felt that this was most likely driven
by load imbalances in different stages of our implementation.
From this we surmise that Vitis profiling is likely much better
suited to monitoring at the shell level (e.g. the utilisation of
external kernel ports, such as the AXI4 connections to HBM
and inter-kernel AXIS streams) rather than profiling within
each individual HLS kernel.

Based upon further investigation via the Vivado HLS
Eclipse based IDE, we found that HLS was imposing an
initiation interval (II) of 4 for the consumption of array a
data and 3 for arrays b and c. This corresponds directly to
the number of values needed per-grid cell and the reason was
that there was a conflict on the single 32 bit wide stream we
were using to connect the stages. The consequence was that
a downstream stage could only read one value per cycle but
in-fact needed up to four per individual grid cell, effectively
stalling and only processing a grid cell every four cycles.
To resolve this we packed data into chunks of type ap uint,
either 128 or 96 bits wide respectively. It was now these
chunks that were sent between stages via HLS streams, one
per cycle, and as such we no longer encountered such a stall
between stages or within pipelined loops. This significantly
improved performance on the FPGA, to 5773 MFLOPs which
out performs the single Skylake CPU core. Whilst this is a
somewhat obvious optimisation from the HLS perspective, it
was the profiling that gave us confidence that the kernel was no
longer stalling on external memory accesses but instead issues
within the kernel accounted for the predominant overhead.
Based on this information, and using our existing knowledge
of HLS, we were able to identify these and address them.

During compilation Vitis reports an estimated maximum
clock frequency for each kernel. We ran our design at 300
Mhz, which is the default clock speed, but when refactoring
the HLS code to reduce the stalls, we discovered that the stage
which calculates gosa, the relative residual, was limiting this
frequency. In this stage contributions from each grid cell are
accumulated, and whilst we had split this out into a completely
partitioned temporary array and unrolled the loop, this was
based on a factor of 11. The factor was driven by a latency of
11 clock cycles for the fadd operation, but by increasing this
factor to 20 we gained additional timing slack, at the cost of
increased resource usage. Subsequently, when compiling using
Vitis the platform reported an estimated maximum kernel
clock frequency of 501 Mhz. We therefore increased the clock
frequency to 450 Mhz, which matches the frequency of the
HBM memory controllers and ensures that we are well within
the maximum frequency to meet timing. The result was a
performance of 8658 MFLOPs, which is a further noteworthy

performance improvement.

V. CONCLUSIONS AND OBSERVATIONS

In this paper we have explored the use of Xilinx’s new Vitis
platform for building, executing, and profiling HPC codes,
driving the discussion via the Himeno benchmark. Whilst there
is plenty to further explore in Vitis, for instance further work
examining debugging capabilities and reusability of open-
source kernels developed by Xilinx, we can still form a number
of conclusions. From a software development perspective, Vi-
tis is a considerable improvement over more traditional FPGA
programming approaches, but there are still some limitations.
Driving software development via the command line and Vitis
alone will likely result in correct code, but to obtain good
performance more knowledge and insight is still required and
this can be leveraged efficiently using the platform.

The paramount observation is that to gain good performance
the programmer must still leverage the insights provided by
the HLS tooling, specifically the detailed logs generated and
schedule explorer in the Eclipse based IDE. We feel this
is important to stress because performance on FPGAs is so
closely tied to developing appropriate dataflow algorithms,
and with Vitis code can be written using any IDE and then
compiled. However to obtain good performance there is no
substitute for using Xilinx’s HLS IDE, synthesising often and
examining the results via the schedule explorer to improve
ones HLS algorithm. Whilst it is possible to load the summary
of HLS compilation into Vitis analyser, in our opinion this is
not prominent enough, and a danger is that programmers do
not realise the impact of their suboptimal HLS code.

More generally, Xilinx should continue to develop the
profiling capabilities of Vitis, focusing more at the intra-kernel
level. HPC programmers are used to being able to track the
proportion of runtime, often on a line by line basis, accounted
for by different parts of their code. Even being able to explore
statistics around the percentage time each pipelined loop is
fully filled, partially filled, and stalled would provide important
insights around performance bottlenecks.

It is our opinion that Vitis is a significant step in the right
direction, and as it currently stands is accessible for HPC
software programmers to write correct, but not necessarily
high performance, codes running on an FPGA. In order to gain
high performance on FPGAs a programmer at this time must
still have a deep understanding of how to write dataflow style
algorithms and an appreciation of the underlying architectural
details, but can use the Vitis platform to direct their efforts,
rather than having to address all the low level and tricky
details manually. This makes them more a director, rather
than labourer, of FPGA programming and as Vitis continues to
evolve it has the promise to ultimately render widely accessible
the acceleration of HPC codes using reconfigurable computing.

ACKNOWLEDGMENT

This work was funded under the EU EXCELLERAT CoE,
grant agreement number 823691.



REFERENCES

[1] Xilinx. (2019, Nov.) Vitis unified soft-
ware platform documentation. [Online]. Available:
https://www.xilinx.com/support/documentation/sw manuals/xilinx2019 2/ug1393-
vitis-application-acceleration.pdf

[2] ——. (2018, Apr.) High-level productivity design
methodology guide. Online. [Online]. Available:
https://www.xilinx.com/support/documentation/sw manuals/ug1197-
vivado-high-level-productivity.pdf

[3] Intel. (2020, Mar.) Intel high level synthesis compiler
pro edition: Reference manual. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html

[4] Xilinx. (2019, Jan.) Sdaccel programmers guide. [Online]. Available:
https://www.xilinx.com/support/documentation/sw manuals/xilinx2018 3/ug1277-
sdaccel-programmers-guide.pdf

[5] R. Himeno, “Himeno benchmark,” http://accc. riken.
jp/hpc/HimenoBMT/index. html, 2001.

[6] N. Brown and D. Dolman, “It’s all about data movement: Optimising
fpga data access to boost performance,” in 2019 IEEE/ACM International
Workshop on Heterogeneous High-performance Reconfigurable Comput-
ing (H2RC). IEEE, 2019, pp. 1–10.

[7] Y. Sato, Y. Inoguchi, W. Luk, and T. Nakamura, “Evaluating recon-
figurable dataflow computing using the himeno benchmark,” in 2012
International Conference on Reconfigurable Computing and FPGAs.
IEEE, 2012, pp. 1–7.

[8] I. Firmansyah, D. Changdao, N. Fujita, Y. Yamaguchi, and T. Boku,
“Fpga-based implementation of memory-intensive application using
opencl,” in Proceedings of the 10th International Symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies, 2019, pp. 1–4.

[9] Xilinx. (2019, Nov.) Alveo u280 data
center accelerator card. [Online]. Available:
https://www.xilinx.com/support/documentation/boards and kits/accelerator-
cards/ug1314-u280-reconfig-accel.pdf


