Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions

Citation for published version:
https://doi.org/10.1016/j.envpol.2013.11.009

Digital Object Identifier (DOI):
10.1016/j.envpol.2013.11.009

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Environmental Pollution

Publisher Rights Statement:
Open Access

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Impact of elevated CO₂ concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions

Otmar Urban a,*, Karel Klem a, Petra Holišová a, Ladislav Šígrý a, b, Mirka Šprttová a, Petra Teslová-Navrátilová c, Martina Zitová a, Vladimir Špunda a, b, Michal V. Marek a, John Grace c

a Global Change Research Centre, Academy of Sciences of the Czech Republic, Břidla 4a, CZ-60300 Brno, Czech Republic
b Faculty of Science, University of Ostrava, 30. dubna 22, CZ-70103 Ostrava 1, Czech Republic
c Institute of Atmospheric and Environmental Science, School of GeoSciences, University of Edinburgh, The Kings Buildings, Edinburgh EH9 3JN, UK

A R T I C L E I N F O

Article info
Received 21 August 2013
Received in revised form 6 November 2013
Accepted 10 November 2013

Keywords:
Diurnal dynamics
DEPS
European beech
Fluorescence
Photorespiration
Stomatal conductance
Xanthophylls

A B S T R A C T

It has been suggested that atmospheric CO₂ concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO₂ influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO₂ concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO₂ and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthetic rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression in CO₂ assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Global climate models predict that atmospheric CO₂ concentration ([CO₂]) may increase to as high as 800 µmol (CO₂) mol⁻¹ by 2100. Simultaneously, it is suggested that, on average, frequency of cloud cover will increase with a warming climate, although this prediction varies considerably according to geographic location (IPCC, 2007). Whether rising [CO₂] will cause faster growth and higher photosynthetic carbon storage in C3 plants, and particularly under cloudy sky conditions, remains an open question (Kets et al., 2010; Körner et al., 2005; Leakey et al., 2009).

Under sufficient light intensity, short exposure to elevated [CO₂] leads to an increase in the CO₂ assimilation rate in C3 plants, especially due to depressed photorespiration and enhanced substrate binding by Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) (reviewed in Ceulemans and Mousseau, 1994; Körner et al., 2005; Norby and Zak, 2011). However, substantial reductions in [CO₂]-enhanced photosynthesis (termed acclimation or down-regulation) may occur over weeks and months of CO₂ treatment and be manifested by a reduction in the Rubisco- and/or RuBP-limited rate of carboxylation (Bernacchi et al., 2003; Davey et al., 2006; Sage, 1990; Urban et al., 2012a).

The genetic constraints of plants, duration of CO₂ enrichment, nutrient supply, and sink strength for carbohydrates have been identified as the main limitations upon a plant’s capacity to utilize the additional assimilates (Luo et al., 1999; Norby and Zak, 2011). Increased accumulation of trehalose-6-phosphate and specific saccharides (glucose, sucrose) in leaves may subsequently result in repressed expression of genes transcribing for photosynthetic enzymes (Paul and Pellny, 2003) and decreased stomatal opening in response to light (Lu et al., 1997; Medlyn et al., 2001) over a period of several hours to days, respectively.

Although photosynthetic response to [CO₂] is modified by numerous environmental drivers and by the diurnal dynamics of assimilates accumulation in leaves, studies investigating the diurnal pattern of photosynthesis under ambient and elevated [CO₂] have received only limited attention (e.g. Barták et al., 1999; Bernacchi et al., 2003; Kets et al., 2010; Singsaas et al., 2000;
Spunda et al., 2005). Previous research on diurnal dynamics has been done under clear sky conditions, within which plants were exposed to saturating irradiances, high temperature, and high vapour pressure deficit (VPD). Such conditions may lead to afternoon depression of photosynthesis, particularly due to stomatal closure (Barták et al., 1999), with subsequent decreases in intercellular \([\text{CO}_2]\) and Rubisco carboxylation efficiency, and/or photo-inhibitory constraints (Muraoka et al., 2000; Smirnoff, 1993; Zhang et al., 2009). However, the extent of any impact that elevated \([\text{CO}_2]\) has on the afternoon decline in photosynthesis remains unclear. Elevated \([\text{CO}_2]\) treatment has been shown to ameliorate midday decline in photosynthesis in coniferous Picea abies (Spunda et al., 2005), whereas it resulted in more pronounced afternoon decline in photosynthesis compared to ambient concentration in broad-leaved Populus tremuloides (Kets et al., 2010).

To the best of our knowledge, no comprehensive study on how elevated \([\text{CO}_2]\) influences the diurnal pattern of photosynthesis under cloudy sky conditions had yet been undertaken. Cloud cover boosts the ratio of diffuse to direct solar radiation, and usually it reduces both temperature and VPD. Diffuse radiation has the potential to alter leaf-level (Brodersen et al., 2008) as well as canopy-level \([\text{CO}_2]\) uptake (Kanniah et al., 2013) compared to an equivalent intensity of direct radiation. Moreover, stomatal responsiveness to elevated \([\text{CO}_2]\) may be significantly modified by the actual VPD and/or spectral composition of incident light (Barillot et al., 2010; Heath, 1998), i.e. by environmental drivers which are markedly altered by cloud cover (Urban et al., 2007, 2012b).

To evaluate the benefit of elevated \([\text{CO}_2]\) under contrasting sky conditions, we examined diurnal changes in photosynthetic responses of leaves of European beech (Fagus sylvatica) trees grown under ambient and elevated \([\text{CO}_2]\). Since photons constitute the limiting substrate for photosynthesis under low light intensities, we suggest a positive effect of elevated \([\text{CO}_2]\) on carbon uptake only under conditions of high irradiance typical for sunny days. However, excessive irradiance, high VPD, and large accumulation of non-structural carbohydrates in leaves may reduce the stimulation of carbon assimilation near the middle of the day, particularly in sun-exposed leaves.

We tested the hypothesis that differences in the diurnal patterns of microclimate drivers typical for clear and cloudy sky conditions affect the relative impact of elevated \([\text{CO}_2]\) on photosynthesis and stomatal conductance. The specific objectives of our study were to investigate (1) diurnal changes in \([\text{CO}_2]\) assimilation rate and stomatal conductance, (2) changes in Rubisco carboxylation and oxygenation activities in vivo, and (3) the role of photosynthetic pigments in the photoprotection of plants during sunny and cloudy days.

2. Materials and methods

2.1. Plants and experimental design

Experiments were carried out in the Beskydy Mountains (Bílý Kríž; 49°30' N, 18°32' E, 908 m a.s.l., in the north-east of the Czech Republic). This area has a cool (annual mean air temperature 6.7°C and humid (annual mean relative air humidity 80%) climate with high annual precipitation (the average for 2000–2009 is 1374 mm). Approximately 74% of incident photosynthetic photon flux density (PPFD) is <500 μmol (photons) m\(^{-2}\) s\(^{-1}\) due to frequent cloud cover (Fig. 1).

Eight-year old European beech (Fagus sylvatica L.) trees (mean height 2.1 ± 0.45 m) were exposed to ambient (385 μmol (\text{CO}_2) mol\(^{-1}\); hereafter AC) and elevated (700 μmol (\text{CO}_2) mol\(^{-1}\); hereafter EC) \([\text{CO}_2]\) for three growing seasons using glass dome facilities. The dimensions of the glass domes (length × width) are 10 × 10 m and the domes are 7 m high at their centres. A system of adjustable lamella-windows and an air-flow climate-control device (with maximum volumetric airflow rate of 4.8 m\(^3\) s\(^{-1}\)) ensures the maintenance of constant EC and minimize effects due to direct radiation. Moreover, the stomatal responsiveness to elevated \([\text{CO}_2]\) is achieved using an automated half-closing of windows on the windward side while the remaining windows are left open. The target EC is maintained for ca 75% of the time within the range of 600–800 μmol (\text{CO}_2) mol\(^{-1}\) throughout the vegetation season. The air temperature within the domes is maintained within the ambient range ±1.0°C for 84% of the time. The domes reduce air humidity and solar radiation by 15% and 26%, respectively, as compared with outside, non-covered area. A detailed technical description of the facility is given in Urban et al. (2001). Sixty-two beech trees per treatment were planted with a spacing of 1.20 m between trees. Plants were grown in the native soil. The geological bedrock is formed by Mesozoic Gudola sandstone (flysch type) and is overlain by ferric podzols. Total soil nitrogen was determined to be between 3.5 and 4.2 g m\(^{-2}\) irrespective of \([\text{CO}_2]\) treatment.

In order to analyse effects of sunny versus cloudy days on \([\text{CO}_2]\) assimilation processes, two successive periods during the growing season (July) were used for the present analysis. The periods were selected at the same general time of year to minimize the effect of leaf age on physiological parameters. The first two-day period (8–9 July) was cloudy and characterized by a high diffuse index (DI > 0.5). The second period (22–23 July) was sunny and characterized by a DI < 0.4 (clear sky) at maximum solar elevation angles. DI is defined here as the ratio between the diffuse and total intensity of photosynthetically active radiation.

Interpretation of the carbon assimilation data was based on the incident PPFD (waveband 400–700 nm). Two quantum sensors (LI-190, LI-COR, Lincoln, NE, USA) were located above the canopy. To measure daily courses of diffuse PPFD, one quantum sensor was shielded from direct light by shadow rings (CM 121B/C, Kipp & Zonen, Delft, Netherlands).

2.2. Physiological measurements

Leaf-level physiological measurements were done on three representative trees for each \([\text{CO}_2]\) treatment. Each replicate consisted of an independent plant selected randomly within the glass dome among those trees of average height, stem diameter, and leaf chlorophyll content. Two fully developed sun-exposed leaves per tree with south or south-west orientation were evaluated and the average from these two measurements used for statistical analyses. All physiological measurements were done at 1.5–2 h intervals from 03:00 (pre-dawn; Central European Time) to 21:30 h (after-sunset). The same leaves were measured on both cloudy and sunny days.

2.3. Chlorophyll fluorescence measurements

The emission of whole-leaf chlorophyll fluorescence was measured at the red band (near 690 nm) using the open version of the FluorCam kinetic imaging fluorometer (Photon Systems Instruments, Brno, Czech Republic), within which the leaves can be exposed to ambient light. Chlorophyll fluorescence signal was measured using short measuring flashes (10 μs pulses with intensity of ca 0.003 μmol (photons) m\(^{-2}\) s\(^{-1}\)) 800 ms apart. The measuring flashes were generated by two panels of orange LEDs (λ = 620 nm) and superimposed on the natural light directly at the field site. Subsequently, a strong pulse of white light (1.6 s, 3000 μmol (photons) m\(^{-2}\) s\(^{-1}\)) was applied to reduce transiently the partially oxidised plastoquinone pool.

Diurnal courses of the quantum yield of photosystem (PS) II photochemistry (ΦPSII) and quantum efficiencies of regulated Meh–and/or xanthophyll-dependent non-photochemical dissipation processes within the PS II antennae (ΦNPQ) were estimated following Savitch et al. (2010) as:

\[
\Phi_{PSII} = (F_{S} - F_{S0})/F_{M}
\]

\[
\Phi_{NPQ} = F_{S0} - F_{M}/F_{S} - F_{S0}/F_{M}
\]

where \(F_{S}\) is the fluorescence level induced by the actual irradiance, \(F_{S0}\) is the maximum fluorescence level observed during 1 s application of saturating pulse.
under the actual irradiance, and \(F_{\text{m}}\) is the maximum fluorescence level observed during 1 s application of saturating pulse in fully dark-adapted leaves before the sunrise. All chlorophyll fluorescence parameters are presented as averages of whole-leaf fluorescence based on >160,000 leaf pixels.

2.4. Gas exchange measurements

Daily courses of \(\text{CO}_2\) assimilation rate \((A)\) and stomatal conductance \((g_s)\) were measured on the intact leaves at their natural orientation using two identically calibrated Li-6400 gas exchange systems (Li-Cor, Lincoln, NE, USA) under conditions of growth \(\text{CO}_2\) concentration, ambient irradiance, leaf temperature, and VPD. The air flow rate through the assimilation chamber was maintained at 500 \(\mu\text{mol} \text{s}^{-1}\).

Instantaneous rates of \(\text{CO}_2\) assimilation at leaf level \((A)\) were modelled as a general nonrectangular hyperbolic function of incident \(I\):

\[
\phi A = \frac{(I + A_{\text{max}})A}{I + A_{\text{max}}} = 0, \tag{3}
\]

where \(I\) is the apparent quantum yield, \(\phi\) is a number between 0 and 1 determining the shape of the light–response curve, and \(A_{\text{max}}\) is the light-saturated value of \(A\).

In parallel, the relationship between \(A\) and intercellular \([\text{CO}_2]\) \((\text{Ci})\) under saturating irradiance \((1400 \mu\text{mol} \text{ photons m}^{-2} \text{s}^{-1})\) was controlled starting at \([\text{CO}_2]\) 350 \(\mu\text{mol} (\text{CO}_2) \text{ mol}^{-1}\) in the leaf chamber and decreasing stepwise to 50 \(\mu\text{mol} (\text{CO}_2) \text{ mol}^{-1}\). The parameters of the \(\text{A/Ci}\) response curves were used to derive the maximum Rubisco carboxylation rates in vivo \((V_{\text{cmax}})\) using the equations of Farquhar et al. (1980).

In addition, temperature functions proposed by Bernacchi et al. (2001) for Rubisco-limited photosynthesis were applied to normalize \(V_{\text{cmax}}\) rates to uniform leaf temperature \((25^\circ \text{C})\).

To evaluate daily dynamics of photorespiration, the leaves were supplied with an atmosphere containing only 2% oxygen. The photorespiration was subsequently measured on the intact leaves at their natural orientation using two identically: (1) a UV/VIS 550 spectrophotometer (Unicam, Cambridge, UK) estimation of \(\text{Chl a, Chl b, and total Cars using the extinction coefficients and equations by Lichtenthaler (1987). The same supernatant was used for the determination of xanthophyll cycle pigments (i.e. A, antheraxanthin; V, violaxanthin; Z, zeaxanthin) by gradient reversed-phase HPLC equipped with a photodiode-array detector UV6000LP (Thermo Fisher Scientific, West Palm Beach, FL, USA). The conversion state of the xanthophyll cycle pigments (de-epoxidation state; DEPS) was calculated according to Demming-Adams and Adams III (1996) as:

\[
\text{DEPS} = \left[0.5 \cdot A + Z \right] / \left[V + A + Z \right], \tag{4}
\]

The content of non-structural saccharides and starch in leaves was determined using a UV/VIS 550 spectrophotometer (Unicam, Cambridge, UK). The method is based on analysis of the condensation product obtained by heating saccharides or starch with anthrone reagent in acid solution and assessing absorbance at wave-length 625 nm (Vrom and Willis, 1954). Extraction in 95% ethanol followed the method verified for \(F. \text{sylvatica}\) and described in Teslová et al. (2010).

Nitrogen content in the dry mass of leaves was detected using an automatic analyser (CNS-2000, LECO Corporation, St. Joseph, MI, USA) in 0.1 g mixed samples.

2.6. Statistical data analysis

Before the analysis of variance (ANOVA), the data was tested for normality of individual parameters using a Kolgomorov–Smirnov test and homogeneity of variances was tested using Levene’s test. For effects of sky conditions, \([\text{CO}_2]\) and time of day, the photosynthetic parameters were analysed using a three-way fixed-effect ANOVA model. For analysis of sky conditions and \([\text{CO}_2]\) effects on content of non-structural saccharides and starch in leaves, a two-way fixed-effect ANOVA was used. Tukey’s post-hoc test \((p < 0.05)\) was used to detect significant differences between means within individual sky conditions, \([\text{CO}_2]\) treatments, and time of day. All statistical tests were made using Statistica 9 software (StatSoft, Tulsa, OK, USA).

3. Results

3.1. Microclimate conditions

The measuring campaigns included days that differed primarily in their sky conditions. Although there were transient changes in PPFD (Fig. 2A), DI remained mostly within the ranges of
Changes in sky conditions from clear to cloudy tended also to change the other microclimatic parameters. On sunny days, air temperature (T_a; Fig. 2C) and VPD (Fig. 2D) showed typical daily courses, as characterized by their maximum and minimum values, but they remained more or less constant under the cloudy sky. Under the clear sky, daily maxima of T_a and VPD rose to ca. 30.5°C and 2.7 kPa, respectively, while these were only ca. 17.8°C and 1.7 kPa, respectively (Fig. 2B). Changes in sky conditions from clear to cloudy tended also to change the other microclimatic parameters.

Table 1

Mean values ± standard deviations of physiological parameters of the estimated European beech leaves during cloudy and sunny days: SLM — specific leaf mass, N_{area} — total nitrogen content per unit leaf area, Chl ($a + b$) — total chlorophyll content per unit area, Chl a/b — ratio between chlorophyll a and b, Cars — total content of carotenoids per unit leaf area, VAZ — total content of xanthophyll cycle pigments per unit leaf area, DEPS$_{max}$ — maximum de-epoxidation state of the xanthophyll cycle pigments at noon. Identical letters indicate homogeneous groups with statistically non-significant differences ($p > 0.05$). $N = 18–26$.

<table>
<thead>
<tr>
<th></th>
<th>SLM (g m$^{-2}$)</th>
<th>N_{area} (g m$^{-2}$)</th>
<th>Chl ($a + b$) (mg m$^{-2}$)</th>
<th>Chl a/b —</th>
<th>Cars (mg m$^{-2}$)</th>
<th>VAZ (mg m$^{-2}$)</th>
<th>DEPS$_{max}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>106 ± 1.7 b</td>
<td>2.4 ± 0.2 a</td>
<td>330 ± 50 bc</td>
<td>3.0 ± 0.2 a</td>
<td>71 ± 7 bc</td>
<td>19 ± 3 a</td>
<td>57 ± 3.9 a</td>
</tr>
<tr>
<td>EC</td>
<td>115 ± 2.3 a</td>
<td>2.4 ± 0.3 a</td>
<td>290 ± 50 a</td>
<td>3.1 ± 0.2 ab</td>
<td>64 ± 8 a</td>
<td>17 ± 3 a</td>
<td>65 ± 2.3 b</td>
</tr>
<tr>
<td>Sunny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>106 ± 2.3 ab</td>
<td>2.4 ± 0.2 a</td>
<td>330 ± 50 c</td>
<td>3.1 ± 0.1 b</td>
<td>75 ± 10 c</td>
<td>18 ± 3 a</td>
<td>71 ± 4.3 b</td>
</tr>
<tr>
<td>EC</td>
<td>115 ± 2.1 ab</td>
<td>2.4 ± 0.2 a</td>
<td>300 ± 50 ab</td>
<td>3.2 ± 0.2 c</td>
<td>69 ± 7 ab</td>
<td>18 ± 3 a</td>
<td>76 ± 4.0 c</td>
</tr>
</tbody>
</table>

Table 2

Summary of significance levels (p-values of three-way ANOVA) for the effects of CO$_2$ treatment, time of day and sky conditions including mutual interactions on the leaf chemical composition (Chl ($a + b$) — total chlorophyll content per unit area, Chl a/b — ratio between chlorophyll a and b, Cars — total content of carotenoids per unit area, VAZ — total content of xanthophylls per unit leaf area, DEPS — de-epoxidation state of the xanthophyll cycle pigments, NSC — total content of non-structural carbohydrates per unit leaf dry mass, and Starch — total content of starch per unit leaf dry mass). Significant effects and interactions ($p < 0.05$) are indicated in bold.

<table>
<thead>
<tr>
<th></th>
<th>Chl ($a + b$)</th>
<th>Chl a/b</th>
<th>Cars</th>
<th>VAZ</th>
<th>DEPS</th>
<th>NSC</th>
<th>Starch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky conditions</td>
<td>0.011</td>
<td>< 0.001</td>
<td>0.001</td>
<td>0.435</td>
<td>< 0.001</td>
<td>0.001</td>
<td>0.059</td>
</tr>
<tr>
<td>Time</td>
<td>< 0.001</td>
<td>0.563</td>
<td>0.001</td>
<td>0.086</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>[CO$_2$]</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>0.054</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sky conditions × Time</td>
<td>0.469</td>
<td>0.662</td>
<td>0.813</td>
<td>0.478</td>
<td>0.923</td>
<td>0.803</td>
<td>0.068</td>
</tr>
<tr>
<td>Sky conditions × [CO$_2$]</td>
<td>0.382</td>
<td>0.419</td>
<td>0.207</td>
<td>0.117</td>
<td>< 0.001</td>
<td>0.568</td>
<td>0.523</td>
</tr>
<tr>
<td>Time × [CO$_2$]</td>
<td>0.415</td>
<td>0.054</td>
<td>0.335</td>
<td>0.008</td>
<td>< 0.001</td>
<td>0.916</td>
<td>0.316</td>
</tr>
</tbody>
</table>

Fig. 3. Diurnal changes in contents of non-structural carbohydrates (A,B) and starch (C,D) expressed per leaf area unit under the conditions of sunny (A,C) and cloudy days (B,D). The measurements were done on the sun-adapted leaves of beech trees cultivated under ambient (AC; empty columns) and elevated (EC; full columns) CO$_2$ concentrations. The means (columns) and standard deviations (error bars) are presented ($N = 5$).
and 0.5 kPa under the cloudy sky. The average microclimatic conditions during the preceding two days for each of the two periods had been similar to those occurring during the measuring campaigns (data not shown). No statistically significant \((p > 0.05)\) differences in PPFD, \(T_a\) or VPD were observed between the domes with AC versus EC.

3.2. Chemical composition of leaves

The EC treatment led to a slight increase in specific leaf mass (SLM), but no differences in nitrogen content per unit area (\(N_{\text{area}}\)) were observed between the AC and EC counterparts (Table 1).

Although the EC treatment led to decrease in total contents of chlorophylls (by 12–14%) and carotenoids (by 8–10%) per unit leaf area and to increase in the Chl a/b ratio (by ca 3%; Table 1), there were no significant interactions between CO2 treatment and sky conditions (Table 2). The total content of xanthophyll cycle pigments (VAZ) per unit leaf area was not influenced by the EC treatment, and this amounted to 17–19 mg m\(^{-2}\) irrespective of sky conditions (Table 1). The maximum de-epoxidation state of the xanthophyll cycle pigments (DEPS\(_{\text{max}}\)) was on average 71% and 64% under sunny and cloudy days, respectively. Under both sky conditions, the EC treatment led to higher DEPS\(_{\text{max}}\) values as compared to the AC treatment. These values were as much as 9% higher under clear sky \((p > 0.05)\) and up to 14% higher under cloudy sky \((p < 0.05)\) (Table 1).

Leaves treated under EC conditions had greater contents of non-structural carbohydrates (Fig. 3A,B) and starch (Fig. 3C,D) per unit leaf dry mass as compared to their AC counterparts, irrespective of sky conditions. However, most of these differences were statistically non-significant (Table 2). Comparing morning (pre-dawn) and afternoon data, we observed an increase in afternoon non-structural carbohydrates of 69–72% during the sunny days, but it was only 16–20% during the cloudy days, irrespective of CO2 treatment. Nevertheless, distinct dynamics in starch accumulation were observed between AC and EC plants. While the starch content increased in AC plants by only ca 25% during the sunny days, that increase was ca 150% during the cloudy days. In contrast, starch content increased by ca 40% in the EC plants during sunny days and by only ca 20% during cloudy days.

3.3. Dynamics of assimilation activity and stomatal conductance

Diurnal courses of \(A\) and \(G_S\) during sunny and cloudy days are shown in Fig. 4. Under clear sky conditions, significant stimulation of \(A\) by the EC treatment (33–37%) was found only during 10:00–12:00, while there were no differences in \(A\) values between treatments during the early morning and late afternoon hours (Fig. 4A), i.e. at PPFD ≤ 550 \(\mu\)mol (photons) m\(^{-2}\) s\(^{-1}\). Since the assimilation processes are limited by electron transport rate at low irradiances, identical courses of \(A\) under AC and EC had been expected under cloudy skies. However, significant reduction in \(A\) by as much as 47% was observed in EC plants as compared to AC plants during the afternoon hours (Fig. 4B). Except during early morning and late afternoon, EC treatment led to decreases in \(G_S\) under both sky conditions (Fig. 4C,D). Whereas the maximum \(G_S\) values were ca 35% lower in EC as compared to AC plants during the afternoon hours (Fig. 4B). Except during early morning and late afternoon, EC treatment led to decreases in \(G_S\) under both sky conditions (Fig. 4C,D). The stomata of EC plants remained almost closed throughout the

![Fig. 4](https://example.com/fig4.png)
cloudy day, although the leaf-to-air vapour deficit (LAVD) ranged between 0.75 and 0.85 kPa irrespective of CO2 treatment. Inter-
cellular CO2 was ca. 320 and 580 μmol(CO2) m⁻² s⁻¹, respectively, during afternoon hours (12:00–16:00) of cloudy days in AC and
EC conditions.

Parameters of the A–PPFD response curves (Fig. 5), derived from
daily courses of A during clear and cloudy skies, are summarized in
Table 3. During the sunny days, an afternoon depression of A in
response to PPFD was evident for both CO₂ treatments. This
depression in the afternoon was associated with decrease in the
apparent quantum yield (AQY; by 38% for AC treatment and by 29%
for EC treatment) and increase in the light compensation point
(LCP; by 39% for AC treatment and 150% for EC treatment). By
contrast, no afternoon depression occurred during the cloudy days
under either CO₂ treatment.

To test whether the changes in Gₛ constitute the primary reason
for the afternoon depression in carbon assimilation during sunny
days, assimilation rate was plotted against conductance. Identical
A.PostMapping GS relationships for both the sunny and cloudy days (Fig. 6)
demonstrate that at leaf level the VPD effect overwhelms any other
effects of clear versus cloudy sky.

To reveal the causes of reduced A under the EC treatment during
cloudy sky conditions, analyses were made of EC-induced changes
in light-saturated rates of Rubisco carboxylation in vivo (VC₅₀;
Fig. 7), photorespiration rate (Rₑ; Fig. 8), and efficiency of primary
photochemical reactions (Fig. 9). Significant decrease in VC₅₀
induced by the EC treatment was found under actual (by as much as
40%; Fig. 7A,B) as well as normalized (as much as 55%; Fig. 7C,D)
temperatures. Nevertheless, Rubisco carboxylation activity cor-
rected to the leaf temperature of 25 °C (VC₅₀,25) reached daily

Table 3
Mean values ± standard deviations of selected parameters of CO2 assimilation light response curves on the leaf-level (see fits in Fig. 5A,B) during sunny and cloudy days. Light response curves were divided into morning (00:00–12:00; a.m.) and afternoon (12:00–23:30; p.m.) parts. AC (EC) — ambient (elevated) CO₂ concentration. Amax — light saturated rate of CO₂ assimilation, AQY — apparent quantum yield, Rₒ — dark respiration rate, and LCP — light compensation. R² represents coefficient of determination.

<table>
<thead>
<tr>
<th></th>
<th>Amax [μmol(CO₂) m⁻² s⁻¹]</th>
<th>AQY [mol(CO₂) mol(photon)⁻¹]</th>
<th>Rₒ [μmol(CO₂) m⁻² s⁻¹]</th>
<th>LCP [μmol(photon) m⁻² s⁻¹]</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC a.m.</td>
<td>14.8 ± 1.43</td>
<td>0.065 ± 0.0266</td>
<td>1.2 ± 0.18</td>
<td>18 ± 3.6</td>
<td>0.9313</td>
</tr>
<tr>
<td>AC p.m.</td>
<td>16.2 ± 2.39</td>
<td>0.040 ± 0.0172</td>
<td>1.0 ± 0.21</td>
<td>25 ± 5.1</td>
<td>0.9051</td>
</tr>
<tr>
<td>EC a.m.</td>
<td>17.8 ± 2.01</td>
<td>0.055 ± 0.0223</td>
<td>1.2 ± 0.31</td>
<td>22 ± 4.2</td>
<td>0.8555</td>
</tr>
<tr>
<td>EC p.m.</td>
<td>21.5 ± 4.50</td>
<td>0.039 ± 0.0156</td>
<td>1.8 ± 0.40</td>
<td>55 ± 8.7</td>
<td>0.8759</td>
</tr>
<tr>
<td>Cloudy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC a.m.</td>
<td>12.3 ± 1.30</td>
<td>0.041 ± 0.0114</td>
<td>0.8 ± 0.11</td>
<td>16 ± 3.1</td>
<td>0.9109</td>
</tr>
<tr>
<td>AC p.m.</td>
<td>15.7 ± 1.20</td>
<td>0.037 ± 0.0087</td>
<td>1.7 ± 0.12</td>
<td>19 ± 4.0</td>
<td>0.9301</td>
</tr>
<tr>
<td>EC a.m.</td>
<td>9.8 ± 2.60</td>
<td>0.034 ± 0.0152</td>
<td>0.9 ± 0.40</td>
<td>28 ± 5.6</td>
<td>0.8446</td>
</tr>
<tr>
<td>EC p.m.</td>
<td>9.4 ± 1.11</td>
<td>0.034 ± 0.0080</td>
<td>1.3 ± 0.27</td>
<td>37 ± 7.4</td>
<td>0.9236</td>
</tr>
</tbody>
</table>

Fig. 5. Relationship between photosynthetic photon flux density (PPFD) and actual CO₂ assimilation rate (A) during sunny (A,B) and cloudy (C,D) days. The A–PPFD relationships estimated were divided into morning (00:00–12:00; circles, solid line) and afternoon (12:00–23:30; triangles, dashed line) parts. The nonrectangular hyperbolic function (Eqn. (3)) was fitted to the data (R² = 0.84–0.93; p < 0.01). Parameters of fitted light response curves are summarized in Table 3.
maxima of ca 45 μmol (CO₂) m⁻² s⁻¹ in AC plants irrespective of sky condition while significantly lower \(V_{C_{\text{max},25}} \) values were observed in EC plants under cloudy (18.7 μmol (CO₂) m⁻² s⁻¹) as compared to clear (31.7 μmol (CO₂) m⁻² s⁻¹) sky conditions.

As compared to clear sky conditions, cloudy sky led to marked reduction in \(R_{L} \) (Fig. 8), by 52–80% for AC and by 48–75% for EC. While the growth under EC resulted in 42–65% reduction of Rubisco oxygenation activity during the sunny days investigated, this reduction was only ca 33% during the cloudy days investigated. Noticeably, \(R_{L} \) values reveal no significant changes between AC and EC leaves during the midday hours (12:00–15:00) of cloudy days, which are those hours during which the significant reduction in \(A \) was observed in EC- as compared to AC-treated leaves (Fig. 4).

Irrespective of CO₂ treatment, the photochemical efficiency of PS II \((\Phi_{II}) \), estimated on the basis of chlorophyll fluorescence emission, did not decrease to below 0.3 and 0.5 during the sunny and cloudy days, respectively. In contrast to \(A \), there were almost identical diurnal courses for the quantum yield of photosystem II photo-chemistry \((\Phi_{II}; \text{Fig. 9A,B}) \) and the apparent photosynthetic electron transport rate (data not shown) as estimated under AC and EC conditions. However, a reduction of \(\Phi_{II} \) in accordance with the diurnal pattern of \(A \), was observed during the midday hours (12:00–15:00) of cloudy skies in AC as compared to EC leaves. The xanthophyll-dependent, non-photochemical dissipation processes within PS II \((\Phi_{NPQ}; \text{Fig. 9C,D}) \) were higher in EC as compared to AC plants under clear (by 11% on average) and particularly under cloudy (by 33% on average) skies. Significance levels for the effects of CO₂ treatment, time of day, and sky conditions on fluorescence parameters are summarized in Table 4.

The total amount of fixed CO₂ and light use efficiency (LUE; defined as the ratio between the total amount of assimilated CO₂ and sum of photosynthetically active radiation incident on the leaf...
surface) was modelled for cloudy and sunny daytime periods (Table 5). The calculation was based on Equation (3) using daily courses of PPFD (Fig. 2) and the parameters of A--PPFD curves (Fig. 4). We found significantly greater carbon gain by sun-adapted leaves during sunny as compared to cloudy days (by 100% and 315% for AC and EC, respectively). Although the carbon gain of EC-treated leaves was higher by 36% than in AC leaves for sunny days, it was lower by 34% on cloudy days. LUE increased by a significant 70% in AC-treated leaves under cloudy as compared to clear sky, whereas it was reduced by a slight 15% in EC-treated leaves.

4. Discussion

In accordance with many other researchers, we confirmed the stimulation of A under EC in Fagus sylvatica at irradiances above 550 μmol (photons) m$^{-2}$ s$^{-1}$ (Fig. 4), although the V_{Cmax} (Fig. 7) and Φ_{II} values (Fig. 9) were reduced by long-term EC treatment. We found that at leaf level EC increases the sum of daytime-fixed CO$_2$ and LUE under typical clear sky conditions, while both of these were reduced under cloudy sky compared to AC-grown plants (Table 5).

Cloud cover leads to a significant decrease in T_a and VPD daily maxima and increase in diffuse light fraction (Fig. 2). Brodersen et al. (2008) have proven that photosynthesis in sun-adapted leaves can be higher under direct light compared to equivalent irradiance of diffuse light. The columnar palisade cells are thought to facilitate the penetration of collimated direct light over isotropic diffuse light (Vogelman et al., 1996). On the contrary, the rate of photosynthesis in leaves at the top of canopies might be depressed during clear sky conditions because of stomatal closure, temperature-stimulated photorespiration, and/or photoinhibition at the highest irradiances (Kitao et al., 2006; Urban et al., 2012b). The A--G relationships (Fig. 6) demonstrate that at leaf level the VPD effect overwhelmed other effects of sky conditions of the days studied.

![Figure 8](https://example.com/figure8.png)

Fig. 8. Diurnal courses of photorespiration rate (R_L) during sunny (circles) and cloudy (triangles) days. The measurements were done on sun-adapted leaves of beech trees cultivated under ambient (AC; open symbols and dashed line) and elevated CO$_2$ concentration (EC; closed symbols and solid line). Means (points) and standard deviations (error bars) are presented ($N = 3$).

![Figure 9](https://example.com/figure9.png)

Fig. 9. Diurnal courses of actual quantum yield of photosystem (PS) II photochemistry ($\Phi_{\text{II}; A,B}$) and xanthophyll-dependent non-photochemical dissipation processes within the PS II ($\Phi_{\text{NPQ}; C,D}$) during sunny (**A,C**) and cloudy (**B,D**) days. The measurements were done on sun-adapted leaves of European beech (**Fagus sylvatica**) cultivated under ambient (AC; open symbols) and elevated CO$_2$ concentration (EC; closed symbols). Means (points) and standard deviations (error bars) are presented ($N = 3$).
4.1. Clear sky conditions and EC

Since EC treatment usually leads to reduced transpiration water loss, we had hypothesized amelioration of the afternoon decline in photosynthesis in EC as compared with AC conditions during sunny days. Evidence in the literature relating to this hypothesis is contradictory. Although Spunda et al. (2005) indeed found lower midday decline in photosynthesis in EC-grown Picea abies, elevated [CO2] also has been shown to have no impact on afternoon decline in photosynthesis in understory saplings (Singssaa et al., 2000) and in three poplar species grown in hot and dry climate conditions of central Italy (Bernacchi et al., 2003). Entirely contrary to this hypothesis, Kets et al. (2010) reported more pronounced midday decline in photosynthesis of Populus tremuloides grown in elevated compared to ambient [CO2]. Based on the A–PPFD response curves (Fig. 5), we found pronounced afternoon depression of A at corresponding irradiances under EC relative to AC conditions, leading, among other things, to a large increase in the light compensation point (LCP; Table 3).

High photorespiration rates are associated with high PPFD and temperatures (Fig. 8). Reduction in Gs induced by EC (Fig. 4C,D) led to a subsequent increase in leaf temperature by as much as 4.5 °C as compared with AC leaves during the midday of sunny days (data not shown). Temperature-stimulated rates of photorespiration thus may contribute to enhanced CO2 release and afternoon depression of carbon uptake in EC-treated leaves and plants during hot sunny days.

4.2. Cloudy sky conditions and EC

To the best of our knowledge, no comprehensive study has heretofore been undertaken on how elevated [CO2] in air influences the diurnal pattern of photosynthesis under cloudy sky conditions. Since photosynthesis constitutes the limiting substrate for photosynthesis under low, non-saturating irradiances, the rate of CO2 assimilation is primarily limited by the regeneration of RuBP, which is to say by ATP and NADPH production (Bernacchi et al., 2003; Sage, 1990). The electron transport rate — which is proportional to ΦII (Fig. 9A,B) — was slightly reduced while ΦNPQ was increased (Fig. 9C,D) by the EC treatment during cloudy days. We assume that this phenomenon is associated with EC-stimulated de-epoxidation of violaxanthin to zeaxanthin, which was observed particularly under the cloudy sky conditions (Tables 1 and 2). Enhanced NPQ is due to thermal dissipation of solar radiation within PS II antennae (Eskling et al., 1997; Smirnoff, 1993) and that may consequently contribute to the flexible regulation of utilization of absorbed light energy, to ATP and NADPH production, and thus to the reduction of photosynthesis in the afternoon hours of cloudy days (Fig. 4B).

A conceptual model of the stomatal control by environmental factors predicts increase in Gs with high blue light intensity and low LAVD, corresponding to cloudy skies (Kanniah et al., 2013; Kets et al., 2010; Reardin and Smith, 2008; Urban et al., 2007), while it decreases with high intercellular [CO2] and transpiration (Barillot et al., 2010). In the present study, the stomata of EC plants remained almost closed during the entire cloudy day, although the LAVD values were not influenced by [CO2]. Similarly, Heath (1998) had found reduced Gs in F. sylvatica and Castanea sativa, but not in Quercus robur, grown at elevated [CO2] on days with low VPD, while on warm sunny days (with correspondingly high VPD) Gs was unchanged or even slightly higher in elevated [CO2] as compared to ambient [CO2]. These findings may imply that plants grown in elevated [CO2] require higher activation energy for stomatal opening and that low radiation energy from cloudy skies is unable to activate biochemical processes responsible for stomatal opening when [CO2] is high. This is in agreement with a previous finding that accumulation of sucrose in the guard-cell wall strongly regulates stomatal aperture size in EC leaves and plants (Lu et al., 1997). However, there exists no data from direct microscopic observations of stomatal aperture in EC plants under cloudy sky conditions.

Notably, the accumulation of non-structural saccharides in cytosol was observed during clear sky conditions even as the concentration of starch in chloroplast stroma increased during cloudy sky conditions irrespective of [CO2] treatment (Fig. 3), although some of these differences were not statistically significant (Table 2). We hypothesize that the main reason for starch accumulation during cloudy days is relatively low activity of such chloroplast transporters as triose-phosphate/phosphate translocator (TPT; Walters et al., 2004) that is caused by low temperature (Cho et al., 2012). Accordingly, accumulation of dihydroxyacetone phosphate in the chloroplasts leads to elevated starch biosynthesis during cloudy days. On the contrary, a rapid, TPT-supported transport of triose phosphates produced in photosynthesis to cytosol during hot sunny days results in stimulated biosynthesis of sucrose and other saccharides over starch (Fig. 3).

Table 4
Summary of significance levels (p-values of three-way ANOVA) for the effects of CO2 treatment, time of day, and sky conditions including mutual interactions on the parameters of carbon assimilation (A — CO2 assimilation rate, Gs — stomatal conductance, Vcmax,art — light-saturated rate of Rubisco carboxylation at actual leaf temperature, Vcmax,25 — light-saturated rate of Rubisco carboxylation corrected to the leaf temperature of 25 °C, R1 — respiration rate, ΦII — actual quantum yield of photosystem II photochemistry, ΦNPQ — xanthophyll-dependent non-photochemical dissipation processes within the PS II). Significant effects and interactions (p < 0.05) are indicated in bold.

<table>
<thead>
<tr>
<th>Sky conditions</th>
<th>Gs</th>
<th>Vcmax,art</th>
<th>Vcmax,25</th>
<th>R1</th>
<th>ΦII</th>
<th>ΦNPQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky conditions × Time</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.145</td>
<td>0.131</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Sky conditions × [CO2]</td>
<td>0.935</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Time × [CO2]</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

Table 5
The total amount of assimilated CO2 (Carbon gain) and light use efficiency (LUE) of sun-adapted leaves of Fagus sylvatica over a day-time period (light intensity > 0 μmol (photon) m⁻² s⁻¹) of the sunny and cloudy days. LUE has been calculated as the ratio between the total amount of assimilated CO2 and sum of photosynthetically active radiation incident on the leaf surface. AC (EC) — ambient (elevated) CO2 concentration.

<table>
<thead>
<tr>
<th>Carbon gain (mol (CO2) m⁻² day⁻¹)</th>
<th>LUE (mol (CO2) mol (photon)⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>AC: 53.5</td>
</tr>
<tr>
<td></td>
<td>EC: 72.7</td>
</tr>
<tr>
<td>Cloudy</td>
<td>AC: 26.7</td>
</tr>
<tr>
<td></td>
<td>EC: 17.5</td>
</tr>
</tbody>
</table>
5. Conclusions

We conclude that sky conditions have important effects on the relative impact of elevated [CO₂] on photosynthesis and stomatal conductance and subsequently on the light use efficiency and total carbon gain. We can assume that an increased expectation in cloud cover associated with climate warming (IPCC, 2007) may reduce the stimulatory effect of EC on leaf-level carbon uptake.

Acknowledgements

This work is part of the research supported by grants GAP501/10-0340 and 13-28093S from the Grant Agency of the Czech Republic. LS was supported by University of Ostrava (SGS20/PrF/2013). The experimental system for CO₂ fumigation comprises a part of the National Infrastructure CzeCos/ICOS (LM2010007).

References

