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Abstract

Phenotypic delay — the time delay between genetic mutation and expression of the corresponding
phenotype — is generally neglected in evolutionary models, yet recent work suggests that it may be
more common than previously assumed. Here, we use computer simulations and theory to investi-
gate the significance of phenotypic delay for the evolution of bacterial resistance to antibiotics. We
consider three mechanisms which could potentially cause phenotypic delay: effective polyploidy,
dilution of antibiotic-sensitive molecules and accumulation of resistance-enhancing molecules. We
find that the accumulation of resistant molecules is relevant only within a narrow parameter range,
but both the dilution of sensitive molecules and effective polyploidy can cause phenotypic delay
over a wide range of parameters. We further investigate whether these mechanisms could affect
population survival under drug treatment and thereby explain observed discrepancies in mutation
rates estimated by Luria-Delbriick fluctuation tests. While the effective polyploidy mechanism
does not affect population survival, the dilution of sensitive molecules leads both to decreased
probability of survival under drug treatment and underestimation of mutation rates in fluctuation
tests. The dilution mechanism also changes the shape of the Luria-Delbriick distribution of mu-
tant numbers, and we show that this modified distribution provides an improved fit to previously
published experimental data.

Author Summary

Understanding precisely how some bacteria survive exposure to antibiotics is a major research
focus. Specific mutations in the bacterial genome are known to provide protection. However, it
remains unclear how much time passes between a bacterium acquiring the genetic change and being
able to tolerate antibiotics - termed the phenotypic delay - and what controls this delay. Here,
using computer simulations and mathematical arguments we discuss three biologically plausible
mechanisms of phenotypic delay. We investigate how each mechanism would affect the outcome of
laboratory experiments often used to study the evolution of antibiotic resistance, and we highlight
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how the delay might be detected in such experiments. We also show that the existence of the delay
could explain an observed discrepancy in the measurement of mutation rates, and demonstrate that
one of our models provides a superior fit to experimental data. Our work exposes how molecular
details at the intracellular level can have a direct effect on evolution at the population level.

1 Introduction

The emergence of resistance to drugs is a significant problem in the treatment of diseases such
as cancer [1], and viral [2] and bacterial infections [3]. In infections with high pathogen load, the
occurrence of de NOVo genetic mutations leading to resistance is a significant problem [4]; examples
include endocarditis infections caused by Staphylococcus aureus [5, 6], Pseudomonas aeruginosa
infections of cystic fibrosis patients |7, 8|, as well as Burkholderia dolosa [9, 4] infections.

The emergence and spread of resistant variants in populations of pathogenic cells has received
much experimental [10, 11, 12, 13, 14] and theoretical attention [15, 16, 17, 18]. However, most
mathematical models assume that a genetic mutation immediately transforms a sensitive cell into
a resistant cell [19, 20, 21, 22, 23, 24]. In reality, a new allele (genetic variant) must be expressed to
a sufficient level before the cell becomes phenotypically resistant. The time between the occurrence
of a genetic mutation and its phenotypic expression is called phenotypic delay. This is also referred
to as delayed phenotypic expression, phenotypic lag, cytoplasmic lag or phenomic lag.

Phenotypic delay was first observed in 1934 by Sonnenborn and Lynch when studying the effect
of conjugation on the fission rate of Paramecium aurelia [25]. Phenotypic delay was further studied
during the 1940s and 1950s, both theoretically [26] and experimentally [27, 28]. Interestingly, in
their hallmark work on the randomness of mutations in bacteria [29], Luria and Delbriick discussed
the possible effect of a phenotypic delay on the estimation of mutation rates. However, interest
in phenotypic delay waned for the next seventy years, mostly because experimental data failed
to reveal evidence for such delay [30, 29]. However, Sun et al. [31] recently demonstrated the
existence of a phenotypic delay of 3-4 generations in the evolution of resistance of Escherichia coli
to the antibiotics rifampicin, nalidixic acid and streptomycin. Sun et al. attributed this delay to
effective polyploidy.

Here, we generalize these observations and also investigate other mechanisms that may lead to
phenotypic delay. We consider three mechanisms: (i) effective polyploidy as in Sun et al. [31], (ii)
the dilution of sensitive molecules targeted by the drug, and (iii) the accumulation of resistance-
enhancing molecules. We speculate on the relevance of these mechanisms for different antibiotics
in Table 1.

E [ective polyploidy refers to the fact that a single cell can contain multiple copies of a given
gene. This can be due to gene duplication events or carriage of multicopy plasmids; it also occurs in
fast-growing bacteria, which initiate new rounds of DNA replication before the previous round has
finished, allowing for a shorter generation time than the time needed to replicate the chromosome
[32, 33, 34]. Since a de novo resistance mutation happens in only one of the multiple gene copies,
it may take several generations before a cell emerges in which all gene copies contain the mutated
allele. Until then, sensitive and resistant variants of the target protein coexist in the cell. A
phenotypic delay occurs when the resistance mutation is recessive, i.e., the sensitive variant must
be replaced by the resistant variant for the cell to become resistant. This is the case for antibiotics
which form toxic adducts with their targets [35, 36]. Examples are quinolones that lock the enzyme
DNA gyrase onto the DNA and prevent DNA replication [37], and polymixins that bind to lipids in
the outer membrane which causes membrane perforation [38, 39]. Effective polyploidy also changes
the per-cell mutation rate, because it alters the number of gene copies per cell [31]. However, as
shown both by Sun et al [31] and in this paper, it does not alter the distribution of mutant numbers
that are observed in fluctuation tests.

The dilution mechanism also assumes the mutation to be recessive, but in contrast to the poly-
ploidy mechanism it focuses on the removal of the sensitive target protein through the process of
cell growth and division. As a mutated cell grows, the resistant version of the protein accumulates;
a subsequent division creates two cells in which the fraction of the sensitive variant is less than
in the parent cell. Even if the relevant gene is present only in a single copy (ruling out effective
polyploidy), there may still be a considerable delay if the number of sensitive proteins to dilute



Antibiotic Target Mechanism of resis- | Postulated phenotypic
tance lag model
rifampicin RNA poly- | target mutation (rpoB), | dilution+polyploidy
merase recessive
fluoroquinolones | DNA  topoiso- | target mutation (gyrA, | dilution+polyploidy
merases gyrB, parC), recessive
polymixins lipo-poly- mutations in enzymes | dilution+polyploidy
saccharide modifying the structure
(LPS) of LPS
beta-lactams enzymes in cell | inactivation by  beta- | accumulation
wall synthesis lactamase (dominant)
tetracycline ribosomes eflux upregulation, pro- | accumulation
duction of a protective
protein
many antibi- | different targets | upregulation of efflux | accumulation
otics pumps (dominant)

Table 1: Postulated mechanism of phenotypic lag for different antibiotics discussed in this work.

out is large before resistance can be established.

The accumulation mechanism posits that sufficient copies of the resistant variants of a protein
must be produced to cause resistance. This is likely to apply to mutations that enhance the
expression of drug efflux pumps [40], -lactamase enzymes that hydrolyze -lactam antibiotics
[41, 42], or mutations that protect ribosomes from tetracycline [43], hence restoring the active
ribosome pool [44]. In these cases, a phenotypic delay could emerge due to the time required for
the resistance-enhancing protein to accumulate in the cell to a level high enough to cause resistance.

We first analyse the three mechanisms using computer simulations and analytic calculations. We
find that the accumulation of resistance-enhancing molecules only leads to phenotypic delay within
a limited parameter range, while effective polyploidy and the dilution of sensitive molecules lead to
phenotypic delay for a broad range of parameters. We also show that while the effective polyploidy
mechanism does not affect the probability that a population survives antibiotic challenge, dilution
of sensitive protein leads to decreased probability of survival under drug treatment.

We then investigate the possibility of detecting a phenotypic delay experimentally. We first
show that the dilution mechanism would cause an underestimation of mutation rates in Luria-
Delbriick fluctuation tests compared to the true genetic rate of mutations. In a fluctuation test,
one measures the distribution of mutant numbers in replicate populations that have been allowed
to grow and evolve for a fixed number of generations. The mutation rate is then estimated by
fitting a population dynamics model to the experimental distribution [29, 45]. In agreement with
our prediction, the mutation rate of Escherichia coli obtained in fluctuation tests has been found
to be an order of magnitude smaller than the rate obtained by DNA sequencing [46].

We also show that the dilution mechanism subtly alters the shape of the Luria-Delbriick distri-
bution of mutant numbers. Discrepancies between the shapes of the experimental and theoretically
predicted mutant number distributions have been observed since the original experiments of Luria
and Delbriick [29, 30, 26, 47], but have never been satisfactorily explained. Using an experimental
data set reported by Boe et al. [47] for E. coli and for fluoroquinolone antibiotics, we show that a
mathematical model that includes the dilution mechanism fits the data better than the no-delay
Luria-Delbriick model, thus providing indirect evidence for the existence of this type of phenotypic
delay in the de novo evolution of resistance to fluoroquinolones.

2 Results
2.1 Modeling the emergence of phenotypic delay

To explore the characteristic features of the three different phenotypic delay mechanisms — dilution
of sensitive molecules, effective polyploidy, and accumulation of the resistant variant — we first
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Figure 1: Models of phenotypic delay. (a) Schematic representation of a simulated experiment,
in which a mutagen (e.g., UV radiation) induces resistant mutations at a particular moment in time.
Mutants initially remain sensitive to the antibiotic, only becoming resistant after a few generations.
(b) Two ways of determining the time to resistance: tracking a single random lineage (dotted line),
and tracking the whole population. In this example, resistance emerges in generations 3 and 2,
respectively. (¢) The dilution mechanism: blue/brown dots denote sensitive/resistant variants of
the target molecule. When a wild-type cell (blue) mutates, it initially remains sensitive (green) and
become resistant (red) when all sensitive molecules are diluted out. (d) Probability that at least
one cell in an exponentially growing population starting with 100 newly genetically mutated cells
is phenotypically resistant (dilution model) as a function of the number of generations since the
genetic mutation (dots: simulation; lines: theory). Phenotypic delay increases with the number of
molecules n to be diluted. (e) The effective polyploidy mechanism: chromosomes are represented
as black ellipses, with a sensitive/resistant allele marked blue/red. (f) Same as in (d) but for the
effective polyploidy mechanism. Phenotypic delay increases with ploidy ¢. (g) The accumulation
mechanism: blue/red dots denote sensitive,/resistant mutants of the resistant-enhancing molecule.
Cells become resistant (red) when the cell contains enough resistant molecules. (h) Same as in (d)
but for the accumulation model. Phenotypic delay decreases with increasing ratio m of the number
of molecules produced during cell cycle and the number of molecules required for resistance.
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simulate an idealised mutagenesis experiment (figure la). We suppose that at the start of the
experiment a population of sensitive bacteria is exposed to a mutagen (e.g., UV radiation [48, 49])
which instantaneously induces mutations in a small fraction of the cells [50, 51]. Cells immediately
begin to express the mutated allele, but because of the existence of phenotypic delay, they remain
sensitive to the antibiotic for some time; phenotypically resistant cells emerge only after a few
generations.

We investigate the emergence of resistance in two different ways. The first approach is to follow
a random lineage, starting from a single mutant bacterium (i.e., at each division we follow one of
the randomly selected daughter cells) and to measure the waiting time before a phenotypically
resistant cell emerges in that lineage (SI figure S1). The second approach is to track the entire
population post mutagenesis, and examine the waiting time before the first phenotypically resistant
cell emerges in the whole population. Figure 1b shows the conceptual difference between these two
approaches.

Dilution of antibiotic-sensitive molecules: If the resistance mutation is recessive, such that
a small number of sensitive target molecules are enough to cause antibiotic sensitivity, a phenotypic
delay can arise from the time taken to replace sensitive target molecules by resistant ones. To model
this, we assume that each cell has a number n of target molecules that are initially sensitive. Once
a mutation has happened, production of sensitive molecules ceases and only resistant molecules
are produced. We suppose that, upon cell division, the n molecules are partitioned stochastically
without bias between the two daughter cells (figure 1c). For simplicity, in this work cells are
considered phenotypically resistant only when they contain no sensitive molecules, i.e., the number
of sensitive molecules that need to be diluted out is n.

For this mechanism, the length of the phenotypic delay increases approximately logarithmically
with the number n of sensitive molecules that need to be diluted for resistance to emerge (figure
1d). To understand this, suppose momentarily that n is a power of 2 and stochasticity can be
neglected so that each daughter cell receives exactly half the number of molecules of the parent
cell. Then for any lineage stemming from a genetically mutant cell, the number of inherited
sensitive molecules will be 2" 1; 2" 2;::: as the generations progress. After log, n generations all
cells will have a single sensitive molecule and hence the first phenotypically resistant cell will then
emerge after 1+ 10g, N generations. In this deterministic setting, 1+ 1og, N will also be the number
of generations for the population to become resistant.

In the more realistic case of stochastic segregation of molecules, the probability of resistance
along a random lineage after g generations is approximately exp( 2 9n) (see SI Section 1.1).
Hence the probability of resistance emerging in a lineage is negligible until generation ¢ set by
29 n, when the probability rapidly rises to 1. Therefore, in line with our deterministic reasoning,
resistance along a random lineage will emerge after g log, n generations. Interestingly, however,
we obtain a different result for the probability that the population as a whole produces at least one
resistant cell. If we start from X genetically mutated cells in the population, the first phenotypically
resistant cell in the population emerges, on average, after an approximate time 1+ log,(n=1og(xn))
(SI Section 1.1). We can also calculate the resistance probability through a recursion relation (SI
Section 1.1); the results fully reproduce the simulations (figure 1d). The emergence of resistance at
the population level is thus accelerated compared to what one would obtain based on deterministic
dilution. We have assumed for simplicity that each of the X cells initially has the same number
N of sensitive molecules; this is only a crude approximation for real bacteria. An extended model
in which molecules are distributed in a biased way between the two daughter cells, inspired by
recent evidence on accumulation of membrane proteins in the daughter cell with the older pole
[52, 53, 54, 55], leads to a similar result (SI Section 3). However, the bias decreases slightly the
phenotypic delay at a population level (SI figure S3); this is because the bias creates lineages which
will be low in the number of resistant molecules.

E [edtive polyploidy: Rapidly dividing bacteria can become effectively polyploid when they
initiate a round of DNA replication before the previous round has finished; this leads to the
presence of multiple copies of at least some parts of the chromosome [32] (figure 1e). Crucially, the
degree of polyploidy (number of gene copies) depends on the bacterial growth rate, as well as on
other factors such as the genetic locus. To model phenotypic delay caused by effective polyploidy,
we assume that each cell has a number ¢ of chromosome copies that is growth-rate dependent
according to the well-established Cooper-Helmstetter model of E.coli chromosome replication [32]



(Methods). Each chromosome copy contains a single allele, encoding the antibiotic target, that can
be either sensitive or resistant. Initially all chromosomes have the sensitive allele but a mutation
changes one allele from sensitive to resistant. We then simulate the process of DNA replication
and cell division, taking account of the fact that duplicated resistant alleles are co-inherited — for
example, if a cell has two chromosome copies, one with a resistant allele and the other with a
sensitive allele, then upon replication and division, one daughter cell will have two sensitive alleles
and the other daughter cell will have two resistant alleles [33] (Methods). We assume that a cell
becomes phenotypically resistant when none of its chromosomes contain the sensitive allele (i.e.,
the resistant allele is assumed to be recessive). In this model, the waiting time until a cell acquires
a full suite of resistant chromosomes, i.e. the phenotypic delay, is log, ¢ generations (figure 1f).
This delay time is the same whether we track a given lineage or the entire population (since it is
deterministic). However, resistance will not occur in all lineages; of the ¢ lineages descended from
the original mutant cell, resistance will eventually occur in only one of them [31] (SI figure S1).

We note that effective polyploidy generally causes a shorter delay than dilution of sensitive
molecules: 2 to 3 generations for rapidly growing bacteria (¢ = 4 or 8 [32, 31]), versus 5 generations
for the dilution mechanism (assuming n 500, which is typical for the gyrase enzyme targeted by
fluoroquinolones [56, 57]). The transition in the probability of resistance as a function of time is
also sharper for effective poliploidy than for the dilution mechanism in which stochasticity of the
segregation process smooths out the transition (compare figures 1d and f). Finally, for effective
polyploidy, we expect only one in every C lineages to become resistant, while for dilution of sensitive
molecules, all lineages will eventually become resistant.

Accumulation of resistance-enhancing molecules: Phenotypic delay can also emerge due
to the time needed to accumulate resistance-enhancing molecules to a sufficiently high level (figure
1g). To model this mechanism, we suppose that during each cell cycle a genetically resistant cell
produces Mp resistance-enhancing molecules, which are randomly distributed between daughter
cells at division. A cell becomes resistant when it has My or more resistance-enhancing molecules.
Interestingly, considering either a single lineage (SI figure S1) or the entire population (figure 1h),
we find that phenotypic delay emerges only within a limited parameter range: 1 - m . 2, where
m = m—': is the ratio of the number of molecules produced during a cell cycle and the number of
molecules needed for resistance. The origin of this limited parameter range is most easily explained
by considering a single lineage. Tracking a lineage arising from a single mutant cell, the cell in
the gth generation will be born with an average of Mp(1 2 9) molecules (SI Section 1.2). The
steady-state number of molecules (found by taking g ¥ 1) is Mp. Thus if m < 1, the steady
state number of molecules will be always smaller than the minimum required number My, and the
lineage will never become phenotypically resistant. Conversely, if m > 1, phenotypic resistance

will emerge after approximately = log,(1 1=m) generations when the average number of
resistance-enhancing molecules exceeds M. But for the delay to be detectable — at least one
generation ( 1) — we require m 2. Considering now the scenario where we track the entire

population, we again expect the steady-state molecule number My to be rapidly reached for all
cells, so that there will be no phenotypic resistance for m < 1. Further, if resistance does emerge
(for m > 1), it will do so more quickly in the entire population than along the random lineage (as
resistance may be acquired in any lineage). We thus expect an even tighter upper bound on the
value of m for phenotypic delay to manifest itself on the population level.

Since our analysis shows that, for this mechanism, phenotypic delay only emerges in a narrow
parameter range, we conclude that the accumulation of resistance-enhancing molecules is unlikely
to be biologically relevant in causing phenotypic delay. Therefore we do not explore this mechanism
further.

2.2 Combining e [edtive polyploidy and dilution

In reality, for a recessive resistance mutation, we expect both the effective polyploidy and dilution
mechanisms to contribute to the phenotypic delay. To understand the implications of this, we
simulated a model combining the two mechanisms, tracking the emergence of resistance at a single-
cell and population level. Our simulations predict a phenotypic delay with characteristics of both
mechanisms (figure 2).

Focusing first on a single lineage (figure 2a,b), we observe that the long-term probability of phe-
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Figure 2: Combined e [edt of the dilution and e [edtive polyploidy mechanisms. (a-b)
Probability of resistance of a single mutated cell. While the long-term probability is defined by
the effective polyploidy, short-term behaviour is determined by the dilution mechanism, leading to
longer phenotypic delays than the effective polyploidy mechanism would produce. (¢) Population-
level probability of resistance versus the number of generations from the mutation event, for n =
20. The combined mechanism leads to smoother curves than the effective polyploidy mechanism
and longer delays than for either mechanism individually. (d) Phenotypic penetrance (ratio of
phenotypically resistant to genetically resistant cells, obtained from Eq. (1)) for the different
mechanisms, for ¢ = 8; n = 8. The dashed red line indicates when the phenotypic penetrance
surpasses 1=2, which is the threshold used by Sun et al. [31] to define the emergence of phenotypic
resistance. With this definition, the dilution mechanism plus effective polyploidy doubles the delay
(generation 6 as opposed to generation 3 compared to effective polyploidy alone).



notypic resistance depends on the ploidy ¢, tending to 1=c, as expected for the effective polyploidy
mechanism, while the approach to this value is gradual as expected for the dilution mechanism.
Combining both mechanisms increases the length of the delay compared to either mechanism acting
in isolation.

Following Sun et al. [31], we also calculate the phenotypic penetrance, defined as the proportion
of genetic mutants which are phenotypically resistant in the entire population. The expected
phenotypic penetrance is (see SI Section 1.3 for derivation):

(O 0 g<log,c

20C,

@ 290t o @ Dya 2= ogc g W

Note that n = 0 corresponds to only the effective polyploidy mechanism, while ¢ = 1 corresponds

to only the dilution mechanism being present. The piecewise form of Eq. (1) arises because no

cell can become phenotypically resistant until all its chromosomes have the resistant allele. Figure

2d shows that the phenotypic penetrance predicted by Eq. (1) increases gradually with time
(characteristic of the dilution mechanism) but with a delay determined by effective polyploidy.

We now return to computer simulations to study the emergence of resistance on the population
level following mutagenesis (figure 1), for the combined delay mechanisms. In general, both the
ploidy ¢ and the number of antibiotic target molecules per cell n will depend on the doubling time
tyq (or growth rate) of cells. To be more specific, we consider resistance of E. coli to fluoroquinolone
antibiotics, that arises through mutations in DNA gyrase (protein targeted by the antibiotic).
Gyrase abundance as a fraction of the proteome (i.e. gyrase concentration in the cell) has been
found to be independent of the growth rate [58]. We therefore assume that the number n of
gyrases per cell is proportional to the cell volume V. We model the volume as V / 2 = ° where

= (In2)=ty is the growth rate and o = 1h 1 [59, 60, 61, 62], and we model polyploidy using the
Cooper-Helmstetter model [32] (see Methods and Model for details). Suppose that for slow-growing
cells (tg = 60min), ¢ = 2 and N = 20. Then, for fast-growing cells (ty = 30min), we have ¢ = 4
and n = 40. Note that here we do not assume realistic values of n because the minimum number
Ny of poisoned sensitive gyrase molecules required to inhibit growth is probably much higher than
Ny = 1 assumed in the model. n should be therefore interpreted more correctly as the number of
“units” of gyrase, with one unit equivalent to Ny molecules. Figure 2c shows that the phenotypic
delay is longer for the fast-growing population, and that this is mostly caused by the increase in
the number of molecules n (SI figure S4). We also observe that protein dilution leads to a smoother
transition between sensitivity and resistance than the transition due to effective polyploidy alone.

2.3 The dilution mechanism, but not e[edtive polyploidy, aledts the
probability of clearing an infection

To understand better the practical significance of phenotypic delay, we simulated antibiotic treat-
ment of an idealised bacterial infection (figure 3). We assume for simplicity that, before treatment,
the population of bacteria grows exponentially in discrete generations, and cells mutate with prob-
ability = 10 7 per cell per replication. When the population size reaches 10, an antibiotic
is introduced; this causes all phenotypically sensitive bacteria to die, leaving only the phenotyp-
ically resistant cells (figure 3b). We are interested in the probability that the bacterial infection
survives the antibiotic treatment, a concept closely related to evolutionary rescue probability, i.e.,
the probability that cells can survive a sudden environmental change thanks to an adaptive mu-
tation [63, 31, 64]. Since sensitive cells do not reproduce in our simulations in the presence of the
antibiotic, survival can only be due to pre-existing mutations (standing genetic variation).

We first consider the effective polyploidy model, with ploidy ¢ controlled by the doubling time
tq. In agreement with Sun et al. [31], we find that tq has no effect on the survival probability (figure
3c). This is due to a cancellation of two effects: the increased number of gene copies increases
the per-cell chance of genetic mutation, but also increases the length of the phenotypic delay (see
Section 2.2.1 of the SI of Ref. [31] for a mathematical derivation). In contrast, phenotypic delay
caused by the dilution of sensitive molecules does affect the survival probability (figure 3d). The
survival probability strongly depends on n, and decreases significantly from 0.69 for n = 0 to 0.06
for n = 100.
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Figure 3: Phenotypic delay decreases the probability of a bacterial infection surviving
antibiotic treatment (a-b) A schematic of the simulated infection: a population of exponentially
replicating sensitive cells is exposed to an antibiotic when the population reaches 107 cells. Only
phenotypically resistant cells survive the antibiotic. Time and antibiotic concentration in panel
(b) have arbitrary units. (c) The probability of survival for the effective polyploidy mechanism
is independent of the doubling time (and hence the ploidy). (d) For the dilution mechanism,
the probability of survival decreases with the number of molecules N which need to be diluted
out before the cell becomes phenotypically resistant. (e) In a combined dilution-and-effective
polyploidy model, the survival probability increases with the doubling time.
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Figure 4: The dilution model aledts the probability distribution of the number of
resistant cells. The frequency of mutants for a simulated fluctuation test with 10,000 samples,
for the model with n = 0 (no delay) and n = 16. (a) Distributions for both models for a fixed

= 10 7. (b) Distributions for the case when in the dilution model has been adjusted to
minimize the difference to the no-delay model (values in the inset).

We also simulated the mixed case where both the effective polyploidy and dilution mechanisms
are combined, with ploidy ¢ and molecule number n determined by the doubling time ty as described
in Sec. 2.2. In this case the survival probability does depend on the doubling time (figure 3e; blue
line). This is mostly caused by the change in the molecular number n as a function of doubling
time. If we neglect the dependence of n on ty, the effect is much smaller, although there is still
some dependence on ty because the rate of resistant protein production depends on the resistant
gene copy number, which increases en route to the full suite of resistant chromosomes (SI figure
S4).

2.4 Phenotypic delay due to dilution changes the Luria-Delbrick distri-
bution and biases mutation rate estimates

The scenario discussed in the previous section is equivalent to the Luria-Delbriick fluctuation test
[29, 65], which has been extensively studied theoretically [66, 67, 68, 45, 69, 70, 71, 72, 73]. In
the fluctuation test, a small number of sensitive bacteria are allowed to grow until the population
reaches a certain size. The cells are then plated on a selective medium (often an antibiotic) to
reveal the number of mutated bacteria in the population. The distribution of the number of
mutants (measured over replicate experiments) is termed the Luria-Delbriick distribution. This
distribution has a power-law tail caused by mutational “jackpot" events [29, 65, 72| in which rare,
early-occurring mutants produce many descendants in the population. The fluctuation test, fitted
to corresponding mathematical models, is widely used to estimate mutation rates in bacteria. Here,
we discuss the effect of phenotypic delay on the Luria-Delbriick distribution and on the resulting
mutation rate estimate.

First, we note that phenotypic delay caused by effective polyploidy alone does not affect the
Luria-Delbriick distribution. As discussed in the previous section, this is due to an exact cancel-
lation of two effects: increased ploidy leads to more mutations per bacterium but also a longer
phenotypic delay. In contrast, the dilution model does alter the Luria-Delbriick distribution. Fig-
ure 4a shows that, for a fixed mutation probability —and fixed initial and final population sizes,
phenotypic delay due to dilution causes an increase in the number of replicate experiments yielding
zero resistant mutants, and a decrease in the number of experiments yielding intermediate num-
bers of resistant mutants. The number of experiments yielding very large numbers of mutants,
due to jackpot events, is less affected by the delay — this is because mutants that arise early will

10



have had sufficient time to dilute out the sensitive molecules and become phenotypically resistant
before being exposed to the antibiotic. Hence the dilution model also leads to a similar scaling
(proportion of replicates yielding at least X mutants is / X ! for large X) as for the Luria-Delbriick
distribution (figure S8).

From a practical point of view, the mutation probability is often unknown and the fluctuation
test is used to estimate it. To investigate the effect of phenotypic delay on the estimated mutation
probability, we simulated the fluctuation test for the dilution model with n = 16, for a range of
mutation probabilities. We compared the resulting mutant number distributions to that obtained
in an equivalent simulation without phenotypic delay, with mutation probability =10 7. Using a
genetic algorithm [74] to minimize the L, norm between the distributions with and without pheno-
typic delay, we found that the phenotypic delay model required a much larger mutation probability
( =8 10 7) to reproduce the distribution of the no-delay model. This suggests that neglecting
phenotypic delay when fitting theory to fluctuation test data could significantly underestimate the
true mutation probability. We also note that the “closest match" distributions with and without
phenotypic delay are not exactly identical (figure 4b). The model with phenotypic delay leads to
a larger number of jackpot events (as might be expected since the mutation probability is higher)
and a reduced number of replicates with few mutants, consistent with suppression of late-occuring
mutants by the phenotypic delay.

Our result could explain an apparent discrepancy between mutation probabilities estimated
by different methods. In particular, Lee et al. measured the mutation probability of E. coli
using both fluctuation tests (with the fluoroquinolone nalidixic acid as selective agent) and whole-
genome sequencing [46]. The fluctuation test underestimated the mutation probability by a factor
of 9.5; Lee et al. suggested that this could be caused by phenotypic delay [46]. To see whether
our dilution model could explain this, we simulated the 40-replicate, 20 generation fluctuation
test experiment of Lee et al. [46], using the mutation probability as estimated by whole-genome
sequencing (= 3:98 10 °, total for all mutations producing sufficient resistance to nalidixic
acid), for differing values of the number n of target “units” (“effective” gyrase molecules). For
each N we simulated 1000 realisations of the 40-replicate experiment, and for each realisation
we estimated the mutation probability under the no-delay model using the maximum likelihood
method [45] (the same as used by Lee et al.) implemented in the package flan [75]. This procedure
correctly reproduced the mutation probability for data from simulations without delay (n = 0; SI
Fig. S6). For the model with delay, the maximum likelihood fit returned a mutation probability
that was lower than the true one (figure 5a); the discrepancy increased with the phenotypic delay.
To obtain an apparent mutation probability that is underestimated by a factor of 9.5, as observed
by Lee et al. [46], we require N 30; i.e. roughly 30 sensitive ‘units’ of the antibiotic target must
be diluted out before a cell becomes phenotypically resistant. Thus, while our simulations do not
prove that phenotypic delay is responsible for the discrepancy observed by Lee et al., they suggest
that it is a plausible explanation.

2.5 Mutant number distributions may support the existence of pheno-
typic delay

Our results suggest that a phenotypic delay caused by dilution produces a characteristic (though
small) change in the shape of the observed mutant number distribution (figure 4b). This deviation
should, in principle be detectable in experiments. To check this, we used the dataset of Boe et
al. [47] who performed a 1104-replicate fluctuation test, using the bacterium E. coli with the
fluoroquinolone antibiotic nalidixic acid as the selective agent. Nalidixic acid targets DNA gyrase.
As explained in Sec. 2.2, we expect that a small number of wild-type DNA gyrases should be
enough for a bacterial cell to be sensitive, suggesting that phenotypic delay via gyrase dilution
may be likely. Boe et al. [47] report an unsatisfactory fit of their mutant number distribution
data to the theoretical predictions of two different variants of the Luria-Delbriick model (the Lea-
Coulson and Haldane models); in comparison to these models, Boe et al. observed too many
experiments yielding either no mutants or a high number of mutants (greater than 16), and a
dearth of experiments resulting in intermediate mutant counts (1-16). Qualitatively, this seems to
be consistent with our expectations for the dilution model (figure 4).

To see if the dilution model of phenotypic delay indeed provides a superior fit to Boe et al’s data,
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Figure 5: Phenotypic delay due to the dilution mechanism explains observed discrep-
ancy in mutation rates and provides superior fit to fluctuation experiment data. (a)
We simulated the fluctuation experiment of Ref. [46], where the authors report a factor of 9.5
difference between the values of obtained by DNA sequencing and fluctuation tests. For each n
we simulated 1000 experiments with the sequencing-derived mutation probability = 3:98 10 °
and then used the same estimation procedure as Ref. [46] to infer  assuming no delay exists.
n = 30 sensitive molecules are required to account for the discrepancy observed. Error bars are
1.96  standard error. (b) The experimental cumulative mutant frequency distribution reported
by Boe et al. [47] (black points) and the best-fit simulated distribution (green line) for the dilu-
tion phenotypic delay model. The staircase-like shape of the simulated distribution is caused by
the fixed division time and strictly synchronous division of the mutated cells. (c) Histograms of
the probability of the delay model obtained by applying the approximate Bayesian computation
scheme to simulated data. Our classification algorithm correctly discriminates between the models.

we used an approximate Bayesian computation (ABC) approach [76] (Methods). We simulated a
1104-replicate fluctuation experiment 10* times, for the models with and without delay, with initial
and final population sizes of 1:2  10* and 1:2  10° matching those of Boe et al. [47]. We then
determined the posterior Bayesian probability that the experimental data is generated by the delay
model as opposed to the no-delay model, and tested the validity of our approach using synthetic
data (figure 5c and Methods and models). We find that the probability of the experimental data
coming from the model with phenotypic delay is 0.97, as opposed to the model without phenotypic
delay. We thus conclude that the Boe et al. data supports the existence of phenotypic delay caused
by the dilution mechanism.

3 Discussion

Quantitative models for de novo evolution of drug resistance are an important tool in tackling
bacterial antimicrobial resistance, as well as viral infections and cancer. However, our quantitative
understanding of how resistance emerges is still limited. The possibility of a phenotypic delay
between the occurrence of a genetic mutation and its phenotypic expression has long been discussed
[25, 26, 27, 28, 29], but its relevance for bacterial evolution has been questioned until recently [31].
Here, we have used computer simulations and theory to study the effects of phenotypic delay on
the emergence of bacterial resistance to antibiotics. We investigated three different mechanisms
that could lead to phenotypic delay: (i) dilution of antibiotic-sensitive molecules, (ii) effective
polyploidy, and (iii) accumulation of resistance-enhancing molecules. We observe that the third
mechanism only leads to phenotypic delay under a limited range of parameters, which makes it
unlikely to be biologically relevant. The other two mechanisms have different “control parameters"
(the degree of ploidy ¢ versus the number of target molecules n) and different effects on the
population dynamics. In particular, we show that protein dilution, but not effective polyploidy,
can affect the probability that a growing population survives antibiotic treatment. This in turn
can bias the estimated mutation rate in a Luria-Delbriick fluctuation test. Effective polyploidy
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does not play a role here because of two cancelling effects: increased ploidy increases the number
of mutations per cell in the growing population, but also increases the length of the phenotypic
delay. These effects counterbalance such that the Luria-Delbriick distribution remains unaffected
[31].

E [edt of the dilution mechanism on the lineage/population survival probability.
We have shown that the various mechanisms affect the survival of whole populations, and of random
lineages, in different ways. In the case of effective polyploidy, the duration of the phenotypic lag
is the same for a random lineage as it is for the entire population. However, only one in C lineages
becomes resistant and can survive antibiotic treatment. In contrast, in the dilution mechanism
every lineage becomes resistant and survives, as long as the time before antibiotic exposure is much
longer than the phenotypic lag. However, the length of the phenotypic lag for each lineage is now a
random variable. The time to resistance at the population level is thus determined by the shortest
phenotypic lag among all the lineages.

E [edt of the dilution mechanism on fluctuation test data. Luria-Delbriick fluctuation
tests remain the standard microbiological method for estimating mutation rates, yet it has often
been noted that the measured distributions of mutant numbers are not precisely fit by the theo-
retical distribution [29, 26, 30, 47]. A comparison with a more direct approach (DNA sequencing)
suggests that fluctuation tests can significantly underestimate mutation rates [46]. Although phe-
notypic delay has been suggested as a possible explanation for these effects [29, 46|, our study is
the first to investigate in detail how specific mechanisms of phenotypic delay alter the shape of the
Luria-Delbriick distribution, and to demonstrate that it can indeed produce a mutation rate esti-
mate that is biased by the same order of magnitude as that observed experimentally [46]. We also
show that the simulated distribution of mutant numbers from the dilution model fits the experi-
mental fluctuation test data of Boe et al.[47] better than the standard model without phenotypic
delay. We note that this result should however be taken cautiously. Boe et al.’s experimental proto-
col is not ideal for detecting phenotypic delay: for example, their bacterial cultures were allowed to
reach stationary phase before plating. Moreover, our work shows that while phenotypic delay due
to dilution affects the mutant number distribution, the change is subtle, requiring many replicate
experiments to produce statistically significant results. While the usual number of replicates in a
fluctuation test is less than 100, recent developments in automated culture methods should make
it possible to run fluctuation tests with many more replicates, which may provide a way to probe
the effects of phenotypic delay on the Luria-Delbriick distribution in more detail.

From molecular detail to evolutionary population dynamics. Our work presents an
example of how molecular details at the intracellular level (here, protein dilution and the details
of DNA replication) can have a direct effect on evolution at the population level [77, 78, 79].
This observation complements other work showing, for example, that molecular processes such
as transcription and translation affect population-level distributions of protein numbers [80, 81]
and that noise in gene expression can directly affect the survival of populations in a fluctuating
environment [82].

Importantly, both the effective polyploidy mechanism and the dilution mechanism cause a
phenotypic delay only if the resistance mutation is recessive. For effective polyploidy this implies
that a cell must contain only resistant alleles in order to be phenotypically resistant, while for the
dilution mechanism we have assumed that sensitive target molecules need to be diluted out (or
otherwise removed). This implies that we would expect to see phenotypic delay in the evolution of
resistance to some antibiotics, but not to others. In particular, we would expect phenotypic delay
due to dilution if the antibiotic acts by binding to its molecular target to make a toxic adduct, and
resistance involves production of a resistant target. This is the case for fluoroquinolone antibiotics,
which bind to DNA gyrase, causing DNA double-strand breaks (Table 1); resistance is caused by
production of mutant gyrase that no longer binds the antibiotic [83]. The fact that both Boe et
al. [47] and Lee et al. [46] observed discrepancies in fluctuation test data for resistance to the
fluoroquinolone nalidixic acid is consistent with this expectation.

Assumptions of the model. Our simulations and theoretical calculations have involved a
number of simplifying assumptions. Firstly, we ignore any possible fitness costs of mutations,
assuming equal growth rates for wild-type and mutant cells in the absence of the antibiotic. While
resistance mutations can incur a fitness cost [84, 85|, many clinically-relevant mutations have either
no cost or even provide a small growth advantage [85, 86].
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For the molecular dilution mechanism, we have assumed that the degradation rate of target
molecules is negligible, so that sensitive molecules can only be removed through cell division and
dilution. While this seems to be (mostly) the case for bacterial enzymes targeted by antibiotics
[87, 88], it may not be true for mammalian cells in which degradation plays a bigger role than
dilution [89].

We have also assumed here that in the dilution mechanism, all sensitive molecules need to be
removed for the cell to become phenotypically resistant, and that each cell has the same number
of initial sensitive molecules. In reality, resistance is likely to gradually increase as the number of
sensitive molecules decreases, and the total number of target molecules may vary among different
cells. Our general conclusions remain valid in this case, but the mutant distribution may change. To
construct more accurate models, we need measurements of the degree of antibiotic sensitivity as a
function of the intracellular numbers of resistant and sensitive antibiotic targets. While technically
challenging, such measurements could be carried out e.g. by fluorescently labelling target molecules
[67]. A starting point for such a detailed model could be to assume the production of sensitive
molecules follows the model for protein production of the accumulation mechanism. The value of
N per cell would then depend on the number of molecules at the time of mutation, which fluctuates
around the mean number of molecules produced per cell division (SI Section 1.2)

Experimental tests for phenotypic delay. Sun et al. have demonstrated phenotypic delay
by tracking expression of a genetically engineered fluorescent marker in bacterial lineages, and they
attributed it to polyploidy [31]. However, their work did not involve de novo mutations. Detecting
and explaining the mechanism of phenotypic lag due to spontaneous mutations would be much more
challenging. Our work suggests that, at least in principle, the mutant number distribution obtained
in fluctuation tests could be used to detect the existence of a phenotypic delay caused by molecular
dilution, although this would require many replicate experiments. Another possible method could
rely on differences in the probability and timing of phenotypic resistance in random lineages. A
mother-machine type of experiment in which many lineages can be tracked and exposed to an
antibiotic at controlled times could help to determine the contribution of different mechanisms to
phenotypic lag. Yet another approach would be an experiment similar to the thought experiment
from figure 1, in which a mutagen such as UV irradiation creates a burst of mutants. Other
signatures of phenotypic delay may be detected in experiments where the timing of antibiotic
exposure, and of resistance evolution, can be precisely controlled, for example in turbidostat-like
continuous culture devices [90].

Broader significance of phenotypic delay We have shown here that phenotypic delay
(caused by molecular dilution) can affect mutation rate estimates from fluctuation tests, as well as
the probability that a bacterial infection survives antibiotic treatment. Phenotypic delay may also
affect other processes. For example, it was recently shown that a delay in evolutionary adaptation
can lead to coexistence of spatial populations, in cases where immediate adaptation would eradicate
coexistence [91, 92]. A delay in evolutionary adaptation has also been postulated to explain the
effect of antibiotic pulses of different lengths on the probability of resistance emerging [93]. Thus,
mechanistic understanding of phenotypic delay may be of broad relevance in bacterial evolution.

4 Methods and models

In all our simulations we use an agent-based model to simulate how mutated cells gain phenotypic
resistance. Each cell has a number of attributes depending on the studied mechanism, such as the
numbers of sensitive and mutated DNA copies, and the numbers of sensitive and resistant proteins,
as specified below. Cells divide after time tg since last division.

In our population-level simulations (section 2.1), we simulate 100 cells which have just be-
come genetically resistant. Population-level simulations are repeated 1,000 times and single-cell
simulations are repeated 10,000 times.

4.1 Modelling e [edtive polyploidy

To describe how the copy number (ploidy) ¢ changes during cell growth and division we use the
Cooper-Helmstetter model [32]. We assume that it takes t; = 40 min for a DNA replication fork to
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travel from the origin of replication to the replication terminus, and that the cell divides t, = 20 min
after DNA replication termination (t; = C and t, = D in the original nomenclature of Ref. [32];
values representative for Escherichia coli strain B/r). During balanced (“steady state”) growth
assumed in this work, the number of chromosomes must double during the time ty between cell
divisions (population doubling time). This means that for any tg < t; +t, = 60min, the cell
must have multiple replication forks and more than one copy of the chromosome. The number of
chromosomes will change during cell growth: it will double some time before division, and halve
just after the division. If tjh; is the time, since the last division, at which new replication forks are
initiated, we must have (tinj +t1) mod ty =ty t,. This equation states that the time when a
replication round, initiated in the parent cell, finishes in the offspring cell ((tini +t1) mod tq) must
be the same as the time ty t, when the cell division process (lasting t; min) is initiated. It can
be shown that this gives tini =ty (t; +t;) mod ty. We proceed in a similar way to determine
the time trep at which a gene which confers resistance is replicated. If the gene is located in the
middle of the genome, as is the case for the gyrA gene relevant for fluoroquinolone resistance, it
will be copied t;=2 minutes after chromosome replication initiation. This implies that

t
trep = tq t, + 51 mod ty : (2)

At this time point during the cell cycle the copy number of the gene of interest will double. The
effective polyploidy immediately after this event is maximal and equal to

=2+t
T .

c=2" T (3)

where d:::e denotes the ceiling function. We use ¢ from Eq. (3) as the control variable in simula-
tions of the polyploidy model.

To simulate a cell or a population of cells with effective polyploidy we use the following al-
gorithm. We initialize the simulation with all cells having ¢=2 sensitive alleles. Cells replicate in
discrete generations every ty minutes. The number of allele copies doubles at trep (Eq. (2)) since
the last division in such a way that a sensitive/resistant allele gives rise to a sensitive /resistant
copy, respectively. Sensitive alleles have a probability — of mutating to a resistant allele. When
a cell divides, the copies are split between the two daughter cells, with those linked by the most
recent replication fork ending up in the same cell. We assume that the resistance mutation is
recessive, which implies that a cell becomes resistant when all of its gene copies are resistant.

4.2 Modelling the dilution of sensitive molecules

For the dilution mechanism, we track the number of sensitive target molecules in each cell. We
assume that at time zero, all cells have n sensitive target molecules and no resistant ones. When a
mutation happens, we suppose that the mutated cell begins to produce resistant target molecules
and ceases to produce new sensitive molecules. At cell division, the sensitive molecules are parti-
tioned between the two daughter cells following a binomial distribution with probability 0:5. We
consider that a cell becomes phenotypically resistant when it contains no sensitive molecules. In
the supplementary information we relax this assumption and study the case where a cell is consid-
ered resistant when the number of sensitive molecules falls below a (non-zero) threshold value (SI
figure S5).

4.3 Modelling the accumulation of resistance-enhancing molecules

To model the accumulation of resistance-enhancing molecules, we explicitly simulate the production
of My resistance-enhancing molecules per cell cycle and their stochastic division between daughter
cells, via a binomial distribution, at cell division. A cell is considered resistant when it contains
more than My resistance-enhancing molecules. In all simulations we fix My = 1000 and vary Mp

to explore a range of m = M—‘r’ between 0.1 and 2.
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4.4 Combining e [edtive polyploidy and molecular dilution

To include both effective polyploidy and molecular dilution, we track explicitly the total gene
copies, the resistant gene copies and the number of sensitive proteins, as explained in Secs. 4.1 and
4.2. We assume that the number of resistant proteins produced in one cell cycle is proportional
to the ratio of resistant to total gene copies. Both types of proteins (sensitive and resistant) are
partitioned at cell division following a binomial distribution with probability 0.5. We consider that
a cell becomes phenotypically resistant when it contains no sensitive molecules.

4.5 Simulating a growing infection

We start our simulations with 100 sensitive bacteria. Bacteria reproduce in discrete generations
with doubling time tg. Upon reproduction, each bacterium can mutate with probability =10 7.
When the population reaches 107 cells, all phenotypically sensitive cells are removed (killed);
this represent antimicrobial therapy. We repeat the simulation 1000 times to obtain the survival
probability as a fraction of simulations in which phenotypically resistant cells emerge before the
population dies out.

4.6 Simulating Luria-Delbrick fluctuation tests

To generate mutant size distributions for realistically large population sizes of sensitive cells re-
quired for comparing the model with experimental data, we use an algorithm based on Cinlar’s
method [94, 95]. The algorithm does not simulate the sensitive population explicitly, but it gen-
erates a set of times ftjg at which mutants emerge from the exponentially growing sensitive pop-
ulation:

Algorithm 1:

1 Initialize t=0,s=0t; =[];

2 whilet tf do

3 s s log(U(0;1)) ;

1

a |t Llog igs+1 ;
5 ti.extend(t)
6 end
7 return tj
Here tf = M is the final time, N is the final population size, Nj is the initial population
size, s = Int(dz) (1 ) is the growth rate of the sensitive bacteria, ty is the doubling time, is

the mutation probability and U(0;1) is a random variable uniformly distributed between 0 and 1.
Formally, ftjg are the times generated from a Poisson process over the interval [0; tg] with rate
( <€ s@ ) )O te-

For each tj, we then calculate the number of generations until the final time tf as

tr b,
tg

gi = (4)
For all of the simulations in sections 2.4 and 2.5, we assume ty = 60min. We then simulate each
clone for gj generations, including dilution of sensitive target molecules, and measure the number
of resistant cells for each clone. Finally, we measure the number of resistant cells for each replicate
by summing up over all clones.

4.7 Approximate Bayesian computation

We use an approximate Bayesian computation method to determine the posterior probabilities of
the non-delay and the dilution model. Briefly, the method relies on generating many (here: 10%)
independent samples of the simulated experiment mimicking Boe et al. [47] for both models. Model
parameters are sampled from suitable prior distributions, we then select samples that approximate
well the real data, and calculate the fraction of best-fit samples corresponding to each model.
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A single sample corresponds to 1104 simulated replicates of the fluctuation experiment at
fixed parameters, for a given model. For each sample, parameters are randomly chosen from the
following prior distributions: 10g;¢( ) uniform on [ 10; 8], and log,(n) uniform on [0; 8] (for the
delay model). The tail cumulative mutation function®

F (k) = Number of experiments yielding Kk mutants; 0 k 513; (5)

is calculated for each sample i (Fj), and also for the experimental data from Boe et al. [47]
(Fobs). We then select 100 out of the 2 10* (10* from each model) generated samples with the
smallest Euclidean distance jjFij Fopsjj2 (simulated distributions closest to the experimental data).
The proportion of these which come from the phenotypic delay model is an approximation of the
posterior probability that the experimental data was generated by the delay model (under the
assumption that the experimental data was generated by one of the models). In reality the data
generation process is likely to be far more complex than our idealised models, but the posterior
probability of 0:97 implies the delay model provides a superior explanation compared with the
model with no delay.

To examine the validity of our approach, we performed cross validation. For each model we
randomly chose one sample corresponding to that model. We then computed the probability the
simulated data was generated by the model with phenotypic delay, via the approximate method
detailed above. This was carried out 500 times for each model. The proportion of simulations that
were misclassified (as being with delay when they were not, or vice versa) was low (0.007, figure
5¢), showing that our model selection framework is able to discriminate between the two models.
We provide a further sensitivity analysis of this inference method in Section 7 of the SI.
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Supporting Information Legends

Figure S1: (a) We follow a single bacterium which has just mutated and has the resistant allele
in one of its chromosomes. When it divides, we choose one of the two daughter cells at ran-
dom. After a few generations, this cell can become phenotypically resistant. (b) The probability
of the cell being resistant as a function of the number of generations from the genetic mutation
for the dilution mechanism (dots: simulation, lines: theory Eq. (S1)). (c) Same as (b) for the ef-
fective polyploidy mechanism. (d) Same as (b) for the accumulation mechanism (only simulations).

Figure S2: Expected number of generations until a phenotypically resistant cell emerges. We start

with X = 100 cells that just mutated, and repeat the simulation 500 times for each data point.
“Analytic approximation” refers to Eq. (S6).
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Figure S3: Biasing the segregation of sensitive molecules at division leads to a decrease in the
phenotypic delay both at the (a) single-cell and (b) population level. Blue curve represents an
unbiased case (p = 0:5), orange curves is the biased case (p = 0:62). In all cases, n = 1000.

Figure S4: Effect of dependence of the number of target molecules on the doubling time tq for
the combined model. (a) Probability of resistance as a function of time (generations) for different
doubling times (determined by ploidy ¢) when the number of target molecules n depends on tg.
(b) Same as (a) but for the model in which n does not depend on tq. (¢) Probability of survival
for a simulated infection (see section 2.3 and figure 3 in the main text) for a combined model when
the number of target molecules depends on the growth rate. (d) Same as (c) but for the model in
which n does not depend on tq.

Figure S5: A partial dilution mechanism decreases the phenotypic delay. (a) Single-cell and (b)
population level simulated experiments as a function of Ny, the number of sensitive molecules al-
lowed for resistance to emerge. In all cases, the total number of molecules n = 1000.

Figure S6: Maximum likelihood estimates of from 1000 simulations mimicking the experiment of
Ref. [46] with known =3:98 10 ° (black vertical line) for the no-delay model. The mutation
probability can be underestimated by a factor of 2 (95% of simulations yielded estimates between
red vertical lines), whereas Ref. [46] reports a factor of 9.5 difference between  obtained from
DNA sequencing and fluctuation tests. The Lee et al. result [46] cannot be thus explained by the
no-delay model.

Figure ST7: Sensitivity analysis for model selection. (a) The probability of the Boe et al. data
[47] coming from the delay model as a function of the number of simulation runs. The runs were
randomly sampled from the original bank of simulations and the probability of the delay model
was estimated. The process was repeated 10 times. Error bars are the maximum and minimum
probability estimated, with the centred dot as the mean. (b) The probability estimate for the
probability of the data [47] coming from the delay model as a function of Nenresh-

Figure S8: Full distribution for the Luria-Delbriick simulations of the dilution model presented in
figure 4 in the main text. a) Distributions for both models for a fixed =10 7. (b) Distributions
for the case when in the dilution model has been adjusted to minimize the difference to the
no-delay model.
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Abstract

Phenotypic delay — the time delay between genetic mutation and expression of the corresponding
phenotype - is generally neglected in evolutionary models, yet recent work suggests that it may be
more common than previously assumed. Here, we use computer simulations and theory to investi-
gate the significance of phenotypic delay for the evolution of bacterial resistance to antibiotics. We
consider three mechanisms which could potentially cause phenotypic delay: e[edtive polyploidy,
dilution of antibiotic-sensitive molecules and accumulation of resistance-enhancing molecules. We
find that the accumulation of resistant molecules is relevant only within a narrow parameter range,
but both the dilution of sensitive molecules and e [edtive polyploidy can cause phenotypic delay
over a wide range of parameters. We further investigate whether these mechanisms could a[edt
population survival under drug treatment and thereby explain observed discrepancies in mutation
rates estimated by Luria-Delbrick fluctuation tests. While the e [edtive polyploidy mechanism
does not aledt population survival, the dilution of sensitive molecules leads both to decreased
probability of survival under drug treatment and underestimation of mutation rates in fluctuation
tests. The dilution mechanism also changes the shape of the Luria-Delbriick distribution of mu-
tant numbers, and we show that this modified distribution provides an improved fit to previously
published experimental data.

Author Summary

Understanding precisely how some bacteria survive exposure to antibiotics is a major research
focus. Specific mutations in the bacterial genome are known to provide protection. However, it
remains unclear how much time passes between a bacterium acquiring the genetic change and being
able to tolerate antibiotics - termed the phenotypic delay - and what controls this delay. Here,
using computer simulations and mathematical arguments we discuss three biologically plausible
mechanisms of phenotypic delay. We investigate how each mechanism would a [edt the outcome of
laboratory experiments often used to study the evolution of antibiotic resistance, and we highlight
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how the delay might be detected in such experiments. We also show that the existence of the delay
could explain an observed discrepancy in the measurement of mutation rates, and demonstrate that
one of our models provides a superior fit to experimental data. Our work exposes how molecular
details at the intracellular level can have a direct e [edt on evolution at the population level.

1 Introduction

The emergence of resistance to drugs is a significant problem in the treatment of diseases such
as cancer [1], and viral [2] and bacterial infections [3]. In infections with high pathogen load, the
occurrence of de novo genetic mutations leading to resistance is a significant problem [4]; examples
include endocarditis infections caused by Staphylococcus aureus [5, 6], Pseudomonas aeruginosa
infections of cystic fibrosis patients [7, 8], as well as Burkholderia dolosa [9, 4] infections.

The emergence and spread of resistant variants in populations of pathogenic cells has received
much experimental [10, 11, 12, 13, 14] and theoretical attention [15, 16, 17, 18]. However, most
mathematical models assume that a genetic mutation immediately transforms a sensitive cell into
a resistant cell [19, 20, 21, 22, 23, 24]. In reality, a new allele (genetic variant) must be expressed to
a su Lcieht level before the cell becomes phenotypically resistant. The time between the occurrence
of a genetic mutation and its phenotypic expression is called phenotypic delay. This is also referred
to as delayed phenotypic expression, phenotypic lag, cytoplasmic lag or phenomic lag.

Phenotypic delay was first observed in 1934 by Sonnenborn and Lynch when studying the e [edt
of conjugation on the fission rate of Paramecium aurelia [25]. Phenotypic delay was further studied
during the 1940s and 1950s, both theoretically [26] and experimentally [27, 28]. Interestingly, in
their hallmark work on the randomness of mutations in bacteria [29], Luria and Delbrick discussed
the possible e [edt of a phenotypic delay on the estimation of mutation rates. However, interest
in phenotypic delay waned for the next seventy years, mostly because experimental data failed
to reveal evidence for such delay [30, 29]. However, Sun et al. [31] recently demonstrated the
existence of a phenotypic delay of 3-4 generations in the evolution of resistance of Escherichia coli
to the antibiotics rifampicin, nalidixic acid and streptomycin. Sun et al. attributed this delay to
e Ledtive polyploidy.

Here, we generalize these observations and also investigate other mechanisms that may lead to
phenotypic delay. We consider three mechanisms: (i) e [edtive polyploidy as in Sun et al. [31], (ii)
the dilution of sensitive molecules targeted by the drug, and (iii) the accumulation of resistance-
enhancing molecules. We speculate on the relevance of these mechanisms for di [erknt antibiotics
in Table 1.

E [ective polyploidy refers to the fact that a single cell can contain multiple copies of a given
gene. This can be due to gene duplication events or carriage of multicopy plasmids; it also occurs in
fast-growing bacteria, which initiate new rounds of DNA replication before the previous round has
finished, allowing for a shorter generation time than the time needed to replicate the chromosome
[32, 33, 34]. Since a de novo resistance mutation happens in only one of the multiple gene copies,
it may take several generations before a cell emerges in which all gene copies contain the mutated
allele. Until then, sensitive and resistant variants of the target protein coexist in the cell. A
phenotypic delay occurs when the resistance mutation is recessive, i.e., the sensitive variant must
be replaced by the resistant variant for the cell to become resistant. This is the case for antibiotics
which form toxic adducts with their targets [35, 36]. Examples are quinolones that lock the enzyme
DNA gyrase onto the DNA and prevent DNA replication [37], and polymixins that bind to lipids in
the outer membrane which causes membrane perforation [38, 39]. E [edtive polyploidy also changes
the per-cell mutation rate, because it alters the number of gene copies per cell [31]. However, as
shown both by Sun et al [31] and in this paper, it does not alter the distribution of mutant numbers
that are observed in fluctuation tests.

The dilution mechanism also assumes the mutation to be recessive, but in contrast to the poly-
ploidy mechanism it focuses on the removal of the sensitive target protein through the process of
cell growth and division. As a mutated cell grows, the resistant version of the protein accumulates;
a subsequent division creates two cells in which the fraction of the sensitive variant is less than
in the parent cell. Even if the relevant gene is present only in a single copy (ruling out e [edtive
polyploidy), there may still be a considerable delay if the number of sensitive proteins to dilute



Antibiotic Target Mechanism of resis- | Postulated phenotypic
tance lag model

rifampicin RNA poly- | target mutation (rpoB), | dilution+polyploidy
merase recessive

fluoroquinolones | DNA  topoiso- | target mutation (gyrA, | dilution+polyploidy
merases gyrB, parC), recessive

polymixins lipo-poly- mutations in enzymes | dilution+polyploidy
saccharide modifying the structure
(LPS) of LPS

beta-lactams enzymes in cell accumulation
wall synthesis

ribosomes

inactivation by beta-
lactamase (dominant)

e [ux1 upregulation, pro-
duction of a protective
protein
upregulation  of
pumps (dominant)

tetracycline accumulation

many antibi- e [ux1| accumulation

otics

di Lerknt targets

Table 1: Postulated mechanism of phenotypic lag for di Lerent antibiotics discussed in this work.

out is large before resistance can be established.

The accumulation mechanism posits that su [cieht copies of the resistant variants of a protein
must be produced to cause resistance. This is likely to apply to mutations that enhance the
expression of drug e [uxIpumps [40], -lactamase enzymes that hydrolyze -lactam antibiotics
[41, 42], or mutations that protect ribosomes from tetracycline [43], hence restoring the active
ribosome pool [44]. In these cases, a phenotypic delay could emerge due to the time required for
the resistance-enhancing protein to accumulate in the cell to a level high enough to cause resistance.

We first analyse the three mechanisms using computer simulations and analytic calculations. We
find that the accumulation of resistance-enhancing molecules only leads to phenotypic delay within
a limited parameter range, while e [edtive polyploidy and the dilution of sensitive molecules lead to
phenotypic delay for a broad range of parameters. We also show that while the e [edtive polyploidy
mechanism does not a[edt the probability that a population survives antibiotic challenge, dilution
of sensitive protein leads to decreased probability of survival under drug treatment.

We then investigate the possibility of detecting a phenotypic delay experimentally. We first
show that the dilution mechanism would cause an underestimation of mutation rates in Luria-
Delbrick fluctuation tests compared to the true genetic rate of mutations. In a fluctuation test,
one measures the distribution of mutant numbers in replicate populations that have been allowed
to grow and evolve for a fixed number of generations. The mutation rate is then estimated by
fitting a population dynamics model to the experimental distribution [29, 45]. In agreement with
our prediction, the mutation rate of Escherichia coli obtained in fluctuation tests has been found
to be an order of magnitude smaller than the rate obtained by DNA sequencing [46].

We also show that the dilution mechanism subtly alters the shape of the Luria-Delbriick distri-
bution of mutant numbers. Discrepancies between the shapes of the experimental and theoretically
predicted mutant number distributions have been observed since the original experiments of Luria
and Delbrtck [29, 30, 26, 47], but have never been satisfactorily explained. Using an experimental
data set reported by Boe et al. [47] for E. coli and for fluoroquinolone antibiotics, we show that a
mathematical model that includes the dilution mechanism fits the data better than the no-delay
Luria-Delbriick model, thus providing indirect evidence for the existence of this type of phenotypic
delay in the de novo evolution of resistance to fluoroquinolones.

2 Results
2.1 Modeling the emergence of phenotypic delay

To explore the characteristic features of the three di [erknt phenotypic delay mechanisms — dilution
of sensitive molecules, eledtive polyploidy, and accumulation of the resistant variant — we first
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Figure 1: Models of phenotypic delay. (a) Schematic representation of a simulated experiment,
in which a mutagen (e.g., UV radiation) induces resistant mutations at a particular moment in time.
Mutants initially remain sensitive to the antibiotic, only becoming resistant after a few generations.
(b) Two ways of determining the time to resistance: tracking a single random lineage (dotted line),
and tracking the whole population. In this example, resistance emerges in generations 3 and 2,
respectively. (c) The dilution mechanism: blue/brown dots denote sensitive/resistant variants of
the target molecule. When a wild-type cell (blue) mutates, it initially remains sensitive (green) and
become resistant (red) when all sensitive molecules are diluted out. (d) Probability that at least
one cell in an exponentially growing population starting with 100 newly genetically mutated cells
is phenotypically resistant (dilution model) as a function of the number of generations since the
genetic mutation (dots: simulation; lines: theory). Phenotypic delay increases with the number of
molecules n to be diluted. (e) The e[edtive polyploidy mechanism: chromosomes are represented
as black ellipses, with a sensitive/resistant allele marked blue/red. (f) Same as in (d) but for the
e [edtive polyploidy mechanism. Phenotypic delay increases with ploidy c. (g) The accumulation
mechanism: blue/red dots denote sensitive/resistant mutants of the resistant-enhancing molecule.
Cells become resistant (red) when the cell contains enough resistant molecules. (h) Same as in (d)
but for the accumulation model. Phenotypic delay decreases with increasing ratio m of the number
of molecules produced during cell cycle and the number of molecules required for resistance.



simulate an idealised mutagenesis experiment (figure 1a). We suppose that at the start of the
experiment a population of sensitive bacteria is exposed to a mutagen (e.g., UV radiation [48, 49])
which instantaneously induces mutations in a small fraction of the cells [50, 51]. Cells immediately
begin to express the mutated allele, but because of the existence of phenotypic delay, they remain
sensitive to the antibiotic for some time; phenotypically resistant cells emerge only after a few
generations.

We investigate the emergence of resistance in two di Cerkent ways. The first approach is to follow
a random lineage, starting from a single mutant bacterium (i.e., at each division we follow one of
the randomly selected daughter cells) and to measure the waiting time before a phenotypically
resistant cell emerges in that lineage (Sl figure S1). The second approach is to track the entire
population post mutagenesis, and examine the waiting time before the first phenotypically resistant
cell emerges in the whole population. Figure 1b shows the conceptual di[erknce between these two
approaches.

Dilution of antibiotic-sensitive molecules: If the resistance mutation is recessive, such that
a small number of sensitive target molecules are enough to cause antibiotic sensitivity, a phenotypic
delay can arise from the time taken to replace sensitive target molecules by resistant ones. To model
this, we assume that each cell has a number n of target molecules that are initially sensitive. Once
a mutation has happened, production of sensitive molecules ceases and only resistant molecules
are produced. We suppose that, upon cell division, the n molecules are partitioned stochastically

without bias between the two daughter cells (figure 1c) rew-meleculesareproducedto-bring-the

total-back—to-npereell. For simplicity, in this work cells are considered phenotypically resistant
only when they contain no sensitive molecules, i.e., the number of sensitive molecules that need to

be diluted out is n.

For this mechanism, the length of the phenotypic delay increases approximately logarithmically
with the number n of sensitive molecules that need to be diluted for resistance to emerge (figure
1d). To understand this, suppose momentarily that n is a power of 2 and stochasticity can be
neglected so that each daughter cell receives exactly half the number of molecules of the parent
cell. Then for any lineage stemming from a genetically mutant cell, the number of inherited
sensitive molecules will be 2" 1; 2" 2;::: as the generations progress. After log, n generations all
cells will have a single sensitive molecule and hence the first phenotypically resistant cell will then
emerge after 1+1log, n generations. In this deterministic setting, 1+ log, n will also be the number
of generations for the population to become resistant.

In the more realistic case of stochastic segregation of molecules, the probability of resistance
along a random lineage after g generations is approximately exp( 2 9n) (see Sl Section 1.1).
Hence the probability of resistance emerging in a lineage is negligible until generation g set by
29 n, when the probability rapidly rises to 1. Therefore, in line with our deterministic reasoning,
resistance along a random lineage will emerge after g log, n generations. Interestingly, however,
we obtain a di[erent result for the probability that the population as a whole produces at least one
resistant cell. If we start from x genetically mutated cells in the population, the first phenotypically
resistant cell in the population emerges, on average, after an approximate time 1+ log,(n=1log(xn))
(Sl Section 1.1). We can also calculate the resistance probability through a recursion relation (SI
Section 1.1); the results fully reproduce the simulations (figure 1d). The emergence of resistance at
the population level is thus accelerated compared to what one would obtain based on deterministic
dilution. We have assumed for simplicity that each of the x cells initially has the same number
n of sensitive molecules; this is only a crude approximation for real bacteria. An extended model
in which molecules are distributed in a biased way between the two daughter cells, inspired by
recent evidence on accumulation of membrane proteins in the daughter cell with the older pole
[52, 53, 54, 55], leads to a similar result (SI Section 3). However, the bias decreases slightly the
phenotypic delay at a population level (Sl figure S3); this is because the bias creates lineages which
will be low in the number of resistant molecules.

E [edtive polyploidy: Rapidly dividing bacteria can become e [edtively polyploid when they
initiate a round of DNA replication before the previous round has finished; this leads to the
presence of multiple copies of at least some parts of the chromosome [32] (figure 1e). Crucially, the
degree of polyploidy (number of gene copies) depends on the bacterial growth rate, as well as on
other factors such as the genetic locus. To model phenotypic delay caused by e [edtive polyploidy,
we assume that each cell has a number ¢ of chromosome copies that is growth-rate dependent



according to the well-established Cooper-Helmstetter model of E.coli chromosome replication [32]
(Methods). Each chromosome copy contains a single allele, encoding the antibiotic target, that can
be either sensitive or resistant. Initially all chromosomes have the sensitive allele but a mutation
changes one allele from sensitive to resistant. We then simulate the process of DNA replication
and cell division, taking account of the fact that duplicated resistant alleles are co-inherited — for
example, if a cell has two chromosome copies, one with a resistant allele and the other with a
sensitive allele, then upon replication and division, one daughter cell will have two sensitive alleles
and the other daughter cell will have two resistant alleles [33] (Methods). We assume that a cell
becomes phenotypically resistant when none of its chromosomes contain the sensitive allele (i.e.,
the resistant allele is assumed to be recessive). In this model, the waiting time until a cell acquires
a full suite of resistant chromosomes, i.e. the phenotypic delay, is log, ¢ generations (figure 1f).
This delay time is the same whether we track a given lineage or the entire population (since it is
deterministic). However, resistance will not occur in all lineages; of the ¢ lineages descended from
the original mutant cell, resistance will eventually occur in only one of them [31] (SI figure S1).

We note that e[edtive polyploidy generally causes a shorter delay than dilution of sensitive
molecules: 2 to 3 generations for rapidly growing bacteria (c = 4 or 8 [32, 31]), versus 5 generations
for the dilution mechanism (assuming n 500, which is typical for the gyrase enzyme targeted by
fluoroquinolones [56, 57]). The transition in the probability of resistance as a function of time is
also sharper for e [edtive poliploidy than for the dilution mechanism in which stochasticity of the
segregation process smooths out the transition (compare figures 1d and f). Finally, for e [edtive
polyploidy, we expect only one in every c lineages to become resistant, while for dilution of sensitive
molecules, all lineages will eventually become resistant.

Accumulation of resistance-enhancing molecules: Phenotypic delay can also emerge due
to the time needed to accumulate resistance-enhancing molecules to a su [ciehtly high level (figure
1g). To model this mechanism, we suppose that during each cell cycle a genetically resistant cell
produces M, resistance-enhancing molecules, which are randomly distributed between daughter
cells at division. A cell becomes resistant when it has M, or more resistance-enhancing molecules.
Interestingly, considering either a single lineage (Sl figure S1) or the entire population (figure 1h),
we find that phenotypic delay emerges only within a limited parameter range: 1 - m - 2, where
m = Me js the ratio of the number of molecules produced during a cell cycle and the number of
molecules needed for resistance. The origin of this limited parameter range is most easily explained
by considering a single lineage. Tracking a lineage arising from a single mutant cell, the cell in
the gth generation will be born with an average of My(1 2 9) molecules (SI Section 1.2). The
steady-state number of molecules (found by taking g ¥ 1) is Mp. Thus if m < 1, the steady
state number of molecules will be always smaller than the minimum required number M, and the
lineage will never become phenotypically resistant. Conversely, if m > 1, phenotypic resistance
will emerge after approximately = log,(1 1=m) generations when the average number of
resistance-enhancing molecules exceeds M,. But for the delay to be detectable — at least one
generation ( 1) — we require m 2. Considering now the scenario where we track the entire
population, we again expect the steady-state molecule number M, to be rapidly reached for all
cells, so that there will be no phenotypic resistance for m < 1. Further, if resistance does emerge
(for m > 1), it will do so more quickly in the entire population than along the random lineage (as
resistance may be acquired in any lineage). We thus expect an even tighter upper bound on the
value of m for phenotypic delay to manifest itself on the population level.

Since our analysis shows that, for this mechanism, phenotypic delay only emerges in a narrow
parameter range, we conclude that the accumulation of resistance-enhancing molecules is unlikely
to be biologically relevant in causing phenotypic delay. Therefore we do not explore this mechanism
further.

2.2 Combining e [edtive polyploidy and dilution

In reality, for a recessive resistance mutation, we expect both the e [edtive polyploidy and dilution
mechanisms to contribute to the phenotypic delay. To understand the implications of this, we
simulated a model combining the two mechanisms, tracking the emergence of resistance at a single-
cell and population level. Our simulations predict a phenotypic delay with characteristics of both
mechanisms (figure 2).
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Figure 2. Combined e [edt of the dilution and e [edtive polyploidy mechanisms. (a-b)
Probability of resistance of a single mutated cell. While the long-term probability is defined by
the e [edtive polyploidy, short-term behaviour is determined by the dilution mechanism, leading to
longer phenotypic delays than the e [edtive polyploidy mechanism would produce. (c) Population-
level probability of resistance versus the number of generations from the mutation event, for n =
20. The combined mechanism leads to smoother curves than the e [edtive polyploidy mechanism
and longer delays than for either mechanism individually. (d) Phenotypic penetrance (ratio of
phenotypically resistant to genetically resistant cells, obtained from Eq. (1)) for the dilerknt
mechanisms, for c = 8; n = 8. The dashed red line indicates when the phenotypic penetrance
surpasses 1=2, which is the threshold used by Sun et al. [31] to define the emergence of phenotypic
resistance. With this definition, the dilution mechanism plus e [edtive polyploidy doubles the delay
(generation 6 as opposed to generation 3 compared to e [edtive polyploidy alone).



Focusing first on a single lineage (figure 2a,b), we observe that the long-term probability of phe-
notypic resistance depends on the ploidy c, tending to 1=c, as expected for the e [edtive polyploidy
mechanism, while the approach to this value is gradual as expected for the dilution mechanism.
Combining both mechanisms increases the length of the delay compared to either mechanism acting
in isolation.

Following Sun et al. [31], we also calculate the phenotypic penetrance, defined as the proportion
of genetic mutants which are phenotypically resistant in the entire population. The expected
phenotypic penetrazce is (see Sl Section 1.3 for derivation):

0 0 g<log,c,
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Note that n = 0 corresponds to only the e[edtive polyploidy mechanism, while ¢ = 1 corresponds
to only the dilution mechanism being present. The piecewise form of Eq. (1) arises because no
cell can become phenotypically resistant until all its chromosomes have the resistant allele. Figure
2d shows that the phenotypic penetrance predicted by Eq. (1) increases gradually with time
(characteristic of the dilution mechanism) but with a delay determined by e [edtive polyploidy.
We now return to computer simulations to study the emergence of resistance on the population
level following mutagenesis (figure 1), for the combined delay mechanisms. In general, both the
ploidy ¢ and the number of antibiotic target molecules per cell n will depend on the doubling time
ty (or growth rate) of cells. To be more specific, we consider resistance of E. coli to fluorogquinolone
antibiotics, that arises through mutations in DNA gyrase (protein targeted by the antibiotic).
Gyrase abundance as a fraction of the proteome (i.e. gyrase concentration in the cell) has been
found to be independent of the growth rate [58]. We therefore assume that the number n of
gyrases per cell is proportional to the cell volume V. We model the volume asV / 2 = ©, where
= (In2)=tq is the growth rate and o = 1h ! [59, 60, 61, 62], and we model polyploidy using the
Cooper-Helmstetter model [32] (see Methods and Model for details). Suppose that for slow-growing
cells (ty = 60min), c = 2 and n = 20. Then, for fast-growing cells (ty = 30 min), we have c = 4
and n = 40. Note that here we do not assume realistic values of n because the minimum number
n, of poisoned sensitive gyrase molecules required to inhibit growth is probably much higher than
n, = 1 assumed in the model. n should be therefore interpreted more correctly as the number of
“units” of gyrase, with one unit equivalent to n, molecules. Figure 2c shows that the phenotypic
delay is longer for the fast-growing population, and that this is mostly caused by the increase in
the number of molecules n (Sl figure S4). We also observe that protein dilution leads to a smoother
transition between sensitivity and resistance than the transition due to e [edtive polyploidy alone.

2.3 The dilution mechanism, but not e [edtive polyploidy, aledts the
probability of clearing an infection

To understand better the practical significance of phenotypic delay, we simulated antibiotic treat-
ment of an idealised bacterial infection (figure 3). We assume for simplicity that, before treatment,
the population of bacteria grows exponentially in discrete generations, and cells mutate with prob-
ability = 10 7 per cell per replication. When the population size reaches 107, an antibiotic
is introduced; this causes all phenotypically sensitive bacteria to die, leaving only the phenotyp-
ically resistant cells (figure 3b). We are interested in the probability that the bacterial infection
survives the antibiotic treatment, a concept closely related to evolutionary rescue probability, i.e.,
the probability that cells can survive a sudden environmental change thanks to an adaptive mu-
tation [63, 31, 64]. Since sensitive cells do not reproduce in our simulations in the presence of the
antibiotic, survival can only be due to pre-existing mutations (standing genetic variation).

We first consider the e [edtive polyploidy model, with ploidy c controlled by the doubling time
ty. In agreement with Sun et al. [31], we find that tq has no e [edt on the survival probability (figure
3c). This is due to a cancellation of two e [edts: the increased number of gene copies increases
the per-cell chance of genetic mutation, but also increases the length of the phenotypic delay (see
Section 2.2.1 of the Sl of Ref. [31] for a mathematical derivation). In contrast, phenotypic delay
caused by the dilution of sensitive molecules does aledt the survival probability (figure 3d). The
survival probability strongly depends on n, and decreases significantly from 0.69 for n = 0 to 0.06
for n = 100.
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Figure 3: Phenotypic delay decreases the probability of a bacterial infection surviving
antibiotic treatment (a-b) A schematic of the simulated infection: a population of exponentially
replicating sensitive cells is exposed to an antibiotic when the population reaches 107 cells. Only
phenotypically resistant cells survive the antibiotic. Time and antibiotic concentration in panel
(b) have arbitrary units. (c) The probability of survival for the eledtive polyploidy mechanism
is independent of the doubling time (and hence the ploidy). (d) For the dilution mechanism,
the probability of survival decreases with the number of molecules n which need to be diluted
out before the cell becomes phenotypically resistant. (e) In a combined dilution-and-e [edtive
polyploidy model, the survival probability increases with the doubling time.
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Figure 4. The dilution model aledts the probability distribution of the number of
resistant cells. The frequency of mutants for a simulated fluctuation test with 10,000 samples,
for the model with n = 0 (no delay) and n = 16. (a) Distributions for both models for a fixed

= 10 7. (b) Distributions for the case when in the dilution model has been adjusted to
minimize the di [erknce to the no-delay model (values in the inset).

We also simulated the mixed case where both the e [edtive polyploidy and dilution mechanisms
are combined, with ploidy ¢ and molecule number n determined by the doubling time ty as described
in Sec. 2.2. In this case the survival probability does depend on the doubling time (figure 3e; blue
line). This is mostly caused by the change in the molecular number n as a function of doubling
time. If we neglect the dependence of n on ty, the e[edt is much smaller, although there is still
some dependence on ty because the rate of resistant protein production depends on the resistant
gene copy number, which increases en route to the full suite of resistant chromosomes (Sl figure
S4).

2.4 Phenotypic delay due to dilution changes the Luria-Delbrick distri-
bution and biases mutation rate estimates

The scenario discussed in the previous section is equivalent to the Luria-Delbrick fluctuation test
[29, 65], which has been extensively studied theoretically [66, 67, 68, 45, 69, 70, 71, 72, 73]. In
the fluctuation test, a small number of sensitive bacteria are allowed to grow until the population
reaches a certain size. The cells are then plated on a selective medium (often an antibiotic) to
reveal the number of mutated bacteria in the population. The distribution of the number of
mutants (measured over replicate experiments) is termed the Luria-Delbriick distribution. This
distribution has a power-law tail caused by mutational “jackpot™ events [29, 65, 72] in which rare,
early-occurring mutants produce many descendants in the population. The fluctuation test, fitted
to corresponding mathematical models, is widely used to estimate mutation rates in bacteria. Here,
we discuss the e [edt of phenotypic delay on the Luria-Delbriick distribution and on the resulting
mutation rate estimate.

First, we note that phenotypic delay caused by e[ledtive polyploidy alone does not aledt the
Luria-Delbrick distribution. As discussed in the previous section, this is due to an exact cancel-
lation of two e[edts: increased ploidy leads to more mutations per bacterium but also a longer
phenotypic delay. In contrast, the dilution model does alter the Luria-Delbrick distribution. Fig-
ure 4a shows that, for a fixed mutation probability and fixed initial and final population sizes,
phenotypic delay due to dilution causes an increase in the number of replicate experiments yielding
zero resistant mutants, and a decrease in the number of experiments yielding intermediate num-
bers of resistant mutants. The number of experiments yielding very large numbers of mutants,
due to jackpot events, is less aledted by the delay — this is because mutants that arise early will
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have had su Lcieht time to dilute out the sensitive molecules and become phenotypically resistant
before being exposed to the antibiotic. Hence the dilution model also leads to a similar scaling
(proportion of replicates yielding at least x mutants is / x * for large x) as for the Luria-Delbriick
distribution (figure S8).

From a practical point of view, the mutation probability is often unknown and the fluctuation
test is used to estimate it. To investigate the e [edt of phenotypic delay on the estimated mutation
probability, we simulated the fluctuation test for the dilution model with n = 16, for a range of
mutation probabilities. We compared the resulting mutant number distributions to that obtained
in an equivalent simulation without phenotypic delay, with mutation probability =10 7. Using a
genetic algorithm [74] to minimize the L, norm between the distributions with and without pheno-
typic delay, we found that the phenotypic delay model required a much larger mutation probability
( =8 10 7) to reproduce the distribution of the no-delay model. This suggests that neglecting
phenotypic delay when fitting theory to fluctuation test data could significantly underestimate the
true mutation probability. We also note that the “closest match™ distributions with and without
phenotypic delay are not exactly identical (figure 4b). The model with phenotypic delay leads to
a larger number of jackpot events (as might be expected since the mutation probability is higher)
and a reduced number of replicates with few mutants, consistent with suppression of late-occuring
mutants by the phenotypic delay.

Our result could explain an apparent discrepancy between mutation probabilities estimated by
diLerknt methods. In particular, Lee et al. measured the mutation probability of E. coli using
both fluctuation tests (with the fluoroquinolone nalidixic acid as selective agent) and whole-genome
sequencing [46]. The fluctuation test underestimated the mutation probability by a factor of 9.5;
Lee et al. indeed suggested that this could be caused by phenotypic delay [46]. To see whether
our dilution model could explain this, we simulated the 40-replicate, 20 generation fluctuation
test experiment of Lee et al. [46], using the mutation probability as estimated by whole-genome
sequencing ( = 3:98 10 °, total for all mutations producing su [cieht resistance to nalidixic
acid), for dilering values of the number n of target “units” (“e[edtive” gyrase molecules). For
each n we simulated 1000 realisations of the 40-replicate experiment, and for each realisation
we estimated the mutation probability under the no-delay model using the maximum likelihood
method [45] (the same as used by Lee et al.) implemented in the package flan [75]. This procedure
correctly reproduced the mutation probability for data from simulations without delay (n = 0; SI
Fig. S6). For the model with delay, the maximum likelihood fit returned a mutation probability
that was lower than the true one (figure 5a); the discrepancy increased with the phenotypic delay.
To obtain an apparent mutation probability that is underestimated by a factor of 9.5, as observed
by Lee et al. [46], we require n  30; i.e. roughly 30 sensitive ‘units’ of the antibiotic target must
be diluted out before a cell becomes phenotypically resistant. Thus, while our simulations do not
prove that phenotypic delay is responsible for the discrepancy observed by Lee et al., they suggest
that it is a plausible explanation.

2.5 Mutant number distributions may support the existence of pheno-
typic delay

Our results suggest that a phenotypic delay caused by dilution produces a characteristic (though
small) change in the shape of the observed mutant number distribution (figure 4b). This deviation
should, in principle be detectable in experiments. To check this, we used the dataset of Boe et
al. [47] who performed a 1104-replicate fluctuation test, using the bacterium E. coli with the
fluoroquinolone antibiotic nalidixic acid as the selective agent. Nalidixic acid targets DNA gyrase.
As explained in Sec. 2.2, we expect that a small number of wild-type DNA gyrases should be
enough for a bacterial cell to be sensitive, suggesting that phenotypic delay via gyrase dilution
may be likely. Boe et al. [47] report an unsatisfactory fit of their mutant number distribution
data to the theoretical predictions of two di[erent variants of the Luria-Delbriick model (the Lea-
Coulson and Haldane models); in comparison to these models, Boe et al. observed too many
experiments yielding either no mutants or a high number of mutants (greater than 16), and a
dearth of experiments resulting in intermediate mutant counts (1-16). Qualitatively, this seems to
be consistent with our expectations for the dilution model (figure 4).

To see if the dilution model of phenotypic delay indeed provides a superior fit to Boe et al’s data,
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Figure 5: Phenotypic delay due to the dilution mechanism explains observed discrep-
ancy in mutation rates and provides superior fit to fluctuation experiment data. (a)
We simulated the fluctuation experiment of Ref. [46], where the authors report a factor of 9.5
di Cerknce between the values of obtained by DNA sequencing and fluctuation tests. For each n
we simulated 1000 experiments with the sequencing-derived mutation probability =3:98 10 °
and then used the same estimation procedure as Ref. [46] to infer assuming no delay exists.
n = 30 sensitive molecules are required to account for the discrepancy observed. Error bars are
1.96 standard error. (b) The experimental cumulative mutant frequency distribution reported
by Boe et al. [47] (black points) and the best-fit simulated distribution (green line) for the dilu-
tion phenotypic delay model. The staircase-like shape of the simulated distribution is caused by
the fixed division time and strictly synchronous division of the mutated cells. (c) Histograms of
the probability of the delay model obtained by applying the approximate Bayesian computation
scheme to simulated data. Our classification algorithm correctly discriminates between the models.

we used an approximate Bayesian computation (ABC) approach [76] (Methods). We simulated a
1104-replicate fluctuation experiment 10* times, for the models with and without delay, with initial
and final population sizes of 1:2  10% and 1:2  10° matching those of Boe et al. [47]. We then
determined the posterior Bayesian probability that the experimental data is generated by the delay
model as opposed to the no-delay model, and tested the validity of our approach using synthetic
data (figure 5¢c and Methods and models). We find that the probability of the experimental data
coming from the model with phenotypic delay is 0.97, as opposed to the model without phenotypic
delay. We thus conclude that the Boe et al. data supports the existence of phenotypic delay caused
by the dilution mechanism.

3 Discussion

Quantitative models for de novo evolution of drug resistance are an important tool in tackling
bacterial antimicrobial resistance, as well as viral infections and cancer. However, our quantitative
understanding of how resistance emerges is still limited. The possibility of a phenotypic delay
between the occurrence of a genetic mutation and its phenotypic expression has long been discussed
[25, 26, 27, 28, 29], but its relevance for bacterial evolution has been questioned until recently [31].
Here, we have used computer simulations and theory to study the e [edts of phenotypic delay on
the emergence of bacterial resistance to antibiotics. We investigated three di [erent mechanisms
that could lead to phenotypic delay: (i) dilution of antibiotic-sensitive molecules, (ii) e [edtive
polyploidy, and (iii) accumulation of resistance-enhancing molecules. We observe that the third
mechanism only leads to phenotypic delay under a limited range of parameters, which makes it
unlikely to be biologically relevant. The other two mechanisms have di [erent “control parameters™
(the degree of ploidy ¢ versus the number of target molecules n) and dilerent eledts on the
population dynamics. In particular, we show that protein dilution, but not e [edtive polyploidy,
can aledt the probability that a growing population survives antibiotic treatment. This in turn
can bias the estimated mutation rate in a Luria-Delbrick fluctuation test. E [edtive polyploidy
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does not play a role here because of two cancelling e [edts: increased ploidy increases the number
of mutations per cell in the growing population, but also increases the length of the phenotypic
delay. These e [edts counterbalance such that the Luria-Delbriick distribution remains una [edted
[31].

E [edt of the dilution mechanism on the lineage/population survival probability. We
have shown that the various mechanisms a[edt the survival of whole populations, and of random
lineages, in dilerknt ways. In the case of e [edtive polyploidy, the duration of the phenotypic lag
is the same for a random lineage as it is for the entire population. However, only one in ¢ lineages
becomes resistant and can survive antibiotic treatment. In contrast, in the dilution mechanism
every lineage becomes resistant and survives, as long as the time before antibiotic exposure is much
longer than the phenotypic lag. However, the length of the phenotypic lag for each lineage is now a
random variable. The time to resistance at the population level is thus determined by the shortest
phenotypic lag among all the lineages.

E [edt of the dilution mechanism on fluctuation test data. Luria-Delbriick fluctuation
tests remain the standard microbiological method for estimating mutation rates, yet it has often
been noted that the measured distributions of mutant numbers are not precisely fit by the theo-
retical distribution [29, 26, 30, 47]. A comparison with a more direct approach (DNA sequencing)
suggests that fluctuation tests can significantly underestimate mutation rates [46]. Although phe-
notypic delay has been suggested as a possible explanation for these e [edts [29, 46], our study is
the first to investigate in detail how specific mechanisms of phenotypic delay alter the shape of the
Luria-Delbrick distribution, and to demonstrate that it can indeed produce a mutation rate esti-
mate that is biased by the same order of magnitude as that observed experimentally [46]. We also
show that the simulated distribution of mutant numbers from the dilution model fits the experi-
mental fluctuation test data of Boe et al.[47] better than the standard model without phenotypic
delay. We note that this result should however be taken cautiously. Boe et al.’s experimental proto-
col is not ideal for detecting phenotypic delay: for example, their bacterial cultures were allowed to
reach stationary phase before plating. Moreover, our work shows that while phenotypic delay due
to dilution aledts the mutant number distribution, the change is subtle, requiring many replicate
experiments to produce statistically significant results. While the usual number of replicates in a
fluctuation test is less than 100, recent developments in automated culture methods should make
it possible to run fluctuation tests with many more replicates, which may provide a way to probe
the e [edts of phenotypic delay on the Luria-Delbriick distribution in more detail.

From molecular detail to evolutionary population dynamics. Our work presents an
example of how molecular details at the intracellular level (here, protein dilution and the details
of DNA replication) can have a direct el[edt on evolution at the population level [77, 78, 79].
This observation complements other work showing, for example, that molecular processes such
as transcription and translation aledt population-level distributions of protein numbers [80, 81]
and that noise in gene expression can directly aledt the survival of populations in a fluctuating
environment [82].

Importantly, both the eledtive polyploidy mechanism and the dilution mechanism cause a
phenotypic delay only if the resistance mutation is recessive. For e[edtive polyploidy this implies
that a cell must contain only resistant alleles in order to be phenotypically resistant, while for the
dilution mechanism we have assumed that sensitive target molecules need to be diluted out (or
otherwise removed). This implies that we would expect to see phenotypic delay in the evolution of
resistance to some antibiotics, but not to others. In particular, we would expect phenotypic delay
due to dilution if the antibiotic acts by binding to its molecular target to make a toxic adduct, and
resistance involves production of a resistant target. This is the case for fluoroquinolone antibiotics,
which bind to DNA gyrase, causing DNA double-strand breaks (Table 1); resistance is caused by
production of mutant gyrase that no longer binds the antibiotic [83]. The fact that both Boe et
al. [47] and Lee et al. [46] observed discrepancies in fluctuation test data for resistance to the
fluoroquinolone nalidixic acid is consistent with this expectation.

Assumptions of the model. Our simulations and theoretical calculations have involved a
number of simplifying assumptions. Firstly, we ignore any possible fitness costs of mutations,
assuming equal growth rates for wild-type and mutant cells in the absence of the antibiotic. While
resistance mutations can incur a fitness cost [84, 85], many clinically-relevant mutations have either
no cost or even provide a small growth advantage [85, 86].
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For the molecular dilution mechanism, we have assumed that the degradation rate of target
molecules is negligible, so that sensitive molecules can only be removed through cell division and
dilution. While this seems to be (mostly) the case for bacterial enzymes targeted by antibiotics
[87, 88], it may not be true for mammalian cells in which degradation plays a bigger role than
dilution [89].

We have also assumed here that in the dilution mechanism, all sensitive molecules need to be
removed for the cell to become phenotypically resistant, and that each cell has the same number
of initial sensitive molecules. In reality, resistance is likely to gradually increase as the number of
sensitive molecules decreases, and the total number of target molecules may vary among di [erent
cells. Our general conclusions remain valid in this case, but the mutant distribution may change. To
construct more accurate models, we need measurements of the degree of antibiotic sensitivity as a
function of the intracellular numbers of resistant and sensitive antibiotic targets. While technically
challenging, such measurements could be carried out e.g. by fluorescently labelling target molecules
[57]. A starting point for such a detailed model could be to assume the production of sensitive
molecules follows the model for protein production of the accumulation mechanism. The value of
n per cell would then depend on the number of molecules at the time of mutation, which fluctuates
around the mean number of molecules produced per cell division (Sl Section 1.2)

Experimental tests for phenotypic delay. Sun et al. have demonstrated phenotypic delay
by tracking expression of a genetically engineered fluorescent marker in bacterial lineages, and they
attributed it to polyploidy [31]. However, their work did not involve de novo mutations. Detecting
and explaining the mechanism of phenotypic lag due to spontaneous mutations would be much more
challenging. Our work suggests that, at least in principle, the mutant number distribution obtained
in fluctuation tests could be used to detect the existence of a phenotypic delay caused by molecular
dilution, although this would require many replicate experiments. Another possible method could
rely on dilerkences in the probability and timing of phenotypic resistance in random lineages. A
mother-machine type of experiment in which many lineages can be tracked and exposed to an
antibiotic at controlled times could help to determine the contribution of di [erent mechanisms to
phenotypic lag. Yet another approach would be an experiment similar to the thought experiment
from figure 1, in which a mutagen such as UV irradiation creates a burst of mutants. Other
signatures of phenotypic delay may be detected in experiments where the timing of antibiotic
exposure, and of resistance evolution, can be precisely controlled, for example in turbidostat-like
continuous culture devices [90].

Broader significance of phenotypic delay We have shown here that phenotypic delay
(caused by molecular dilution) can aledt mutation rate estimates from fluctuation tests, as well as
the probability that a bacterial infection survives antibiotic treatment. Phenotypic delay may also
a[edt other processes. For example, it was recently shown that a delay in evolutionary adaptation
can lead to coexistence of spatial populations, in cases where immediate adaptation would eradicate
coexistence [91, 92]. A delay in evolutionary adaptation has also been postulated to explain the
e [edt of antibiotic pulses of di[erent lengths on the probability of resistance emerging [93]. Thus,
mechanistic understanding of phenotypic delay may be of broad relevance in bacterial evolution.

4 Methods and models

In all our simulations we use an agent-based model to simulate how mutated cells gain phenotypic
resistance. Each cell has a number of attributes depending on the studied mechanism, such as the
numbers of sensitive and mutated DNA copies, and the numbers of sensitive and resistant proteins,
as specified below. Cells divide after time ty since last division.

In our population-level simulations (section 2.1), we simulate 100 cells which have just be-
come genetically resistant. Population-level simulations are repeated 1,000 times and single-cell
simulations are repeated 10,000 times.

4.1 Modelling e [edtive polyploidy

To describe how the copy number (ploidy) ¢ changes during cell growth and division we use the
Cooper-Helmstetter model [32]. We assume that it takes t; = 40min for a DNA replication fork to
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travel from the origin of replication to the replication terminus, and that the cell divides t, = 20min
after DNA replication termination (t; = C and t, = D in the original nomenclature of Ref. [32];
values representative for Escherichia coli strain B/r). During balanced (“steady state™) growth
assumed in this work, the number of chromosomes must double during the time ty between cell
divisions (population doubling time). This means that for any ty < t; + t, = 60min, the cell
must have multiple replication forks and more than one copy of the chromosome. The number of
chromosomes will change during cell growth: it will double some time before division, and halve
just after the division. If tj,; is the time, since the last division, at which new replication forks are
initiated, we must have (tini +t1) mod ty =ty t,. This equation states that the time when a
replication round, initiated in the parent cell, finishes in the o [sgring cell ((tini +t1) mod tg) must
be the same as the time ty t, when the cell division process (lasting t, min) is initiated. It can
be shown that this gives tini = tq (t1 +t2) mod tq. We proceed in a similar way to determine
the time trep at which a gene which confers resistance is replicated. If the gene is located in the
middle of the genome, as is the case for the gyrA gene relevant for fluoroquinolone resistance, it
will be copied t;=2 minutes after chromosome replication initiation. This implies that

t
trep = tq t, + 51 mod tg : 2)

At this time point during the cell cycle the copy number of the gene of interest will double. The
e [edtive polyploidy immediately after this event is maximal and equal to

=2+t
T .

c=2 %W 3

where d::: e denotes the ceiling function. We use ¢ from Eq. (3) as the control variable in simula-
tions of the polyploidy model.

To simulate a cell or a population of cells with e [edtive polyploidy we use the following al-
gorithm. We initialize the simulation with all cells having c=2 sensitive alleles. Cells replicate in
discrete generations every ty minutes. The number of allele copies doubles at trep (EQ. (2)) since
the last division in such a way that a sensitive/resistant allele gives rise to a sensitive/resistant
copy, respectively. Sensitive alleles have a probability of mutating to a resistant allele. When
a cell divides, the copies are split between the two daughter cells, with those linked by the most
recent replication fork ending up in the same cell. We assume that the resistance mutation is
recessive, which implies that a cell becomes resistant when all of its gene copies are resistant.

4.2 Modelling the dilution of sensitive molecules

For the dilution mechanism, we track the number of sensitive target molecules in each cell. We
assume that at time zero, all cells have n sensitive target molecules and no resistant ones. When a
mutation happens, we suppose that the mutated cell begins to produce resistant target molecules
and ceases to produce new sensitive molecules. At cell division, the sensitive molecules are parti-
tioned between the two daughter cells following a binomial distribution with probability 0:5. We
consider that a cell becomes phenotypically resistant when it contains no sensitive molecules. In
the supplementary information we relax this assumption and study the case where a cell is consid-
ered resistant when the number of sensitive molecules falls below a (non-zero) threshold value (SI
figure Sb).

4.3 Modelling the accumulation of resistance-enhancing molecules

To model the accumulation of resistance-enhancing molecules, we explicitly simulate the production
of M, resistance-enhancing molecules per cell cycle and their stochastic division between daughter
cells, via a binomial distribution, at cell division. A cell is considered resistant when it contains
more than M, resistance-enhancing molecules. In all simulations we fix M, = 1000 and vary M,

to explore a range of m = % between 0.1 and 2.
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4.4 Combining e [edtive polyploidy and molecular dilution

To include both eledtive polyploidy and molecular dilution, we track explicitly the total gene
copies, the resistant gene copies and the number of sensitive proteins, as explained in Secs. 4.1 and
4.2. We assume that the number of resistant proteins produced in one cell cycle is proportional
to the ratio of resistant to total gene copies. Both types of proteins (sensitive and resistant) are
partitioned at cell division following a binomial distribution with probability 0.5. We consider that
a cell becomes phenotypically resistant when it contains no sensitive molecules.

4.5 Simulating a growing infection

We start our simulations with 100 sensitive bacteria. Bacteria reproduce in discrete generations
with doubling time tq. Upon reproduction, each bacterium can mutate with probability =10 7.
When the population reaches 107 cells, all phenotypically sensitive cells are removed (killed);
this represent antimicrobial therapy. We repeat the simulation 1000 times to obtain the survival
probability as a fraction of simulations in which phenotypically resistant cells emerge before the
population dies out.

4.6 Simulating Luria-Delbrick fluctuation tests

To generate mutant size distributions for realistically large population sizes of sensitive cells re-
quired for comparing the model with experimental data, we use an algorithm based on Cinlar’s
method [94, 95]. The algorithm does not simulate the sensitive population explicitly, but it gen-
erates a set of times ftjg at which mutants emerge from the exponentially growing sensitive pop-
ulation:

Algorithm 1:
Initialize t=0,s=0t; =[];
whilet tf do
s s log(Uu(o;1)) ;
a1

N

w

a |t Llog igs+1
5 tj.extend(t)
6 end
7 return t;
Here t¢ = M is the final time, N is the final population size, N; is the initial population

size, ¢ = '”t(dz) 1 ) is the growth rate of the sensitive bacteria, tq is the doubling time, is
the mutation probability and U (0; 1) is a random variable uniformly distributed between 0 and 1.
Formally, ftig are the times generated from a Poisson process over the interval [0; t¢] with rate
( <€ s@ ) )O te-

For each tj, we then calculate the number of generations until the final time tg as

tr b,
tg

gi = 4)
For all of the simulations in sections 2.4 and 2.5, we assume ty = 60 min. We then simulate each
clone for gj generations, including dilution of sensitive target molecules, and measure the number
of resistant cells for each clone. Finally, we measure the number of resistant cells for each replicate
by summing up over all clones.

4.7 Approximate Bayesian computation

We use an approximate Bayesian computation method to determine the posterior probabilities of
the non-delay and the dilution model. Briefly, the method relies on generating many (here: 10%)
independent samples of the simulated experiment mimicking Boe et al. [47] for both models. Model
parameters are sampled from suitable prior distributions, we then select samples that approximate
well the real data, and calculate the fraction of best-fit samples corresponding to each model.
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A single sample corresponds to 1104 simulated replicates of the fluctuation experiment at
fixed parameters, for a given model. For each sample, parameters are randomly chosen from the
following prior distributions: log,o( ) uniform on [ 10; 8], and log,(n) uniform on [0; 8] (for the
delay model). The tail cumulative mutation function®

F (k) = Number of experiments yielding k mutants; 0 Kk 513; 5)

is calculated for each sample i (Fj), and also for the experimental data from Boe et al. [47]
(Fobs). We then select 100 out of the 2 10* (10* from each model) generated samples with the
smallest Euclidean distance jjFi Fqpsjj2 (simulated distributions closest to the experimental data).
The proportion of these which come from the phenotypic delay model is an approximation of the
posterior probability that the experimental data was generated by the delay model (under the
assumption that the experimental data was generated by one of the models). In reality the data
generation process is likely to be far more complex than our idealised models, but the posterior
probability of 0:97 implies the delay model provides a superior explanation compared with the
model with no delay.

To examine the validity of our approach, we performed cross validation. For each model we
randomly chose one sample corresponding to that model. We then computed the probability the
simulated data was generated by the model with phenotypic delay, via the approximate method
detailed above. This was carried out 500 times for each model. The proportion of simulations that
were misclassified (as being with delay when they were not, or vice versa) was low (0.007, figure
5¢), showing that our model selection framework is able to discriminate between the two models.
We provide a further sensitivity analysis of this inference method in Section 7 of the SI.
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Supporting Information Legends

Figure S1: (a) We follow a single bacterium which has just mutated and has the resistant allele
in one of its chromosomes. When it divides, we choose one of the two daughter cells at ran-
dom. After a few generations, this cell can become phenotypically resistant. (b) The probability
of the cell being resistant as a function of the number of generations from the genetic mutation
for the dilution mechanism (dots: simulation, lines: theory Eq. (S1)). (c) Same as (b) for the ef-
fective polyploidy mechanism. (d) Same as (b) for the accumulation mechanism (only simulations).

Figure S2: Expected number of generations until a phenotypically resistant cell emerges. We start

with x = 100 cells that just mutated, and repeat the simulation 500 times for each data point.
“Analytic approximation” refers to Eq. (S6).
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Figure S3: Biasing the segregation of sensitive molecules at division leads to a decrease in the
phenotypic delay both at the (a) single-cell and (b) population level. Blue curve represents an
unbiased case (p = 0:5), orange curves is the biased case (p = 0:62). In all cases, n = 1000.

Figure S4: E[edt of dependence of the number of target molecules on the doubling time tq for
the combined model. (a) Probability of resistance as a function of time (generations) for di [erknt
doubling times (determined by ploidy ¢) when the number of target molecules n depends on tg.
(b) Same as (a) but for the model in which n does not depend on ty. (c) Probability of survival
for a simulated infection (see section 2.3 and figure 3 in the main text) for a combined model when
the number of target molecules depends on the growth rate. (d) Same as (c) but for the model in
which n does not depend on tq.

Figure S5: A partial dilution mechanism decreases the phenotypic delay. (a) Single-cell and (b)
population level simulated experiments as a function of n,, the number of sensitive molecules al-
lowed for resistance to emerge. In all cases, the total number of molecules n = 1000.

Figure S6: Maximum likelihood estimates of from 1000 simulations mimicking the experiment of
Ref. [46] with known =3:98 10 ° (black vertical line) for the no-delay model. The mutation
probability can be underestimated by a factor of 2 (95% of simulations yielded estimates between
red vertical lines), whereas Ref. [46] reports a factor of 9.5 dilerknce between obtained from
DNA sequencing and fluctuation tests. The Lee et al. result [46] cannot be thus explained by the
no-delay model.

Figure S7: Sensitivity analysis for model selection. (a) The probability of the Boe et al. data
[47] coming from the delay model as a function of the number of simulation runs. The runs were
randomly sampled from the original bank of simulations and the probability of the delay model
was estimated. The process was repeated 10 times. Error bars are the maximum and minimum
probability estimated, with the centred dot as the mean. (b) The probability estimate for the
probability of the data [47] coming from the delay model as a function of Ngnresh-

Figure S8: Full distribution for the Luria-Delbriick simulations of the dilution model presented in
figure 4 in the main text. a) Distributions for both models for a fixed =10 7. (b) Distributions
for the case when in the dilution model has been adjusted to minimize the dilerknce to the
no-delay model.
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