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Abstract 

LiFi is networked, bi-directional wireless communication with light. It is used to 
connect fixed and mobile devices at very high data rates by harnessing the visible 
light and infrared spectrum. Combined, these spectral resources are 2600 times 
larger than the entire radio frequency (RF) spectrum. This paper provides the 
motivation behind why LiFi is a very timely technology especially for 6th generation 
(6G) cellular communications. It discusses and reviews essential networking 
technologies such as interference mitigation and hybrid LiFi/Wi-Fi networking 
topologies. We also consider the seamless integration of LiFi into existing wireless 
networks to form heterogeneous networks across the optical and RF domains and 
discuss implications and solutions in terms of load balancing. Finally, we provide the 
results of a real-world hybrid LiFi/Wi-Fi network deployment in a software defined 
networking (SDN) testbed in a school and show that LiFi networks can improve Wi-Fi 
network performance significantly by offloading traffic.  

 

1 Introduction – a historical perspective  
Before Alexander Graham Bell invented the telephone, he had already demonstrated the 
photophone where he used sunlight to transmit voice over more than 200 m1 in 1880. The 
sunlight was reflected by a vibrating mirror which was connected to a microphone. At the 
receiver, a parabolic mirror with a selenium cell in the center captured the intensity 
variations of the reflected light and converted them into an electrical signal that was 
connected to a loudspeaker. The intensity variations were proportional to the fluctuating 
current generated by the microphone – so he was able to transmit analog voice signals 
wirelessly using sunlight. About 20 years later the era of light emitting diodes (LEDs) 

                                                            
1 Bell thought the photophone was his greatest invention, and he went as far as wanting to name his second 
daughter ‘Photophone’ – but, eventually got overruled by his wife! 
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is defined as the bits per second per unit area. It was shown that a LiFi network can increase 
the data density by three orders of magnitude while completely avoiding interference with 
existing RF based networks [23]. This means that the LiFi network simply adds capacity to 
the existing RF networks. Most importantly, it can use the existing lighting infrastructure. 
From a lighting industry perspective, this development has been welcomed because the 20-
30-year lifetime of an LED light bulb means that business models inevitably have to move 
from volume sales to services, and light-as-a-service (LaaS) has become the dominating 
business theme in the lighting industry.  The LiFi network in wireless communication exploits 
the lighting system and turns lighting into a wireless communication network that allows 
hundreds of services.  

There has been notable progress in the commercialization of LiFi technology. An important 
factor is the ongoing development of a standard within the IEEE 802.11bb Task Group [24]. 
The target date for a first standard release is 2021. This new standard will ensure seamless 
integration of LiFi into the existing wireless standards. Furthermore, discussions on 6th 
generation (6G) technologies have started. There is a view that new spectrum is required 
which has put VLC and LiFi on the map for 6G [25].  

Contributions: 

1. This paper surveys networking techniques for LiFi. The major body of literature in 
VLC is on physical layer techniques, primarily modulation techniques, in conjunction 
with experimental point-to-point communication links in an ideal lab-bench 
environment. The VLC links are mostly perfectly aligned. In a LiFi network that 
supports user mobility and random orientations of mobile terminals these 
assumptions no longer hold. In addition, because there are multiple simultaneously 
active links in a network, interference degrades link performance. However, the 
characteristic of interference is different from RF networks. This paper 
comprehensively reviews techniques that have dealt with these issues. It 
demonstrates how LiFi can uniquely improve wireless networking performance. The 
paper specifically showcases that LiFi can advance area spectral efficiency by means 
of cell densification in a way that it is not easily possible in RF.  

2. The paper provides novel experimental results from a hybrid LiFi/Wi-Fi networking 
testbed which has been developed as part of the project TOUCAN (Towards Ultimate 
Convergence of All Networks).  

3. Lastly, the paper provides for the first time, to the best or our knowledge, 
experimental results of a real-world hybrid LiFi/Wi-Fi deployment in a school in 
Scotland. These results highlight the benefits of integrated LiFi networks which stem 
from their data traffic offload capabilities. 

We believe all these contributions are novel and distinct from existing literature on LiFi 
networking and VLC. The experimental networking results in this paper provide novel 
insights into key areas which could be optimized to improve wireless networking 
performance. We also note that other light communication technologies such as OCC, free-
space optical (FSO) and more general VLC are not the focus of this paper and the interested 
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horizontal handover and vertical handover. Horizontal handover refers to a change of the 
serving AP from within the same radio access technology (RAT). Vertical handover refers to 
a change of the serving AP belonging to a different RAT. For example, mobile users may be 
transferred from a LiFi AP to a Wi-Fi AP when none of the LiFi APs are able to offer a reliable 
link or the speed of the user is too high so that the dwell time in a cell is too short to 
establish a meaningful communication link. When the user slows down and enters the 
coverage of a lightly loaded LiFi AP, it may be best to handover to that LiFi AP to relieve the 
Wi-Fi network for more efficient operation (e.g., ensuring less packet collisions) [60].  An 
initial study on the horizontal handover scheme in LiFi networks has been carried out by 
Vegni [61]. In addition to the horizontal handover, vertical handover is also necessary to 
guarantee continuous connectivity. A vertical handover scheme based on the prediction of 
uncertainty metrics has been proposed by Shufei [62], which shows a significant reduction 
in transmission delays. Additionally, due to the smaller cell size and blockage issues of LiFi 
networks, the frequency of handover increases significantly. Therefore, soft handover or 
handover skipping schemes have to be implemented [63]. Handover skipping refers to the 
techniques that enable handover between non-adjacent APs and omit APs causing 
unnecessary handovers. To improve the robustness of LiFi networks, fast link switching 
schemes with the use of pre-scanning and received signal strength (RSS) prediction have 
been proposed [64]. With the increased requirement on the capacity of wireless networks, 
dense spatial reuse of transmission resources is inevitable. Wireless links using the same 
transmission resource will interfere with each other. Firstly, the users in adjacent cells may 
share the same transmission resource. In this case, the interference is known as CCI. In 
some cases, the same transmission resource is reused by users within the same cell. The 
interference between these users is known as intra-cell interference. Generally, intra-cell 
interference is handled by using orthogonal multiple access techniques. CCI is alleviated by 
appropriate interference coordination techniques. Interference coordination techniques will 
be discussed in Section 4.  

Recently, the use of a cell-centric architecture to establish a multi-tier heterogeneous 
network to support extremely dense cells has been proposed [65],[66]. The cell-centric 
approach dynamically adjusts the network topology based on user demand. For example, if 
there is no user within the coverage of a LiFi AP, this AP could turn off its communication 
functionality and only act as an ordinary lightbulb. This would mean that interference to 
neighboring cells is avoided. The motivation for the cell-centric approach in LiFi stems from 
the radical shrinkage of cell sizes to the range of 1 m to 2 m in radius. Consequently, the 
load of an AP varies significantly in these systems [67]. Based on the user-centric 
architecture, the original cells centered at APs are turned into virtual cells centered on 
major clusters of users. This can be achieved by dynamically merging and disaggregating 
cells. In order to realize such user-centric architecture, the location of users must be known 
and user positioning has been considered by Feng [68], for example. In addition to pursuing 
improved communication performance, enhanced energy efficiency has also been 
considered by Li [69].  

To further boost the downlink transmission speed of LiFi networks, some research groups 
have considered optical wireless systems using one-directional coherent signal transmission 
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The appropriate allocation of orthogonal transmission resources, such as time, space, 
frequency and power, to users that contend for the same spectrum resource has been 
widely used in RF wireless cellular networks to achieve interference coordination. Several 
similar methods have also been considered in LiFi networks, including the additional 
wavelength dimension. One of the methods is known as static resource partitioning. In this 
method, the available transmission resources are split into multiple blocks. These resource 
blocks are assigned to the users in a fashion that adjacent APs always use different resource 
blocks, as shown in Figure 4(b). The transmission resources can be split in either the time 
domain [76], wavelength domain [79] or frequency domain [80]. The assignment of these 
resource blocks is predefined and the plan will not change during the operation of the LiFi 
system. This method can effectively avoid CCI with extremely low complexity. However, only 
a small fraction of the transmission resources can be used by each AP, which leads to 
significant reductions in system spectral efficiency [81]. An improved static resource 
partitioning method, known as fractional frequency reuse (FFR) [82], has been considered to 
mitigate the loss in spectral efficiency. In FFR, users are categorized as cell edge users and 
cell center users. All cell center users served by each AP share a single resource block as 
they experience low CCI, as shown in Figure 4(c). Different resource blocks are assigned to 
the cell edge users served by adjacent APs in an orthogonal fashion to avoid CCI. By 
increasing the proportion of the resource assigned to the center users, the overall system 
spectral efficiency is improved due to an increase of the reuse rate of the transmission 
resources. Despite the simplicity of the fixed resource partitioning methods, they exhibit 
inefficiencies when the load of APs is uneven. In order to avoid such a loss of resource 
allocation efficiency, dynamic resource allocation schemes have been considered [81], [83]. 
In one such study conducted by Ghimire, the transmission resources are split into multiple 
chunks in the time and frequency domains in an orthogonal frequency division multiple 
access (OFDMA) time division duplex (TDD) optical wireless network deployed in an aircraft 
cabin [81]. Each UE broadcasts a signal of fixed power, which is a parameter that is known 
network wide. This simple power signal is transmitted in a mini-slot, which is referred to as a 
‘busy burst’. The BB protocol exploits channel reciprocity in TDD. The advantage of this 
scheme is that any potential interferer can estimate the interference it would cause based 
on the received BB signal power. The potential interferer can use this information to 
develop an appropriate transmission strategy. Based on this BB signaling, the resource 
chunks are dynamically allocated to UEs. It has been shown that the BB approach can 
significantly improve user fairness and the achievable spectral efficiency when compared to 
static resource allocation methods. Bykhovsky considers a TDMA (time division multiple 
access)-discrete multi-tone (DMT) LiFi network with four APs and formulates the dynamic 
resource allocation as an optimization problem with a max-min criteria [83]. With 
appropriate simplifications, sub-optimal solutions of transmission power allocation and 
subcarrier scheduling can be obtained. Dynamic resource allocation schemes are able to 
adapt the allocation solution with the instantaneous AP load condition. However, it requires 
CSI at the AP side, and the computational complexity is higher than those of static resource 
partitioning approaches. 
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Apart from the methods borrowed from RF cellular techniques, unique approaches in LiFi 
networks exploiting angular diversity at both the transmitter and receiver side have also 
been considered [84]. On the receiver side, multiple PD detectors with small field-of-view 
(FoV) and different orientations can be mounted to function as an angular diversity receiver, 
as shown in Figure 4(d). The desired signal from the tagged AP and the CCI from other 
adjacent APs may incident to the receiver from different directions and are detected by 
different PD detectors. By using various combining techniques, the effect of CCI can be 
mitigated without loss of spectral efficiency. Using imaging receivers, it is also possible to 
achieve considerable spatial diversity to suppress CCI[85]. On the AP side, multiple light 
sources with narrow beamwidth can be mounted on the AP to form an angular diversity 
transmitter, as shown in Figure 4(d). In such a system, the light source oriented to the 
desired UE is active [86]. Due to the narrow beamwidth, the spread of CCI is confined to a 
very limited area. The performance improvements stemming from interference 
coordination using angular diversity techniques come at the expense of increased hardware 
and algorithmic complexity.  

Another promising interference mitigation approach is to coordinate transmissions from 
multiple APs so that a cell-edge user is served by multiple APs, as shown in Figure 4(e). This 
is known as cooperative multi-point joint transmission (CoMP-JT) in RF wireless systems. 
However, this concept can be more easily deployed in a LiFi network, as there are no fast 
fading effects in IM/DD-based systems. In addition to the benefit of the elimination of CCI 
and enhancement of the desired signal, the possibility of blockage is lower due to the 
existence of multiple LoS transmission paths[67], [87]. In particular, based on the concept of 
CoMP-JT, an improved user-centric vectored transmission technique with zero-forcing 
precoding has been proposed by Li to offer better bandwidth efficiency and flexibility[67]. 
On the other hand, CoMP-JT is based on coordination between adjacent APs which requires 
centralized control. 

5  LiFi network performance analysis  
In this section, the performance of LiFi networks is considered and evaluated. This is 
extended to hybrid LiFi/Wi-Fi networks. Finally, we report results from a real-world hybrid 
LiFi/Wi-Fi network deployed in a school. With appropriate cooperation between the two 
networks, the overall system performance can be significantly improved as there is no 
mutual interference. 

5.1 Capacity of cellular LiFi networks 

The wireless capacity is an important system performance metric in a LiFi network. Shannon 
has proposed a channel capacity bound for a general communication link [88] assuming 
Gaussian signals and noise. In the case of IM/DD-based optical wireless systems, additional 
constraints on the optical transmission system are imposed, which suggest new capacity 
bounds for an optical link whose signals are constrained to be real-valued and non-negative. 
A number of works have proposed more accurate capacity bounds of IM/DD-based optical 
wireless communication systems with average optical power and peak optical power 
constraints in the presence of noise [89], [90]. In particular, Ma has considered the 
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allocation of transmission resources are adjusted to maximize a given objective function, as 
shown in Figure 6(d). The load balancing technique in a hybrid LiFi/Wi-Fi network aims at 
allocating the transmission resources of the LiFi and Wi-Fi systems jointly [100]. This forms a 
complicated optimization problem and various methods have been studied to solve this. 
Wang has formulated the load-balancing challenge as a mixed-integer non-liner 
programming (MINLP) problem [101]. A joint optimization algorithm and a separate 
optimization algorithm have been proposed, which can find the optimum solution, but the 
computational complexity is large. Li has carried out another load balancing optimization 
study in a VLC / Wi-Fi hybrid network, where the combined transmission and vectored 
transmission in the VLC network have been included [76]. However, the computational 
complexity is extremely high. In the follow-up study by Wang, a game theory based 
distributed approach has been proposed [102] which requires lower computational 
complexity, but offers a solution that is only asymptotic to the global optimum. This method 
is found to be very flexible in solving very complex cross-layer optimization problems. 
However, this heuristic approach has low tractability, which makes analytical evaluation and 
proof of optimality difficult. In recent studies, the load balancing in LiFi / Wi-Fi hybrid 
networks in dynamic conditions with UE movement and rotation is investigated [103]. It has 
been found that with optimal load balancing solutions, the user quality of service can be 
improved by up to 80% compared to arbitrary solutions [102]. Note that the quality of 
service refers to the user satisfaction level, which is defined as the ratio of acquired data 
rate to the required data rate. In addition to maximizing the system communication 
performance, energy efficient load balancing has also been considered. Kashef has carried 
out a study on the optimization of load balancing in a RF / VLC hybrid network in terms of 
energy efficiency [104]. It has been found that integrating LiFi in heterogeneous RF 
networks can significantly enhance energy efficiency, but more work is needed in this area.  

5.3 LiFi Integration into Hybrid LiFi/Wi-Fi software defined networking (SDN) 
Testbed 

In order to facilitate the experimental validation of networking algorithms such as handover, 
we have developed a testbed shown in Figure 7. The testbed is composed of six LiFi attocells 
and a Wi-Fi AP. The APs are interconnected through a switch to a centralized SDN 
OpenDayLight controller. This manages the SDN-enabled network through the southbound 
interface while supporting applications on its REST (Representational State Transfer) 
application program interface (API) on the northbound. A LiFi access and traffic engineering 
application is running on top of the testbed, which supports network monitoring and 
management, user mobility and network load balancing. The SDN controller has software 
agents running on the APs, which periodically send the state of APs to the controller. This 
exposes, in turn, the collected network state to the developed application to support the 
mentioned services.   
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Figure 7: Experimental SDN-enabled LiFi/WiFi network testbed diagram, LiFi R&D Centre, UoE 

The testbed platform generates data relating to users, network, traffic flows and supported 
services.  As the testbed supports vertical handover between the heterogeneous LiFi and 
Wi-Fi networks, it is possible to trace the data flows of users during transitions from LiFi to 
LiFi and LiFi to Wi-Fi. An example of a horizontal and a vertical handover of a high definition 
video service running on mobile device is shown in Figure 8. The mobile user slowly moves 
from the centre of a LiFi AP to another LiFi AP, passing through the overlapping region. It 
then moves from the LiFi AP to the WiFi AP.  

This preliminary result shows that the time for horizontal handover is shorter than the time 
for vertical handover, as shown in Figure 8. In both handover events the users experience 
short service disruption which, however, is not noticeable as the service is running in a 
buffered mode.  
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Figure 8: Measured average data rate during handover of user device from LiFi to LiFi and LiFi to WiFi. 

 
Figure 9: Simulation-based and measured SNR under varying distance under a LiFi attocell. 

In Figure 9, the SNR is plotted when the user moves away from the center of the LiFi AP. The 
SNR is determined via system level simulations and measurements. The LiFi AP provides a 
high SNR around the cell center which can be exploited to achieve very high data rates using 
adaptive modulation and coding techniques. It also shows the spatial confinement of the 
light signal which can be harnessed to build ultra-dense wireless networks (within one 1 m 
the SNR has dropped by 15 dB). In the next section, we provide results of a real-world LiFi 
network deployment in a school.  

 

5.4 Real-world use case: LiFi-enabled traffic offloading in classroom 
In this section we present the results of a real-world use case where a LiFi network was 
deployed in a classroom in addition to a Wi-Fi network. The network topology consists of 8 
LiFi attocell APs as shown in Figure 10. The LiFi attocell APs coexist with two additional Wi-Fi 
APs that serve 7 classrooms. The Wi-Fi APs are commercially available and based on the IEEE 
802.11ac standard. Each Wi-Fi AP can support data rates between 300 Mbps and 867 Mbps 
depending on the mode of operation and bandwidth. 
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Therefore, the user performance is expected to be variable depending on the user location. 
Ideally, the LiFi AP would replace the existing lighting infrastructure and would be optimized 
based on the room topology to provide the best trade-off between illumination and 
communication [105]. 

 
Figure 11: The CDF of the data rate for the Wi-Fi and LiFi users based on the 1 Mbps and 3 Mbps data rates targets. 

 
Figure 12: The CDF of the data rate for the Wi-Fi and LiFi users assuming no data rate targets. 

A measurement campaign was carried out with the aim to compare the performance of the 
LiFi and Wi-Fi networks and to assess the total aggregate data rate. The user data rate is 
used as a performance metric. A population of 22 pupils simultaneously accessed the LiFi 
network and each of the two neighboring classrooms was served by Wi-Fi only. The pupil 
population in the neighboring classrooms was the same. Two tests were conducted based 
on unconstrained best effort data rates for different target data rates:  

€ A target data rate of 1Mbps per user 
€ A target data rate of 3 Mbps per user 

The cumulative distribution function (CDF) of the user data rate achieved by the LiFi and Wi-
Fi network is shown in Figure 11 for the 1 Mbps and 3 Mbps data rate targets while in Figure 
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12 the data rate without a target is reported. The results in Figure 11 show that most of the 
users achieve the target data rate. However, some users fall short of the target data rate 
due to the suboptimum locations of the LiFi APs. Figure 12 demonstrates that there are 
some users in the LiFi network with considerably higher data rates up to 20 Mbps. It also 
shows that the user peak data rate is higher in the LiFi network despite the fact that the 
maximum data rate of the given LiFi AP is about 10 times lower than the maximum data rate 
of a deployed Wi-Fi AP. The average data rates for the LiFi and Wi-Fi networks are shown in 
Table 1. The results show that the LiFi network outperforms the Wi-Fi network in terms of 
‘best-effort’ average data rate as also shown in Figure 12. However, the results also 
highlight that the LiFi network slightly underperforms compared to the Wi-Fi network at the 
targeted data rate of 3 Mbps. This is due to the low data rate achieved by the 
underperforming user equipment that are located at LiFi attocell border regions and in 
dead-spot areas of the classroom.  

Table 1: Average data rates achieved for the Wi-Fi and LiFi networks 

Simulated User  

Target data rate  

LiFi users  

Average user data rate [Mbps]

 Wi-Fi users  

Average data rate [Mbps] 

Best effort 6.24 5.57 

1 Mbps 0.94 0.95 

3 Mbps 2.50 2.79 

 

An indirect, but rather significant result of this proof-of-concept study was that there was a 
surge of the data rates in the neighboring Wi-Fi-only classrooms. This is because of the 
offload of data traffic to LiFi. Data rate gains in the neighboring classrooms are plotted in 
Figure 13 for different target date rates.  

This shows the capability of a LiFi network to offload traffic. This feature is particularly 
beneficial in dense environments like schools and airports. The results also demonstrate 
that frequency reuse gains are achievable within a small area – in this case a classroom. Our 
future work will aim to adopt the SDN-based dynamic load balancing algorithms developed 
in the lab testbed described in Section 5.3 to real-world use cases such as the LiFi network in 
a classroom.  
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Figure 13: Surge in Wi-Fi aggregated data rate at neighbouring classrooms 

 

 

6 Conclusions 
This paper has shown that it is possible to build future cellular systems based on free-space 
light communication. In this context, it has highlighted that in order to achieve this 
objective, the focus in free-space light communications has to be shifted from point-to-point 
link-level data rate improvements in VLC to optimizing data densities in a wireless network. 
It was shown that LiFi can significantly improve Wi-Fi networks by offloading data traffic. 
This has the potential to extend data rates that are currently only possible in fiber-optic 
communication to the end users which are, of course, our mobile devices. To achieve this 
vision, however, new optical devices would be required. In the meantime, this paper has 
shown that it is possible to enhance the data density significantly using LiFi in combination 
with Wi-Fi. This is because LiFi allows for step-change improvements in cell densification, 
enabling a radical reuse of transmission resources. This is an important feature due to the 
increasing number of devices that will need to be connected to the Internet. Mobile devices 
which define the beyond-smartphone-era will require step-change improvements in data 
rate, latency and energy-efficiency , for example in augmented and virtual reality devices. 
However, there will be even more intelligent machine-type devices and a huge number of 
sensors in our future smart homes and smart cities, all of which will depend on reliable and 
high-speed wireless connectivity. In a commercial context, LiFi will enable the lighting 
industry to expand their business models into the telecommunications industry and vice 
versa. LiFi provides significant economic opportunities, but at the same time, there are 
many interesting scientific challenges to improve LiFi systems in order to fully leverage the 
vast amount of unlicensed spectrum in the infrared and visible light domains.  
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