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Abstract
ML is remarkable in providing statically typed polymorphism

without the programmer ever having to write any type anno-

tations. The cost of this parsimony is that the programmer is

limited to a form of polymorphism in which quantifiers can

occur only at the outermost level of a type and type variables

can be instantiated only with monomorphic types.

Type inference for unrestricted System F-style polymor-

phism is undecidable in general. Nevertheless, the literature

abounds with a range of proposals to bridge the gap between

ML and System F.

We put forth a new proposal, FreezeML, a conservative

extension ofMLwith two new features. First, let- and lambda-

binders may be annotated with arbitrary System F types. Sec-

ond, variable occurrences may be frozen, explicitly disabling

instantiation. FreezeML is equipped with type-preserving

translations back and forth between System F and admits a

type inference algorithm, an extension of algorithm W, that

is sound and complete and which yields principal types.

CCS Concepts: • Theory of computation→ Type struc-
tures; • Software and its engineering→ Functional lan-
guages.

Keywords: first-class polymorphism, type inference, impred-

icative types
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1 Introduction
The design of ML [19] hits a sweet spot in providing statically

typed polymorphismwithout the programmer ever having to

write type annotations. The Hindley-Milner type inference

algorithm on which ML relies is sound (it only yields correct

types) and complete (if a program has a type then it will be

inferred). Moreover, inferred types are principal, that is, most

general. Alas, this sweet spot is rather narrow, depending on

a delicate balance of features; it still appears to be an open

question how best to extend ML type inference to support

first-class polymorphism as found in System F.

Nevertheless, ML has unquestionable strengths as the ba-

sis for high-level programming languages. Its implicit poly-

morphism is extremely convenient for writing concise pro-

grams. Functional programming languages such as Haskell

and OCaml employ algorithms based onHindley-Milner type

inference and go to great efforts to reduce the need to write

type annotations on programs. Whereas the plain Hindley-

Milner algorithm supports a limited form of polymorphism

in which quantifiers must be top-level and may only be in-

stantiated with monomorphic types, advanced programming

techniques often rely on first-class polymorphism, where

quantifiers may appear anywhere and may be instantiated

with arbitrary polymorphic types, as in System F. However,

working directly in System F is painful due to the need for

explicit type abstraction and application. Alas, type infer-

ence, and indeed type checking, is undecidable for System F

without type annotations [22, 29].

The primary difficulty in extending ML to support first-

class polymorphism is with implicit instantiation of polymor-

phic types: whenever a variable occurrence is typechecked,

any quantified type variables are immediately instantiated

with (monomorphic) types. Whereas with plain ML there is

https://doi.org/10.1145/3385412.3386003
https://doi.org/10.1145/3385412.3386003
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no harm in greedily instantiating type variables, with first-

class polymorphism there is sometimes a non-trivial choice

to be made over whether to instantiate or not.

The basic Hindley-Milner algorithm [3] restricts the use

of polymorphism in types to type schemes of the form ∀®a.A
where A does not contain any further polymorphism. This

means that, for example, given a function single : ∀a.a →

List a, that constructs a list of one element, and a polymor-

phic function choosing its first argument choose : ∀a.a →

a → a, the expression single choose is assigned the type

List (a → a → a), for some fixed type a determined by the

context in which the expression is used. The type List (a →

a → a) arises from instantiating the quantifier of single
with a → a → a. But what if instead of constructing a list

of choice functions at a fixed type, a programmer wishes

to construct a list of polymorphic choice functions of type

List (∀a.a → a → a)? This requires instantiating the quanti-
fier of singlewith a polymorphic type ∀a.a → a → a, which
is forbidden in ML, and indeed the resulting System F type

is not even an ML type scheme. However, in a richer lan-

guage such as System F, the expression single choose could
be annotated as appropriate in order to obtain either the type

List (a → a → a) or the type List (∀a.a → a → a).
All is not lost. By adding a sprinkling of explicit type

annotations, in combination with other extensions, it is pos-

sible to retain much of the convenience of ML alongside

the expressiveness of System F. Indeed, there is a plethora

of techniques bridging the expressiveness gap between ML

and System F without sacrificing desirable type inference

properties of ML [7, 11–14, 24, 25, 27, 28].

However, there is still not widespread consensus on what

constitutes a good design for a language combining ML-style

type inference with System F-style first-class polymorphism,

beyond the typical criteria of decidability, soundness, com-

pleteness, and principal typing. As Serrano et al. [25] put it in

their PLDI 2018 paper, type inference in the presence of first-

class polymorphism is still “a deep, deep swamp” and “no

solution (...) with a good benefit-to-weight ratio has been pre-

sented to date”. While previous proposals offer considerable

expressive power, we nevertheless consider the following

combination of design goals to be both compelling and not

yet achieved by any prior work:

• Familiar System F types Our ideal solution would

use exactly the type language of System F. Systems such as

HML [13], MLF [11], Poly-ML
1
[7], and QML [24], capture

(or exceed) the power of System F, but employ a strict super-

set of System F’s type language. Whilst in some cases this

difference is superficial, we consider that it does increase the

burden on the programmer to understand and use these sys-

tems effectively, and may also contribute to increasing the

syntactic overhead and decreasing the clarity of programs.

1
The name Poly-ML does not appear in the original [7] paper, but was

introduced retrospectively [11].

• Close to ML type inference Our ideal solution would

conservatively extend ML and standard Hindley-Milner type

inference, including the (now-standard) value restriction [30],
without being tied to one particular type inference algorithm.

Systems such as MLF and Boxy Types have relied on much

more sophisticated type inference techniques than needed in

classical Hindley-Milner type inference, and proven difficult

to implement or extend further because of their complexity.

Other systems, such as GI, are relatively straightforward to

implement atop an OutsideIn(X)-style constraint-based type

inference algorithm, but would be much more work to add

to a standard Hindley-Milner implementation.

• Low syntactic overheadOur ideal solutionwould pro-

vide first-class polymorphism without significant departures

from ordinary ML-style programming. Early systems [9, 10,

20, 23] showed how to accommodate System F-style polymor-

phism by associating it with nominal datatype constructors,

but this imposes a significant syntactic overhead to make

use of these capabilities, which can also affect the readabil-

ity and maintainability of programs. All previous systems

necessarily involve some type annotations as well, which

we also desire to minimise as much as possible.

• Predictable behaviourOur ideal solutionwould avoid
guessing polymorphism and be specified so that program-

mers can anticipate where type annotations will be needed.

More recent systems, such as HMF [12] and GI [25], use

System F types, and are relatively easy to implement, but em-

ploy heuristics to guess one of several different polymorphic

types, and require programmer annotations if the default

heuristic behaviour is not what is needed.

In short, we consider that the problem of extending ML-

style type inference with the power of System F is solved as

a technical problem by several existing systems, but there

remains a significant design challenge to develop a system

that uses familiar System F types, is close to ML type inference,
has low syntactic overhead, and has predictable behaviour.
Of course, these desiderata represent our (considered, but

subjective) views as language designers, and others may (and

likely will) disagree. We welcome such debate.

Our contribution: FreezeML. In this paper, we introduce

FreezeML, a core language extending ML with two System

F-like features:

• “frozen” variable occurrences for which polymorphic

instantiation is inhibited (written ⌈x⌉ to distinguish

them from ordinary variables x whose polymorphic

types are implicitly instantiated); and

• type-annotated lambda abstractions λ(x : A).M .

FreezeML also refines the typing rule for let by:

• restricting let-bindings to have principal types; and

• allowing type annotations on let-bindings.
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In FreezeML explicit type annotations are only required

on lambda binders used in a polymorphic way, and on let-

bindings that assign a non-principal type to a let-bound term;

annotations are not required (or allowed) anywhere else. As

we shall see in Section 2, the introduction of type-annotated

let-bindings and frozen variables allows us to macro-express

explicit versions of generalisation and instantiation (the two

features that are implicit in plain ML). Thus, unlike ML, al-

though FreezeML still has ML-like variables and let-binding

it also enjoys explicit encodings of all of the underlying

System F features. Correspondingly, frozen variables and

type-annotated let-bindings are also central to encoding type

abstraction and type application of System F (Section 4.1).

Although, as we explain later, our approach is similar in

expressiveness to existing proposals such as Poly-ML, we

believe its close alignment with System F types and ML type

inference are important benefits, and we argue via exam-

ples that its syntactic overhead and predictability compare

favourably with the state of the art. Nevertheless, further

work would need to be done to systematically compare the

syntactic overhead and predictability of our approach with

existing systems — this criticism, however, also applies to

most previous work on new language design ideas.

A secondary technical contribution we make is to repair

technical problem faced by FreezeML and some previous

systems. In FreezeML, we restrict generalisation to principal

types. However, directly incorporating this constraint into

the type system results in rules that are syntactically not

well-founded. We clarify that the typing relation can still

be defined and inductive reasoning about it is still sound.

This observation may also apply to other systems, such as

HMF [13] and Poly-ML [7], where the same issue arises but

was not previously addressed.

Contributions. This paper is a programming language

design paper. Though we have an implementation on top

of the Links programming language [2]
2
implementation is

not the primary focus. The paper makes the following main

contributions:

• A high-level introduction to FreezeML (Section 2).

• A type system for FreezeML as a conservative exten-

sion of ML with the expressive power of System F

(Section 3).

• Local type-preserving translations back and forth be-

tween System F and FreezeML, and a discussion of the

equational theory of FreezeML (Section 4).

• A type inference algorithm for FreezeML as an exten-

sion of algorithmW [3], which is sound, complete, and

yields principal types (Section 5).

Section 6 discusses implementation, Section 7 presents

related work and Section 8 concludes.

2https://github.com/links-lang/links

2 An Overview of FreezeML
We begin with an informal overview of FreezeML. Recall

that the types of FreezeML are exactly those of System F.

Implicit Instantiation. In FreezeML (as in plain ML),

when variable occurrences are typechecked, the outer uni-

versally quantified type variables in the variable’s type are in-

stantiated implicitly. Suppose a programmerwrites choose id,
where choose : ∀a.a → a → a and id : ∀a.a → a. The quan-
tifier in the type of id is implicitly instantiated with an as yet

unknown type a, yielding the type a → a. The type a → a is

then used to instantiate the quantifier in the type of choose,
yielding choose id : (a → a) → (a → a). The concrete type
of a depends on the context in which the expression is used.

For instance, if we were to apply choose id to an increment

function then a would be unified with Int. (For the formal

treatment of type inference in Section 5 we will be careful

to explicitly distinguish between rigid type variables, like

those bound by the quantifiers in the types of choose and id,
and flexible type variables, like the a in the type inferred for

the expression choose id.)

Explicit Freezing (⌈x⌉). The programmer may explicitly

prevent a variable from having its already existing quantifiers

instantiated by using the freeze operator ⌈−⌉. Whereas each

ordinary occurrence of choose has type a → a → a for some

typea, a frozen occurrence ⌈choose⌉ has type∀a.a → a → a.
More interestingly, whereas the term single choose has type
List (a → a → a), the term single ⌈choose⌉ has type

List (∀a.a → a → a). This makes it possible to pass poly-

morphic arguments to functions that expect them. Consider

a function auto : (∀a.a → a) → (∀a.a → a). Whereas the

term auto id does not typecheck (because id is implicitly in-

stantiated to type a → a which does not match the argument

type ∀a.a → a of auto) the term auto ⌈id⌉ does.

Explicit Generalisation ($V ). We can generalise an ex-

pression to its principal polymorphic type by binding it

to a variable and then freezing it, for instance: let id =
λx .x in poly ⌈id⌉, where poly : (∀a.a → a) → Int × Bool.
The explicit generalisation operator $ generalises the type of

any value. Whereas the term λx .x has type a → a, the term
$(λx .x) has type ∀a.a → a, allowing us to write poly $(λx .x).
Explicit generalisation is macro-expressible [6] in FreezeML.

$V ≡ let x = V in ⌈x⌉

We can also define a type-annotated variant:

$
AV ≡ let (x : A) = V in ⌈x⌉

Note that FreezeML adopts the ML value restriction [30];

hence let generalisation only applies to syntactic values.

Explicit Instantiation (@M). As in ML, the polymor-

phic types of variables are implicitly instantiated when type-

checking each variable occurrence. Unlike inML, other terms

https://github.com/links-lang/links
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can have polymorphic types, which are not implicitly instan-

tiated. Nevertheless, we can instantiate a term by binding

it to a variable: let x = head ids in x 42, where head :

∀a.List (a) → a returns the first element in a list and ids :
List (∀a.a → a) is a list of polymorphic identity functions.

The explicit instantiation operator @ supports instantiation

of a term without having to explicitly bind it to a variable.

For instance, whereas the term head ids has type ∀a.a → a
the term (head ids)@ in the context of application to 42 has

type Int → Int, so (head ids)@42 is well-formed. Explicit

instantiation is macro-expressible in FreezeML:

M@ ≡ let x = M in x

Ordered Quantifiers. Like in System F, but unlike in

ML, the order of quantifiers matters. Quantifiers introduced

through generalisation are ordered by the sequence in which

they first appear in a type. Type annotations allow us to spec-

ify a different quantifier order, but variable instantiation fol-

lowed by generalisation restores the canonical order. For ex-

ample, if we have functions f : (∀a b .a → b → a ×b) → Int,
pair : ∀a b .a → b → a × b, and pair′ : ∀b a.a → b → a × b,
then f ⌈pair⌉, f $pair, f $pair′ have type Int and behave

identically, whereas f ⌈pair′⌉ is ill-typed.

Monomorphic parameter inference. As inML, function

arguments need not have annotations, but their inferred

types must be monomorphic, i.e. we cannot typecheck bad:

bad = λ f .(f 42, f True)

Unlike in ML we can annotate arguments with polymorphic

types and use them at different types:

poly = λ(f : ∀a.a → a).(f 42, f True)

One might hope that it is safe to infer polymorphism by local,

compositional reasoning, but that is not the case. Consider

the following two functions.

bad1 = λ f .(poly ⌈f ⌉, (f 42) + 1)
bad2 = λ f .((f 42) + 1, poly ⌈f ⌉)

Wemight reasonably expect both to be typeable by assigning

the type ∀a.a → a to f . Now, assume type inference is left-

to-right. In bad1 we first infer that f has type ∀a.a → a
(as ⌈f ⌉ is the argument to poly); then we may instantiate

a to Int when applying f to 42. In bad2 we eagerly infer

that f has type Int → Int; now when we pass ⌈f ⌉ to poly,
type inference fails. To rule out this kind of sensitivity to the

order of type inference, and the resulting incompleteness

of our type inference algorithm, we insist that unannotated

λ-bound variables be monomorphic. This in turn entails

checking monomorphism constraints on type variables and

maintaining other invariants (Section 3.2). (One can build

more sophisticated systems that defer determining whether a

term is polymorphic or not until more information becomes

available — both Poly-ML and MLF do, for instance — but

we prefer to keep things simple.)

2.1 FreezeML by Example
Figure 1 presents a collection of FreezeML examples that

showcase how our system works in practice. We use func-

tions with type signatures shown in Figure 2 (adapted from

Serrano et al. [25]). In Figure 1 well-formed expressions are

annotated with a type inferred in FreezeML, whilst ill-typed

expressions are annotated with ✕. Sections A-E of the table

are taken from [25]. Section F of the table contains addi-

tional examples which further highlight the behaviour of

our system. Examples F1-F4 show how to define some of the

functions and values in Figure 2 in FreezeML. In FreezeML

it is sometimes possible to infer a different type depending

on the presence of freeze, generalisation, and instantiation

operators. In such cases we provide two copies of an exam-

ple in Figure 1, the one with extra FreezeML annotations

being marked with •. Sometimes explicit instantiation, gen-

eralisation, or freezing is mandatory to make an expression

well-formed in FreezeML. In such cases there is only one,

well-formed copy of an example marked with a ⋆, e.g. A9⋆.
Example F10† typechecks only in a system without a value

restriction due to generalisation of an application.

3 FreezeML via System F and ML
In this section we give a syntax-directed presentation of

FreezeML and discuss various design choices that we have

made. We wish for FreezeML to be an ML-like call-by-value

language with the expressive power of System F. To this

end we rely on a standard call-by-value definition of Sys-

tem F, which additionally obeys the value restriction (i.e.

only values are allowed under type abstractions). We take

mini-ML [1] as a core representation of a call-by-value ML

language. Unlike System F, ML separates monotypes from

(polymorphic) type schemes and has no explicit type abstrac-

tion and application. Polymorphism in ML is introduced by

generalising the body of a let-binding, and eliminated im-

plicitly when using a variable. Another crucial difference

between System F and ML is that in the former the order

of quantifiers in a polymorphic type matters, whereas in

the latter it does not. Full definitions of System F and ML,

including the syntax, kinding and typing rules, as well as

translation from ML to System F, are given in the extended

version of this paper [5].

Notations. We write ftv(A) for the sequence of distinct
free type variables of a type in the order in which they first

appear in A. For example, ftv((a → b) → (a → c)) = a,b, c .
Whenever a kind environment ∆ appears as a domain of a

substitution or a ∀ quantifier, it is allowed to be empty. In

such case we identify type ∀∆.H withH . We write ∆−∆′
for

the restriction of ∆ to those type variables that do not appear

in ∆′
. We write ∆ # ∆′

to mean that the type variables in ∆
and ∆′

are disjoint. Disjointedness is also implicitly required

when concatenating ∆ and ∆′
to ∆,∆′

.
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A POLYMORPHIC INSTANTIATION

A1 λx y.y : a → b → b
A1• $(λx y.y) : ∀a b .a → b → b
A2 choose id : (a → a) → (a → a)
A2• choose ⌈id⌉ : (∀a.a → a) → (∀a.a → a)
A3 choose [] ids : List (∀a.a → a)
A4 λ(x : ∀a.a → a).x x : (∀a.a → a) → (b → b)
A4• λ(x : ∀a.a → a).x ⌈x⌉ : (∀a.a → a) → (∀a.a → a)
A5 id auto : (∀a.a → a) → (∀a.a → a)
A6 id auto′ : (∀a.a → a) → (b → b)
A6• id ⌈auto′⌉ : ∀b .(∀a.a → a) → (b → b)
A7 choose id auto : (∀a.a → a) → (∀a.a → a)
A8 choose id auto′ : ✕

A9⋆ f (choose ⌈id⌉) ids : ∀a.a → a
where f : ∀a.(a → a) → List a → a

A10⋆ poly ⌈id⌉ : Int × Bool
A11⋆ poly $(λx .x) : Int × Bool
A12⋆ id poly $(λx .x) : Int × Bool
C FUNCTIONS ON POLYMORPHIC LISTS

C1 length ids : Int
C2 tail ids : List (∀a.a → a)
C3 head ids : ∀a.a → a
C4 single id : List (a → a)
C4• single ⌈id⌉ : List (∀a.a → a)
C5⋆ ⌈id⌉ :: ids : List (∀a.a → a)
C6⋆ $(λx .x) :: ids : List (∀a.a → a)
C7 (single inc) ++ (single id) : List (Int → Int)
C8⋆ g (single ⌈id⌉) ids : ∀a.a → a

where g : ∀a.List a → List a → a
C9⋆ map poly (single ⌈id⌉) : List (Int × Bool)
C10 map head (single ids) : List (∀a.a → a)

B INFERENCE WITH POLYMORPHIC ARGUMENTS

B1⋆ λ(f : ∀a.a → a).
(f 1, f True) : (∀a.a → a) → Int × Bool

B2⋆ λ(xs : List (∀a.a → a)).
poly (head xs) : List (∀a.a → a) → Int × Bool

D APPLICATION FUNCTIONS

D1⋆ app poly ⌈id⌉ : Int × Bool
D2⋆ revapp ⌈id⌉ poly : Int × Bool
D3⋆ runST ⌈argST⌉ : Int
D4⋆ app runST ⌈argST⌉ : Int
D5⋆ revapp ⌈argST⌉ runST : Int
E η-EXPANSION

E1 k h l : ✕

E2⋆ k $(λx .(h x)@) l : ∀a.Int → a → a
where k : ∀a.a → List a → a

h : Int → ∀a.a → a
l : List (∀a.Int → a → a)

E3 r (λx y.y) : ✕

E3• r $(λx .$(λy.y)) : Int
where r : (∀a.a → ∀b .b → b) → Int

F FreezeML PROGRAMS

F1 id = $(λx .x) : ∀a.a → a
F2 ids = [⌈id⌉] : List (∀a.a → a)
F3 auto = λ(x : ∀a.a → a).x ⌈x⌉ : (∀a.a → a) → (∀a.a → a)
F4 auto′ = λ(x : ∀a.a → a).x x : ∀b .(∀a.a → a) → b → b
F5⋆ auto ⌈id⌉ : ∀a.a → a
F6 (head ids) :: ids : List (∀a.a → a)
F7⋆ (head ids)@ 3 : Int
F8 choose (head ids) : (∀a.a → a) → (∀a.a → a)
F8• choose (head ids)@ : (a → a) → (a → a)
F9 let f = revapp ⌈id⌉ in f poly

: Int × Bool
F10† choose id (λ(x : ∀a.a → a).$(auto′ x))

: (∀a.a → a) → (∀a.a → a)

Figure 1. Example FreezeML Terms and Types

head : ∀a.List a → a id : ∀a.a → a map : ∀a b .(a → b) → List a → List b
tail : ∀a.List a → List a ids : [∀a.a → a] app : ∀a b .(a → b) → a → b
[ ] : ∀a.List a inc : Int → Int revapp : ∀a b .a → (a → b) → b
(::) : ∀a.a → List a → List a choose : ∀a.a → a → a runST : ∀a.(∀s .ST s a) → a

single : ∀a.a → List a poly : (∀a.a → a) → Int × Bool argST : ∀s .ST s Int
(++) : ∀a.List a → List a → List a auto : (∀a.a → a) → (∀a.a → a) pair : ∀a b .a → b → a × b

length : ∀a.List a → Int auto′ : ∀b .(∀a.a → a) → (b → b) pair′ : ∀b a.a → b → a × b

Figure 2. Type signatures for functions used in the text; adapted from [25].

3.1 FreezeML
FreezeML is an extension of ML with two new features. First,

let-bindings and lambda-bindings may be annotated with

arbitrary System F types. Second, FreezeML adds a new form

⌈x⌉, called frozen variables, for preventing variables from

being instantiated.

The syntax of FreezeML is given in Figure 3. (We name

the syntactic categories for later use in Section 5.) The types

are the same as in System F. We explicitly distinguish two

kinds of type: a monotype (S), is as in ML a type entirely free

of polymorphism, and a guarded type (H ) is a type with no

top-level quantifier (in which any polymorphism is guarded

by a type constructor). The terms include all ML terms plus

frozen variables (⌈x⌉) and lambda- and let-bindings with type

ascriptions. Values are those terms that may be generalised

under the value restriction. They are slightly more general
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Type Variables TVar ∋ a,b, c
Type Constructors Con ∋ D ::= Int | List | → | × | . . .

Types Type ∋ A,B ::= a | DA | ∀a.A

Monotypes MType ∋ S,T ::= a | D S

Guarded Types GType ∋ H ::= a | DA
Type Instantiation Subst ∋ δ ::= ∅ | δ [a 7→ A]
Term Variables Var ∋ x,y, z
Terms Term ∋ M,N ::= x | ⌈x⌉ | λx .M

| λ(x : A).M | M N
| let x = M in N
| let (x : A) = M in N

Values Val ∋ V ,W ::= x | ⌈x⌉ | λx .M
| λ(x : A).M
| let x = V inW
| let (x : A) = V inW

Guarded Values GVal ∋ U ::= x | λx .M | λ(x :A).M
| let x = V in U
| let (x : A) = V in U

Kinds Kind ∋ K ::= • | ⋆
Kind Environments PEnv ∋ ∆ ::= · | ∆,a
Type Environments TEnv ∋ Γ ::= · | Γ, x : A

Figure 3. FreezeML Syntax

∆ ⊢ A : K

a ∈ ∆

∆ ⊢ a : •

arity(D) = n
∆ ⊢ A1 : K

· · ·

∆ ⊢ An : K

∆ ⊢ DA : K

∆,a ⊢ A : ⋆

∆ ⊢ ∀a.A : ⋆

∆ ⊢ A : •

∆ ⊢ A : ⋆

Figure 4. FreezeML Kinding Rules

∆ ⊢ δ : ∆′ ⇒K ∆′′

∆ ⊢ ∅ : · ⇒K ∆′

∆ ⊢ δ : ∆′ ⇒K ∆′′ ∆,∆′′ ⊢ A : K

∆ ⊢ δ [a 7→ A] : (∆′,a) ⇒K ∆′′

Figure 5. FreezeML Instantiation Rules

than the value forms of Standard ML in that they are closed

under let binding (as in OCaml). Guarded values are those

values that can only have guarded types (that is, all values

except those that have a frozen variable in tail position).

The FreezeML kinding judgement ∆ ⊢ A : K states that

type A has kind K in kind environment ∆. The kinding rules
are given in Figure 4. As in ML we distinguish monomor-

phic types (•) from polymorphic types (⋆). Unlike in ML

polymorphic types can appear inside data type constructors.

Rules for type instantiation are given in Figure 5. The

judgement∆ ⊢ δ : ∆′ ⇒ ∆′′
defines a well-formed finite map

from type variables in ∆,∆′
into type variables in ∆,∆′′

, such

that δ (a) = a for every a ∈ ∆. As such, it is only well-defined

∅(A) = A δ [a 7→ A](a) = A

δ (D A) = D (δ (A)) δ [a 7→ A](b) = δ (b)

δ (∀a.A) = ∀c .δ [a 7→ c](A),where c < ftv(δ (b)) for all b , c

Figure 6. Application of a Type Instantiation in FreezeML

∆; Γ ⊢ M : A

Freeze

x : A ∈ Γ

∆; Γ ⊢ ⌈x⌉ : A

Var

x : ∀∆′.H ∈ Γ
∆ ⊢ δ : ∆′ ⇒⋆ ·

∆; Γ ⊢ x : δ (H )

App

∆; Γ ⊢ M : A → B
∆; Γ ⊢ N : A

∆; Γ ⊢ M N : B

Lam

∆; Γ, x : S ⊢ M : B

∆; Γ ⊢ λx .M : S → B

Lam-Ascribe

∆; Γ, x : A ⊢ M : B

∆; Γ ⊢ λ(x : A).M : A → B

Let

(∆′,∆′′) = gen(∆,A′,M) (∆,∆′′,M,A′) ⇕ A
∆,∆′′

; Γ ⊢ M : A′ ∆; Γ, x : A ⊢ N : B
principal(∆, Γ,M,∆′′,A′)

∆; Γ ⊢ let x = M in N : B

Let-Ascribe

(∆′,A′) = split(A,M)

∆,∆′
; Γ ⊢ M : A′ ∆; Γ, x : A ⊢ N : B

∆; Γ ⊢ let (x : A) = M in N : B

Figure 7. FreezeML typing rules

if ∆ and ∆′
are disjoint and ∆ and ∆′′

are disjoint. Type

instantiation accounts for polymorphism by either being

restricted to instantiate type variables with monomorphic

kinds only (⇒•) or permitting polymorphic instantiations

(⇒⋆). The following rule is admissible

∆,∆′ ⊢ A : K ∆ ⊢ δ : ∆′ ⇒K ′ ∆′′

∆,∆′′ ⊢ δ (A) : K ⊔ K ′

where • ⊔ • = • and • ⊔⋆ = ⋆⊔ • = ⋆⊔⋆ = ⋆. We apply

type instantiation in a standard way, taking care to account

for shadowing of type variables (Figure 6).

The FreezeML judgement ∆; Γ ⊢ M : A states that termM
has type A in kind environment ∆ and type environment Γ;
its rules are shown in Figure 7. These rules are adjusted with

respect to ML to allow full System F types everywhere except

in the types of variables bound by unannotated lambdas,

where only monotypes are permitted.

As in ML, the Var rule implicitly instantiates variables.

The ⋆ in the judgement ∆ ⊢ δ : ∆′ ⇒⋆ · indicates that the

type variables in ∆′
may be instantiated with polymorphic

types. The Freeze rule differs from the Var rule only in that

it suppresses instantiation. In the Lam rule, the restriction to

a syntactically monomorphic argument type ensures that an

argument cannot be used at different types inside the body of
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(∆,∆′,M,A′) ⇕ A

M ∈ GVal

(∆,∆′,M,A′) ⇕ ∀∆′.A′

∆ ⊢ δ : ∆′ ⇒• · M < GVal

(∆,∆′,M,A′) ⇕ δ (A′)

gen(∆,A,M) =

{
(∆′, ∆′) ifM ∈ GVal
(·, ∆′) otherwise

where ∆′ = ftv(A) − ∆

split(∀∆.H ,M) =

{
(∆,H ) ifM ∈ GVal
(·,∀∆.H ) otherwise

principal(∆, Γ,M,∆′,A′) =

∆′ = ftv(A′) − ∆ and ∆,∆′
; Γ ⊢ M : A′

and

(for all ∆′′,A′′ | if ∆′′ = ftv(A′′) − ∆ and

∆,∆′′
; Γ ⊢ M : A′′

then there exists δ such that

∆ ⊢ δ : ∆′ ⇒⋆ ∆′′
and δ (A′) = A′′)

Figure 8. FreezeML auxiliary definitions

a lambda abstraction. However, the type of an unannotated

lambda abstraction may subsequently be generalised. For

example, consider the expression poly $(λx .x). The parame-

ter x cannot be typed with a polymorphic type; giving the

syntactic monotype a to x yields type a → a for the lambda-

abstraction. The $ operator then generalises this to ∀a.a → a
as the type of argument passed to poly. The Lam-Ascribe
rule allows an argument to be used polymorphically inside

the body of a lambda abstraction. The App rule is standard.

Let Bindings. Because we adopt the value restriction, the

Let rule behaves differently depending on whether or notM
is a guarded value (cf. GVal syntactic category in Figure 3).

The choice ofwhether to generalise the type ofM is delegated

to the judgement (∆,∆′′,M,A′) ⇕ A, where A′
is the type

of M and ∆′′
are the generalisable type variables of M , i.e.

∆′′ = ftv(A′) − ∆. The ⇕ judgement determines A, the type
given to x while type-checking N . If M is a guarded value,

we generalise and have A = ∀∆′′.A′
. If M is not a guarded

value, we have A = δ (A′), where δ is an instantiation with

∆ ⊢ δ : ∆′′ ⇒• ·. This means that instead of abstracting

over the unbound type variables ∆′′
of A′

, we instantiate

them monomorphically. We further discuss the need for this

behaviour in Section 3.2.

The gen judgement used in the Let rule may seem sur-

prising — its first component is unused whilst the second

component is identical in both cases and corresponds to the

generalisable type variables of A′
. Indeed, the first compo-

nent of gen is irrelevant for typing but it is convenient for

writing the translation from FreezeML to System F (Figure 11

in Section 4.2), where it is used to form a type abstraction,

and in the type inference algorithm (Figure 16 in Section 5.4),

where it allows us to collapse two cases into one.

The Let rule requires that A′
is the principal type forM .

This constraint is necessary to ensure completeness of our

type inference algorithm; we discuss it further in Section 3.2.

The relation principal is defined in Figure 8.

The Let-Ascribe rule is similar to the Let rule, but instead

of generalising the type ofM , it uses the type A supplied via

an annotation. As in Let,A′
denotes the type ofM . However,

the annotated case admits non-principal types for M . The

split operator enforces the value restriction. IfM is a guarded

value, A′
must be a guarded type, i.e. we have A′ = H for

some H . We then have A = ∀∆′.H . If M is not a guarded

value split requires A′ = A and ∆′ = ·. This means that all
toplevel quantifiers in Amust originate fromM itself, rather

than from generalising it.

Every valid typing judgement in ML is also a valid typing

judgement in FreezeML.

Theorem 1. If ∆; Γ ⊢ M : S in ML then ∆; Γ ⊢ M : S in
FreezeML.

(The exact derivation can differ due to differences in the

kinding rules and the principality constraint on the Let rule.)

3.2 Design Considerations
Monomorphic instantiation in the Let rule. Recall

that the Let rule enforces the value restriction by instantiat-

ing those type variables that would otherwise be quantified

over. Requiring these type variables to be instantiated with

monotypes allows us to avoid problems similar to the ones

outlined in Section 2. Consider the following two functions.

bad3 = λ(bot :∀a.a).let f = bot bot in (poly ⌈f ⌉, (f 42) + 1)
bad4 = λ(bot :∀a.a).let f = bot bot in ((f 42) + 1, poly ⌈f ⌉)

Since we do not generalise non-values in let-bindings due to

the value restriction, in both of these examples f is initially

assigned the type a rather than the most general type ∀a.a
(because bot bot is a non-value). Assuming type inference

proceeds from left to right then type inference will succeed

on bad3 and fail on bad4 for the same reasons as in Section 2.

In order to rule out this class of examples, we insist that

non-values are first generalised and then instantiated with

monomorphic types. Thus we constrain a to only unify with

monomorphic types, which leads to type inference failing

on both bad3 and bad4.
Our guiding principle is “never guess polymorphism”.

While our system permits instantiation of quantifiers with

polymorphic types – per Var rule – it does not permit poly-

morphic instantiations of type variables inside the type en-

vironment. The high-level invariant that FreezeML uses to

ensure that this principle is not violated is that any (as yet)

unknown types appearing in the type environment (which

maps term variables to their currently inferred types) during

type inference must be explicitly marked as monomorphic.

The only means by which inference can introduce unknown

types into the type environment are through unannotated
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lambda-binders or through not generalising let-bound vari-

ables. By restricting these cases to be monomorphic we en-

sure in turn that any unknown type appearing in the type

environment must be explicitly marked as monomorphic.

Principal Type Restriction. The Let rule requires that

when typing let x = M in N , the type A′
given to M must

be principal. Consider the program

bad5 = let f = λx .x in ⌈f ⌉ 42

On the one hand, if we infer the type ∀a.a → a for f , then
bad5 will fail to type check as we cannot apply a term of

polymorphic type (instantiation is only automatic for vari-

ables). However, given a traditional declarative type system

one might reasonably propose Int → Int as a type for f , in
which case bad5 would be typeable — albeit a conventional

type inference algorithm would have difficulty inferring a

type for it. In order to ensure completeness of our type infer-

ence algorithm in the presence of generalisation and freeze,

we bake principality into the typing rule for let, similarly to

[7, 13, 15, 27]. This means that the only legitimate type that

f may be assigned is the most general one, that is ∀a.a → a.
One may think of side-stepping the problem with bad5 by

always instantiating terms that appear in application posi-

tion (after all, it is always a type error for an uninstantiated

term of polymorphic type to appear in application position).

But then we can exhibit the same problem with a slightly

more intricate example.

bad6 = let f = λx .x in id ⌈f ⌉ 42

The principality condition is also applied in the non-gener-

alising case of the Let rule, meaning that we must instantiate

the principal type forM rather than an arbitrary one. Oth-

erwise, we could still type bad4 by assigning bot bot type
∀a.a → a. In the Let rule ∆′

would be empty, making in-

stantiation a no-op.

Well-foundedness. The alert reader may already have

noticed a complication resulting from the principal type re-

striction: principal(∆, Γ,M,∆′,A′) contains a negative occur-

rences of the typing relation, in order to express that ∆′,A′

is a “most general” solution for ∆′′,A′′
among all possible

derivations of ∆,∆′′
; Γ ⊢ M : A′′

. This negative occurrence

means that a priori, the rules in Figures 7 and 8 do not form

a proper inductive definition.

This is a potentially serious problem, but it can be resolved

easily by observing that the rules, while not syntactically

well-founded, can be stratified. Instead of considering the

rules in Figures 7 and 8 as a single inductive definition, we
consider them to determine a function J⟦−⟧ from terms

M to triples (∆, Γ,A). The typing relation is then defined as

∆; Γ ⊢ M : A ⇐⇒ (∆, Γ,A) ∈ J⟦M⟧. We can easily prove

by induction onM that J⟦M⟧ is well-defined. Furthermore,

we can show that the inference rules in Figure 7 hold and

are invertible. When reasoning about typing judgements, we

can proceed by induction onM and use inversion. It is also

sound to perform recursion over typing derivations provided

the principal assumption is not needed; we indicate this by

greying out this assumption (for example in Figure 11). We

give full details and explain how this reasoning is performed

in the extended version of this paper [5].

Type Variable Scoping. A type annotation in FreezeML

may contain type variables that is not bound by the annota-

tion. In contrast to many other systems, we do not interpret

such variables existentially, but allow binding type variables

across different annotations. In an expression let (x : A) =
M in N , we therefore consider the toplevel quantifiers of A
bound inM , meaning that they can be used freely in annota-

tions insideM , rather like GHC’s scoped type variables [21],

However, this is only true for the generalising case, when

M is a guarded value. In the absence of generalisation, any

polymorphism in the type A originates fromM directly (e.g.,

becauseM is a frozen variable). Hence, ifM is not a guarded

value no bound variables of A are bound inM .

Note that given the let binding above, where A has the

shape ∀∆.H , there is no ambiguity regarding which of the

type variables in ∆ result from generalisation and which

originate from M itself. If M is a guarded value, its type

is guarded, too, and hence all variables in ∆ result from

generalisation. Conversely, if M < GVal, then there is no

generalisation at all.

Due to the unambiguity of the binding behaviour in our

system with the value restriction, we can define a purely

syntax-directed well-formedness judgement for verifying

that types in annotations are well-kinded and respect the

intended scoping of type-variables. We call this property

well-scopedness, and it is a prerequisite for type inference.

The corresponding judgement is ∆ ⊩ M , checking that in

M , the type annotations are well-formed with respect to

kind environment ∆ (Figure 9). The main subtlety in this

judgement is in how ∆ grows when we encounter annotated
let-bindings. For annotated lambdas, we just check that the

type annotation is well-formed in ∆ but do not add any type

variables in ∆. For plain let, we just check well-scopedness

recursively. However, for annotated let-bindings, we check

that the type annotationA is well-formed, and we check that

M is well-scoped after extending ∆ with the top-level type
variables of A. This is sensible because in the Let-Ascribe

rule, these type variables (present in the type annotation) are

introduced into the kind environment when type checking

M . In an unannotated let, in contrast, the generalisable type

variables are not mentioned inM , so it does not make sense

to allow them to be used in other type annotations insideM .

As a concrete example of how this works, consider an

explicitly annotated let-binding of the identity function:

let (f : ∀a.a → a) = λ(x : a).x in N , where the a type

annotation on x is bound by ∀a in the type annotation on

f . However, if we left off the ∀a.a → a annotation on f ,
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∆ ⊩ ⌈x⌉ ∆ ⊩ x

∆ ⊩ M

∆ ⊩ λx .M

∆ ⊢ A : ⋆
∆ ⊩ M

∆ ⊩ λ(x : A).M

∆ ⊩ M
∆ ⊩ N

∆ ⊩ M N

∆ ⊩ M ∆ ⊩ N

∆ ⊩ let x = M in N

∆ ⊢ A : ⋆
(∆′,A′) = split(A,M) ∆,∆′ ⊩ M ∆ ⊩ N

∆ ⊩ let (x : A) = M in N

Figure 9. Well-Scopedness of FreezeML Terms

then the a annotation on x would be unbound. This also

means that in expressions, we cannot let type annotations

α-vary freely; that is, the previous expression is α-equivalent
to let (f : ∀b .b → b) = λ(x : b).x in N but not to

let (f : ∀b .b → b) = λ(x : a).x in N . This behaviour is

similar to other proposals for scoped type variables [21].

“Pure” FreezeML. In a hypothetical version of FreezeML

without the value restriction, a purely syntactic check on

let (x : A) = M in N is not sufficient to determine which

top-level quantifiers of A are bound inM . In the expression

let (f : ∀a b .a → b → b) =
let (д : ∀b .a → b → b) = λy z.z in id ⌈д⌉

in N

the outer let generalises a, unlike the subsequent variable b,
which arises from the inner let binding. The well-scopedness
judgement would require typing information. Moreover, the

Let-Asc rule would have to nondeterministically split the

type annotation A into ∀∆′,∆′′.H , such that ∆′
contains

those variables to generalise (a in the example), and ∆′′

contains those type variables originating fromM directly (b
in the example). Similarly, type inference would have to take

this splitting into account.

Instantiation strategies. In FreezeML (and indeed ML)

the only terms that are implicitly instantiated are variables.

Thus (head ids) 42 is ill-typed and we must insert the in-

stantiation operator @ to yield a type-correct expression:

(head ids)@ 42. It is possible to extend our approach to per-

form eliminator instantiation, whereby we implicitly instan-

tiate terms appearing in monomorphic elimination position

(in particular application position), and thus, for instance,

infer a type for bad5 without compromising completeness.

Another possibility is to instantiate all terms, except those

that are explicitly frozen or generalised. Here, it also makes

sense to extend the ⌈−⌉ operator to act on arbitrary terms,

rather than just variables. We call this strategy pervasive
instantiation. Like eliminator instantiation, pervasive instan-

tiation infers a type for (head ids) 42. However, pervasive

E⟦x⟧ = ⌈x⌉
E⟦λxA.M⟧ = λ(x : A).E⟦M⟧
E⟦M N⟧ = E⟦M⟧ E⟦N⟧

E⟦Λa.V B⟧ = let (x : ∀a.B) = (E⟦V ⟧)@ in ⌈x⌉
E⟦M∀a .B A⟧ = let (x : B[A/a]) = (E⟦M⟧)@ in ⌈x⌉

Figure 10. Translation from System F to FreezeML

instantiation requires inserting explicit generalisation where

it was previously unnecessary. Moreover, pervasive instanti-

ation complicates the meta-theory, requiring two mutually

recursive typing judgements instead of just one.

The formalism developed in this paper uses variable in-

stantiation alone, but our implementation also supports elim-

inator instantiation. We defer further theoretical investiga-

tion of alternative strategies to future work.

4 Relating System F and FreezeML
In this section we present type-preserving translations map-

ping System F terms to FreezeML terms and vice versa.

We also briefly discuss the equational theory induced on

FreezeML by these translations.

4.1 From System F to FreezeML
Figure 10 defines a translation E⟦−⟧ of System F terms into

FreezeML. The translation depends on types of subterms

and is thus formally defined on derivations, but we use a

shorthand notation in which subterms are annotated with

their type (e.g., in Λa.V B
, B indicates the type of V ).

Variables are frozen to suppress instantiation. Term ab-

straction and application are translated homomorphically.

Type abstraction Λa.V is translated using an annotated

let-binding to perform the necessary generalisation. How-

ever, we cannot bind x to the translation of V directly as

only guarded values may be generalised but E⟦V ⟧ may be

an unguarded value (concretely, a frozen variable). Hence,

we bind x to (E⟦V ⟧)@, which is syntactic sugar for let y =
E⟦V ⟧ in y. This expression is indeed a guarded value. We

then freeze x to prevent immediate instantiation. Type appli-

cationM A, whereM has type ∀a.B, is translated similarly

to type abstraction. We bind x to the result of translatingM ,

but only after instantiating it. The variable x is annotated

with the intended return type B[A/a] and returned frozen.

Explicit instantiation is strictly necessary and the follow-

ing, seemingly easier translation is incorrect.

E⟦M∀a .B A⟧ , let (x : B[A/a]) = E⟦M⟧ in ⌈x⌉

The term E⟦M⟧ may be a frozen variable or an application,

whose type cannot be implicitly instantiated to type B[A/a].
For any System F value V (i.e., any term other than an

application), E⟦V ⟧ yields a FreezeML value (Figure 3).

Each translated term has the same type as the original.
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C

�
x : A ∈ Γ

∆; Γ ⊢ ⌈x⌉ : A

�
= x C

�
∆; Γ, x : S ⊢ M : B

∆; Γ ⊢ λx .M : S → B

�
= λxS .C⟦M⟧ C

�
∆; Γ, x : A ⊢ M : B

∆; Γ ⊢ λ(x : A).M : A → B

�
= λxA.C⟦M⟧

C

�
x : ∀∆′.H ∈ Γ ∆ ⊢ δ : ∆′ ⇒⋆ ·

∆; Γ ⊢ x : δ (H )

�
= x δ (∆′) C

�
∆; Γ ⊢ M : A → B ∆; Γ ⊢ N : A

∆; Γ ⊢ M N : B

�
= C⟦M⟧ C⟦N⟧

C

�����
(∆′,∆′′) = gen(∆,A′,M) (∆,∆′′,M,A′) ⇕ A

∆,∆′′
; Γ ⊢ M : A′ ∆; Γ, x : A ⊢ N : B
principal(∆, Γ,M,∆′′,A′)

∆; Γ ⊢ let x = M in N : B

����� = let xA = Λ∆′.C⟦M⟧
in C⟦N⟧ = C

�����
(∆′,A′) = split(A,M)

∆,∆′
; Γ ⊢ M : A′

∆; Γ, x : A ⊢ N : B

∆; Γ ⊢ let (x : A) = M in N : B

�����
Figure 11. Translation from FreezeML to System F

Theorem 2 (Type preservation). If ∆; Γ ⊢ M : A in System F
then ∆; Γ ⊢ E⟦M⟧ : A in FreezeML.

4.2 From FreezeML to System F
Figure 11 gives the translation of FreezeML to System F. The

translation depends on types of subterms and is thus for-

mally defined on derivations. Frozen variables in FreezeML

are simply variables in System F. A plain (i.e., not frozen)

variable x is translated to a type application x δ (∆′), where

δ (∆′) stands for the pointwise application of δ to ∆′
. Here,

δ and ∆′
are obtained from x ’s type derivation in FreezeML;

∆′
contains all top-level quantifiers of x ′s type. This makes

FreezeML’s implicit instantiation of non-frozen variables

explicit. Lambda abstractions and applications translate di-

rectly. Let-bindings in FreezeML are translated as generalised

let-bindings in System F where letxA = M inN is syntactic

sugar for (λxA.N )M . Here, generalisation is repeated type

abstraction.

Each translated term has the same type as the original.

Theorem 3 (Type preservation). If ∆; Γ ⊢ M : A holds in
FreezeML then ∆; Γ ⊢ C⟦M⟧ : A holds in System F.

4.3 Equational reasoning
We can derive and verify equational reasoning principles for

FreezeML by lifting from System F via the translations. We

write M ≃ N to mean M is observationally equivalent to

N whenever ∆; Γ ⊢ M : A and ∆; Γ ⊢ N : A. At a minimum

we expect β-rules to hold, and indeed they do; the twist is

that they involve substituting a different value depending on

whether the variable being substituted for is frozen or not.

let x = V in N ≃ N [$V / ⌈x⌉, ($V )@ / x]
let (x : A) = V in N ≃ N [$AV / ⌈x⌉, ($AV )@ / x]
(λx .M)V ≃ M[V / ⌈x⌉, V@ / x]
(λ(x : A).M)V ≃ M[V / ⌈x⌉, V@ / x]

If we perform type-erasure then these rules degenerate to

the standard ones. We can also verify that η-rules hold.

let x = U in x ≃ U
let (x : A) = U in x ≃ U
λx .M x ≃ M

let x = ⌈y⌉ in x ≃ y
let (x : A) = ⌈y⌉ in x ≃ y
λ(x : A).M ⌈x⌉ ≃ M

5 Type Inference
In this section we present a sound and complete type infer-

ence algorithm for FreezeML. The style of presentation is

modelled on that of Leijen [13].

5.1 Type Variables and Kinds
When expressing type inference algorithms involving first-

class polymorphism, it is crucial to distinguish between ob-

ject language type variables, and meta language type vari-

ables that stand for unknown types required to solve the

type inference problem. This distinction is the same as that

between eigenvariables and logic variables in higher-order

logic programming [18]. We refer to the former as rigid type

variables and the latter as flexible type variables. For the

purposes of the algorithm we will explicitly separate the two

by placing them in different kind environments.

As in the rest of the paper, we let ∆ range over fixed kind

environments in which every type variable is monomorphic

(kind •). In order to support, for instance, applying a function

to a polymorphic argument, we require flexible variables that

may be unified with polymorphic types. For this purpose we

introduce refined kind environments ranged over byΘ. Type
variables in a refined kind environment may be polymorphic

(kind⋆) or monomorphic (kind •). In our algorithmswe place

rigid type variables in a fixed environment ∆ and flexible

type variables in a refined environment Θ. Refined kind

environments (Θ) are given by the following grammar.

KEnv ∋ Θ ::= · | Θ,a : K

We often implicitly treat fixed kind environments a as refined
kind environments a : •. The refined kinding rules are given

in Figure 12.
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Θ ⊢ A : K

TyVar

a : K ∈ Θ

Θ ⊢ a : K

Cons

arity(D) = n
Θ ⊢ A1 : K

· · ·

Θ ⊢ An : K

Θ ⊢ DA : K

ForAll

Θ,a : • ⊢ A : ⋆

Θ ⊢ ∀a.A : ⋆

Upcast

Θ ⊢ A : •

Θ ⊢ A : ⋆

Θ ⊢ Γ

Empty

Θ ⊢ ·

Extend

Θ ⊢ Γ Θ ⊢ A : ⋆
(for all a ∈ ftv(A) | a : • ∈ Θ)

Θ ⊢ Γ, x : A

Figure 12. Refined Kinding Rules

∆ ⊢ θ : Θ ⇒ Θ′

∆ ⊢ ∅ : · ⇒ Θ

∆ ⊢ θ : Θ′ ⇒ Θ ∆,Θ ⊢ A : K

∆ ⊢ θ [a 7→ A] : (Θ′,a : K) ⇒ Θ

Figure 13. Type Substitutions

The key difference with respect to the object language

kinding rules is that type variables can now be polymorphic.

Rather than simply defining kinding of type environments

point-wise the Extend rule additionally ensures that all type

variables appearing in a type environment are monomorphic.

This restriction is crucial for avoiding guessing of polymor-

phism. More importantly, it is also key to ensuring that typ-

ing judgements are stable under substitution. Without it it

would be possible to substitute monomorphic type variables

with types containing nested polymorphic variables, thus

introducing polymorphism into a monomorphic type.

We generalise typing judgements ∆; Γ ⊢ M : A to Θ; Γ ⊢

M : A, adopting the convention that Θ ⊢ Γ and Θ ⊢ Amust

hold as preconditions.

5.2 Type Substitutions
In order to define the type inference algorithm we will find it

useful to define a judgement for type substitutions θ , which
operate on flexible type variables, unlike type instantiations

δ , which operate on rigid type variables. The type substitu-

tion rules are given in Figure 13. The rules are as in Figure 7,

except that the kind environments on the right of the turn-

stile are refined kind environments and rather than the sub-

stitution having a fixed kind, the kind of each type variable

must match up with the kind of the type it binds.

We write ιΘ for the identity type substitution on Θ, omit-

ting the subscript when clear from context.

ι · = ∅ ιΘ,a:K = ιΘ[a 7→ a]

Composition of type substitutions is standard.

θ ◦ ∅ = ∅ θ ◦ θ ′[a 7→ A] = (θ ◦ θ ′)[a 7→ θ (A)]

The rules shown in Figure 14 are admissible and we make

use of them freely in our algorithms and proofs.

S-Identity

∆ ⊢ ιΘ : Θ ⇒ Θ

S-Weaken

∆ ⊢ θ : Θ ⇒ Θ′

∆,∆′ ⊢ θ : Θ ⇒ Θ′,Θ′′

S-Compose

∆ ⊢ θ : Θ′ ⇒ Θ′′

∆ ⊢ θ ′ : Θ ⇒ Θ′

∆ ⊢ θ ◦ θ ′ : Θ ⇒ Θ′′

S-Strengthen

∆ ⊢ θ : Θ ⇒ Θ′

ftv(θ ) # ∆′,Θ′′

∆ − ∆′ ⊢ θ : Θ ⇒ Θ′ − Θ′′

Figure 14. Properties of Substitution

unify : (PEnv × KEnv × Type × Type)⇀ (KEnv × Subst)

unify(∆,Θ,a,a) =
return (Θ, ι)

unify(∆, (Θ,a : K),a,A) =
let Θ1 = demote(K,Θ,ftv(A) − ∆)
assert ∆,Θ1 ⊢ A : K
return (Θ1, ι[a 7→ A])

unify(∆, (Θ,a : K),A,a) =
let Θ1 = demote(K,Θ,ftv(A) − ∆)
assert ∆,Θ1 ⊢ A : K
return (Θ1, ι[a 7→ A])

unify(∆,Θ,DA,D B) =
let (Θ1, θ1) = (Θ, ι)
let n = arity(D)
for i ∈ 1...n
let (Θi+1, θi+1) =
let (Θ′, θ ′) = unify(∆,Θi , θi (Ai ), θi (Bi ))
return (Θ′, θ ′ ◦ θi )

return (Θn+1, θn+1)

unify(∆,Θ,∀a.A,∀b .B) =
assume fresh c
let (Θ1, θ

′) = unify((∆, c),Θ,A[c/a],B[c/b])
assert c < ftv(θ ′)
return (Θ1, θ

′)

demote(⋆,Θ,∆) = Θ
demote(•, ·,∆) = ·

demote(•, (Θ,a : K),∆) = demote(•,Θ,∆),a : • (a ∈ ∆)
demote(•, (Θ,a : K),∆) = demote(•,Θ,∆),a : K (a < ∆)

Figure 15. Unification Algorithm

5.3 Unification
A crucial ingredient for type inference is unification. The

unification algorithm is defined in Figure 15. It is partial

in that it either returns a result or fails. Following Leijen

[13] we explicitly indicate the successful return of a result

X by writing return X . Failure may be either explicit or

implicit (in the case that an auxiliary function is undefined).
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The algorithm takes a quadruple (∆,Θ,A,B) of a fixed kind

environment ∆, a refined kind environment Θ, and types A
and B, such that ∆,Θ ⊢ A,B. It returns a unifier, that is, a
pair (Θ′, θ ) of a new refined kind environment Θ′

and a type

substitution θ , such that ∆ ⊢ θ : Θ ⇒ Θ′
.

A type variable unifies with itself, yielding the identity

substitution. Due to the use of explicit kind environments,

there is no need for an explicit occurs check to avoid unifi-

cation of a type variable a with a type A including recursive

occurrences of a. Unification of a flexible variable a with

a type A implicitly performs an occurs check by checking

that the type substituted for a is well-formed in an envi-

ronment (∆,Θ1) that does not contain a. A polymorphic

flexible variable unifies with any other type, as is standard.

A monomorphic flexible variable only unifies with a type A
if Amay be demoted to a monomorphic type. The auxiliary

demote function converts any polymorphic flexible variables

in A to monomorphic flexible variables in the refined kind

environment. This demotion is sufficient to ensure that fur-

ther unification cannot subsequently make A polymorphic.

Unification of data types is standard, checking that the data

type constructors match, and recursing on the substructures.

Following Leijen [13], unification of quantified types ensures

that forall-bound type variables do not escape their scope by

introducing a fresh rigid (skolem) variable and ensuring it

does not appear in the free type variables of the substitution.

Theorem 4 (Unification is sound). If ∆,Θ ⊢ A,B : K and
unify(∆,Θ,A,B) = (Θ′, θ ) then θ (A) = θ (B) and ∆ ⊢ θ : Θ ⇒

Θ′.

Theorem 5 (Unification is complete and most general). If
∆ ⊢ θ : Θ ⇒ Θ′ and ∆,Θ ⊢ A : K and ∆,Θ ⊢ B : K and
θ (A) = θ (B), then unify(∆,Θ,A,B) = (Θ′′, θ ′) where there
exists θ ′′ satisfying ∆ ⊢ θ ′′ : Θ′′ ⇒ Θ′ such that θ = θ ′′ ◦ θ ′.

5.4 The Inference Algorithm
The type inference algorithm is defined in Figure 16. It is

partial in that it either returns a result or fails. The algorithm

takes a quadruple (∆,Θ, Γ,M) of a fixed kind environment

∆, a refined kind environment Θ, a type environment Γ,
and a term M , such that ∆;Θ ⊢ Γ. If successful, it returns a
triple (Θ′, θ,A) of a new refined kind environment Θ′

, a type

substitution θ , such that ∆ ⊢ θ : Θ ⇒ Θ′
, and a type A such

that ∆,Θ′ ⊢ A : ⋆.
The algorithm is an extension of algorithm W [3] adapted

to use explicit kind environments ∆,Θ. Inferring the type

of a frozen variable is just a matter of looking up its type

in the type environment. As usual, the type of a plain (un-

frozen) variable is inferred by instantiating any polymor-

phism with fresh type variables. The returned identity type

substitution is weakened accordingly. Crucially, the argu-

ment type inferred for an unannotated lambda abstraction

is monomorphic. If on the other hand the argument type is

infer : (PEnv × KEnv × TEnv × Term)⇀ (KEnv × Subst × Type)
infer(∆,Θ, Γ, ⌈x⌉) =

return (Θ, ι, Γ(x))

infer(∆,Θ, Γ, x) =
let ∀a.H = Γ(x)

assume fresh b

return ((Θ,b : ⋆), ι,H [b/a]))

infer(∆,Θ, Γ, λx .M) =

assume fresh a
let (Θ1, θ [a 7→ S],B) = infer(∆, (Θ,a : •), (Γ, x : a),M)

return (Θ1, θ , S → B)

infer(∆,Θ, Γ, λ(x : A).M) =

let (Θ1, θ ,B) = infer(∆,Θ, (Γ, x : A),M)

return (Θ1, θ ,A → B)

infer(∆,Θ, Γ,M N ) =

let (Θ1, θ1,A
′) = infer(∆,Θ, Γ,M)

let (Θ2, θ2,A) = infer(∆,Θ1, θ1(Γ),N )

assume fresh b
let (Θ3, θ3[b 7→ B]) = unify(∆, (Θ2,b : ⋆), θ2(A

′),A → b)
return (Θ3, θ3 ◦ θ2 ◦ θ1,B)

infer(∆,Θ, Γ, let x = M in N ) =

let (Θ1, θ1,A) = infer(∆,Θ, Γ,M)

let ∆′ = ftv(θ1) − ∆
let (∆′′,∆′′′) = gen((∆,∆′),A,M)

let Θ′
1
= demote(•,Θ1,∆

′′′)

let (Θ2, θ2,B) = infer(∆,Θ′
1
− ∆′′, θ1(Γ), x : ∀∆′′.A,N )

return (Θ2, θ2 ◦ θ1,B)

infer(∆,Θ, Γ, let (x : A) = M in N ) =

let (∆′,A′) = split(A,M)

let (Θ1, θ1,A1) = infer((∆,∆′),Θ, Γ,M)

let (Θ2, θ
′
2
) = unify((∆,∆′),Θ1,A

′,A1)

let θ2 = (θ ′
2
◦ θ1)

assert ftv(θ2) # ∆′

let (Θ3, θ3,B) = infer(∆,Θ2, (θ2(Γ), x : A),N )

return (Θ3, θ3 ◦ θ2,B)

Figure 16. Type Inference Algorithm

annotated with a type, then we just use that type directly.

For applications we use the unification algorithm to check

that the function and argument match up. Generalisation

is performed for unannotated let-bindings in which the let-

binding is a guarded value. For unannotated let-bindings in

which the let-binding is not a guarded value, generalisation

is suppressed and any ungeneralised flexible type variables

are demoted to be monomorphic. When a let-binding is anno-

tated with a type then rather than performing generalisation

we use the annotation, taking care to account for any poly-

morphism that is already present in the inferred type forM
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using split, and checking that none of the quantifiers escape

by inspecting the codomain of θ2.

Theorem 6 (Type inference is sound). If ∆,Θ ⊢ Γ and ∆ ⊩
M and infer(∆,Θ, Γ,M) = (Θ′, θ,A) then ∆,Θ′

;θ (Γ) ⊢ M : A
and ∆ ⊢ θ : Θ ⇒ Θ′.

Theorem 7 (Type inference is complete and principal). Let
∆ ⊩ M and ∆,Θ ⊢ Γ. If ∆ ⊢ θ : Θ ⇒ Θ′ and ∆,Θ′

;θ (Γ) ⊢
M : A, then infer(∆,Θ, Γ,M) = (Θ′′, θ ′,A′) where there exists
θ ′′ satisfying ∆ ⊢ θ ′′ : Θ′′ ⇒ Θ′ such that θ = θ ′′ ◦ θ ′ and
θ ′′(A′) = A.

6 Implementation
We have implemented FreezeML as an extension of Links.

This exercise wasmostly routine. In the process we addressed

several practical concerns and encountered some non-trivial

interactions with other features of Links. In order to keep

this paper self-contained we avoid concrete Links syntax, but

instead illustrate the ideas of the implementation in terms

of extensions to the core syntax used in the paper.

In ASCII we render ⌈x⌉ as ~x . For convenience, Links
builds in the generalisation $ and instantiation operators @.

In practice (in Links and other functional languages), it is

often convenient to include a type signature for a function

definition rather than annotations on arguments. Thus

f : ∀a.A → B → C
f x y = M
N

is treated as:

let (f : ∀a.A → B → C) = λ(x : A).λ(y : B).M in N

Though x and y are not themselves annotated, A and B may

be polymorphic, and may mention a.
Given that FreezeML is explicit about the order of quan-

tifiers, adding support for explicit type application [4] is

straightforward. We have implemented this feature in Links.

Links has an implicit subkinding system used for various

purposes including classifying base types in order to support

language-integrated query [16] and distinguishing between

linear and non-linear types in order to support session typ-

ing [17]. In plain FreezeML, if we have poly : (∀a.a → a) →
Int × Bool and id : ∀a.a → a, then we may write poly ⌈id⌉.
The equivalent in Links also works. However, the type in-

ferred for the identity function in Links is not ∀a.a → a,
but rather ∀(a : ◦).a → a, where the subkinding constraint
◦ captures the property that the argument is used linearly.

Given this more refined type for id the term poly ⌈id⌉ no
longer type-checks. In this particular case one might imagine

generating an implicit coercion (a function that promises

to use its argument linearly may be soundly treated as a

function that may or may not use its argument linearly). In

general one has to be careful to be explicit about the kinds of

type variables when working with first-class polymorphism.

Similar issues arise from the interaction between first-class

polymorphism and Links’s effect type system [16].

Existing infrastructure for subkinding in the implementa-

tion of Links was helpful for adding support for FreezeML

as we exploit it for tracking the monomorphism / polymor-

phism distinction. However, there is a further subtlety: in

FreezeML type variables of monomorphic kind may be in-

stantiated with (though not unified with) polymorphic types;

this behaviour differs from that of other kinds in Links.

The Links source language allows the programmer to ex-

plicitly distinguish between rigid and flexible type variables.

Flexible type variables can be convenient to use as wild-

cards during type inference. As a result, type annotations

in Links are slightly richer than those admitted by the well-

scopedness judgement of Figure 9. It remains to verify the

formal properties of the richer system.

7 Related Work
There are many previous attempts to bridge the gap between

ML and System F. Some systems employ more expressive

types than those of System F; others implement heuristics

in the type system to achieve a balance between increased

complexity of the system and reducing the number of nec-

essary type annotations; finally, there are systems like ours

that eschew such heuristics for the sake of simplifying the

type system further. Users then have to state their intentions

explicitly, potentially resulting in more verbose programs.

Expressive Types. MLF [11] (sometimes stylised as ML
F
)

is considered to be the most expressive of the conservative

ML extensions so far. MLF achieves its expressiveness by

going beyond regular System F types and introducing poly-

morphically bounded types, though translation from MLF

to System F and vice versa remains possible [11, 12]. MLF

also extends ML with type annotations on lambda binders.

Annotations on binders that are used polymorphically are

mandatory, since type inference will not guess second-order

types. This is required to maintain principal types.

HML [14] is a simplification of MLF. In HML all polymor-

phic function arguments require annotations. It significantly

simplifies the type inference algorithm compared to MLF,

though polymorphically bounded types are still used.

Heuristics. HMF [13] contrasts with the above systems in

that it only uses regular System F types (disregarding order of

quantifiers). Like FreezeML, it only allows principal types for

let-bound variables, and type annotations are needed on all

polymorphic function parameters. HMF allows both instanti-

ation and generalisation in argument positions, taking n-ary

applications into account. The system uses weights to select

between less and more polymorphic types. Whole lambda

abstractions require an annotation to have a polymorphic

return type. Such term annotations are rigid, meaning they

suppress instantiation and generalisation. As instantiation
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is implicit in HMF, rigid annotations can be seen as a means

to freeze arbitrary expressions.

Several systems for first-class polymorphism were pro-

posed in the context of the Haskell programming language.

These systems include boxy types [27], FPH [28], and GI [25].

The Boxy Types system, used to implement GHC’s Impred-
icativeTypes extension, was very fragile and thus difficult

to use in practice. Similarly, the FPH system – based on MLF

– was simpler but still difficult to implement in practice. GI is

the latest development in this line of research. Its key ingre-

dient is a heuristic that restricts polymorphic instantiation,

based on whether a variable occurs under a type construc-

tor and argument types in an application. Like HMF, it uses

System F types, considers n-ary applications for typing, and

requires annotations both for polymorphic parameter and

return types. However, only top-level type variables may be

re-ordered. The authors show how to combine their system

with the OutsideIn(X) [26] constraint-solving type inference

algorithm used by the Glasgow Haskell Compiler. They also

report a prototype implementation of GI as an extension to

GHC with encouraging experience porting existing Hackage

packages that use rank-n polymorphism.

Explicitness. Some early work on first-class polymor-

phism was based on the observation that polymorphism

can be encapsulated inside nominal types [9, 10, 20, 23].

The QML [24] system explicitly distinguishes between

polymorphic schemes and quantified types and hence does

not use plain System F types. Type schemes are used for ML

let-polymorphism and introduced and eliminated implicitly.

Quantified types are used for first-class polymorphism, in

particular for polymorphic function arguments. Such types

must always be introduced and eliminated explicitly, which

requires stating the full type and not just instantiating the

type variables. All polymorphic instantiations must therefore

be made explicitly by annotating terms at call sites. Neither

let- nor λ-bound variables can be annotated with a type.

Poly-ML [7] is similar to QML in that it distinguishes

two incompatible sorts of polymorphic types. Type schemes

arise from standard ML generalisation; (boxed) polymorphic

types are introduced using a dedicated syntactic form which

requires a type annotation. Boxed polymorphic types are

considered to be simple types, meaning that a type variable

can be instantiated with a boxed polymorphic type, but not

with a type scheme. Terms of a boxed type are not instan-

tiated implicitly, but must be opened explicitly, resulting in

instantiation. Unlike QML, the instantiated type is deduced

from the context, rather than requiring an annotation.

Unlike FreezeML, Poly-ML supports inferring polymor-

phic parameter types for unannotated lambdas, but this is

limited to situations where the type is unambiguously de-

termined by the context. This is achieved by using labels,
which track whether polymorphism was guessed or con-

firmed by a type annotation. Whereas FreezeML has type

annotations on binders, Poly-ML has type annotations on

terms and propagates them using the label system.

In Poly-ML, the example λx .auto x typechecks, guessing

a polymorphic type for x ; FreezeML requires a type annota-

tion on x . In FreezeML the program let id = λx .x in let c =
id 3 in auto ⌈id⌉ typechecks, whereas in Poly-ML a type an-

notation is required (in order to convert between ∀a.a → a
and [∀a.a → a]). However, Poly-ML could be extended with

a new construct for introducing boxed polymorphism with-

out a type annotation, using the principal type instead. With

such a change it is possible to translate from FreezeML into

this modified version of Poly-ML without inserting any new

type annotations (see the extended version of this paper [5]).

The extended version of this paper [5] contains an example-

based comparison of FreezeML, GI, MLF, HMF, FPH, and

HML.

Instantiation as subsumption. In FreezeML instantia-

tion induces a natural subtyping relation such thatA ≤ B iffB
is an instance ofA. In other systems (e.g. [20]) such a subtyp-

ing relation applies implicitly to all terms via a subsumption

rule. This form of subsumption is fundamentally incompati-

ble with frozen variables, which explicitly suppress instan-

tiation, enabling fine-grained control over exactly where

instantiation occurs. Nonetheless, subsumption comes for

free on unfrozen variables and potentially elsewhere if one

adopts more sophisticated instantiation strategies.

8 Conclusions
In this paper, we have introduced FreezeML as an exercise

in language design for reconciling ML type inference with

System F-style first-class polymorphism. We have also im-

plemented FreezeML as part of the Links programming lan-

guage [2], which uses a variant of ML type inference ex-

tended with row types, and has a kind system readily adapted

to check that inferred function arguments are monotypes.

Directions for future work include extending FreezeML

to accommodate features such as higher-kinds, GADTs, and

dependent types, as well as exploring different implicit in-

stantiation strategies. It would also be instructive to rework

our formal account using the methodology of Gundry et al.

[8] and use that as the basis for mechanised soundness and

completeness proofs.
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