Bone marrow-derived cells circulate frequently through the liver and can engraft it. There is considerable interest in the effects of these bone-marrow derived cells on liver fibrosis and regeneration. It is important to characterize these effects for 2 main reasons: to understand the pathogenesis of liver fibrosis with the aim of developing antifibrotic therapies, and because bone marrow-based cell therapy has been proposed as a clinical tool to promote liver regeneration and inhibit liver fibrosis. It has been reported that various components of the bone marrow can have antifibrotic effects on the liver. Animal studies have shown that the bone marrow-derived scar-associated macrophage population can influence strongly the fibrotic response to liver injury, promoting liver scar production during injury and promoting scar resolution after the cessation of injury. Bone marrow-derived endothelial progenitor cells have been used in rodent models of fibrosis to reduce liver damage and bone marrow progenitors have been used to repair hepatic sinusoidal endothelium after liver injury. Bringing immediacy to this matter is the fact that several groups are beginning to perform clinical studies of autologous bone marrow cell therapy for liver disease. Because the aim of such bone marrow cell therapy is to reduce hepatic fibrosis and promote liver regeneration, one would not want to inject cells into the liver that could either directly make scar tissue or indirectly promote endogenous scar production. In this regard, there have been reports that bone marrow cells or their progeny can circulate into various damaged organs and differentiate into myofibroblasts or fibrocytes. Several studies have suggested that bone marrow contributes to scar forming cells of various types in the liver. In this month’s issue of GASTROENTEROLOGY, however, Higashiyama et al report their findings that the bone marrow contributes little to liver fibrosis or myofibroblasts in a mouse bone marrow transplantation model.

The bone marrow contains 2 main stem cell compartments, namely hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) (Figure 1). Endothelial progenitor cells can also be derived from bone marrow. HSCs give rise to myeloid and lymphoid lineages, including macrophages, and are known to be both radio- and chemo-sensitive. Thus, after lethal irradiation and bone marrow transplantation, HSCs in recipient animals are of donor origin, which enables HSC transplantation-based lineage tracing studies. MSCs are less well defined and can give rise to bone, cartilage, and fat lineages, as well as to fibroblast cells. MSCs have been shown to remain of recipient origin after bone marrow transplantation because MSCs are radio- and chemoresistant. Therefore, after lethal irradiation and bone marrow transplantation, a chimeric bone marrow is created where HSCs are of donor origin and MSCs are of recipient origin. Using bone marrow transplantation as a mechanism of lineage tracing, investigators can track transplantable bone marrow elements, that is, HSCs and their progeny.

Higashiyama et al used a model whereby whole bone marrow from a constitutively green fluorescent protein (GFP)-expressing donor was transplanted into irradiated recipients. In the absence of details regarding the chimerism achieved in the bone marrow mesenchymal compartment, it is impossible to determine the relative proportions of donor and recipient MSCs, and it may be that the primary donor cell population studied was derived from HSCs and consisted principally of inflammatory and hematopoietic cells. Interestingly, the authors report little evidence of collagen transcription in the liver from these bone marrow-derived cells. This contradicts the work of Kisseleva et al, in which bone marrow from
collagen α1(I)-GFP reporter mice was transplanted into wild-type recipients before bile duct ligation liver injury, revealing a population of bone marrow-derived CD45+ fibrocytes that were transcriptionally active for collagen. Two previous studies have attempted to analyze the relative contribution of the hematopoietic and mesenchymal compartments to the hepatic scar forming population in the liver. Russo et al. found that HSCs supplied few, if any, myofibroblasts to the damaged liver and that MSCs were a more likely source of liver myofibroblasts. Li et al. recently replicated these findings and took these observations further. In an interesting paper, they suggested that MSCs migrated to the liver from the bone marrow along a sphingosine 1-phosphate (S1P) gradient. By using suramin, a selective S1P1 receptor antagonist, they showed potent inhibition of MSC migration to S1P in vitro. Furthermore when the antagonist was administered in vivo, fewer GFP-positive myofibroblasts engrafted the liver, implying that the drug had prevented migration of these cells from the bone marrow to the damaged liver. What requires further clarification is whether in these studies the MSCs engrafted the liver directly after injection, or whether this truly represented pathophysiologic homing from the bone marrow. Further experiments are thus required to give a full picture of the role of the bone marrow in liver fibrosis.

Higashiyama et al. found few bone marrow-derived fibrotic cells in the livers of transplanted animals, although they did observe a population of GFP-positive/α-smooth muscle antibody (SMA)-positive cells in recipient livers (Figure 3). It would have been informative had they provided a more extensive characterization of these bone marrow-derived myofibroblasts. This could have been performed in situ in the liver (using dual staining for glial fibrillary acidic protein [GFAP], desmin, vimentin, etc), or by isolating the GFP-positive cells and examining them in detail ex vivo. This second method was carried out originally by Baba et al. in 2004, who reported isolating hepatic stellate cells from the livers of mice that had received transplants of GFP-positive bone marrow; a proportion of these stellate cells were found to be strongly GFP positive. The findings of Higashiyama et al. contradict several recent studies that identified bone marrow-derived fibrotic cells in the injured liver. In these studies, a number of different techniques to trace cell lineage were used, including bone marrow transplantation into wild-type mice from donors with constitutive reporter gene expression, and gender mismatched bone

Figure 1. The potential interaction between the bone marrow (BM) and the liver either during liver injury or as a potential therapy.
marrow transplantation with sex chromosome tracking techniques. This allowed the detection of a range of bone marrow-derived cells in the liver using a variety of markers (vimentin, α-SMA, desmin, GFAP, collagen-I; Table 1). Some investigators have carefully isolated hepatic stellate cells and found bone marrow markers (GFP and sex chromosomes).10,14 Higashiyama et al19 suggest tissue autofluorescence as a cause for the discrepancy between their findings and those of other groups. Modern confocal microscopy should allow this distinction to be made and, interestingly, autofluorescence was considered by Miyata et al, who performed anti-GFP immunostaining to confirm the specificity of their eGFP tracking technique.16

It is important to know which cells are capable of either secreting collagen in the liver or inducing collagen secretion from endogenous cells. Indeed, MSCs can be coaxed into a hepatocyte-like phenotype and have some limited degree of hepatic cytotoxic function in vitro. For clinical use, MSC-derived hepatocyte-like cells would need to remain hepatocyte-like within the recipient liver, even in the context of ongoing inflammation and injury; reversion to a mesenchymal phenotype would be highly undesirable. Exogenously derived MSCs have been proposed to enhance liver regeneration23 and reduce liver fibrosis in some reports24; however, other reports have been less positive. di Bonzo et al11 showed that exogenous MSCs were much more likely to adopt a myofibroblast phenotype (α-SMA positive) than a hepatocyte phenotype in the chronically injured liver. Although there have been several reports of the beneficial effect of MSCs on liver fibrosis in rodent models, other studies have found no benefit.25 Time will tell whether this potentially promising therapy can be translated into the clinic. Factors that need to be considered include whether the MSCs themselves produce scar or matrix-degrading substances, and whether they have a net positive or negative effect on the surrounding cell population. If MSCs are found to be beneficial, it will be important to know how they compare with other putative therapeutic bone marrow-derived cells such as CD34+ cells and monocytes.

The virtual absence of collagen production from bone marrow-derived cells, probably primarily HSCs, in the injured liver observed by Higashiyama et al19 encourages the further testing of autologous HSCs (such as CD34+ and CD133+ cells and derivatives such as monocytes) for liver therapy. To date, small, uncontrolled studies have suggested an overall benefit.5-7 There are obviously 2 main ways to address this particular issue—larger, randomized clinical studies or additional mechanistic studies in rodent and other model systems to define the optimal cells for therapy. At this stage, it seems reasonable that both approaches be undertaken with care.

<p>| Papers Reporting Bone Marrow Cells Engrafting the Liver and Adopting a Scar-Forming Cell Phenotype |</p>
<table>
<thead>
<tr>
<th>Authors</th>
<th>Cell tracking method</th>
<th>BM isolation transferred</th>
<th>BM induction method</th>
<th>BM injury method</th>
<th>Functional effect of BM cells in liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baba et al10</td>
<td>Col</td>
<td>Whole BM</td>
<td>1200 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
<tr>
<td>Forbes et al13</td>
<td>Col</td>
<td>Whole BM</td>
<td>Male BM into female recipients</td>
<td>CCl4, delta</td>
<td>Clinical tissue from gender mismatched liver</td>
</tr>
<tr>
<td>Russo et al14</td>
<td>Col</td>
<td>Whole BM</td>
<td>1000 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
<tr>
<td>Kisselva et al15</td>
<td>Col</td>
<td>Whole BM</td>
<td>1050 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
<tr>
<td>Asawa et al18</td>
<td>Col</td>
<td>Whole BM</td>
<td>1200 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
<tr>
<td>Miyata et al16</td>
<td>Col</td>
<td>Whole BM</td>
<td>950 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
<tr>
<td>Li et al24</td>
<td>Col</td>
<td>Whole BM</td>
<td>900 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
<tr>
<td>Fujimiya et al17</td>
<td>Col</td>
<td>Whole BM</td>
<td>900 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
<tr>
<td>Li C et al26</td>
<td>Col</td>
<td>Whole BM</td>
<td>800 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
<tr>
<td>Fujimiya et al17</td>
<td>Col</td>
<td>Whole BM</td>
<td>800 cGy</td>
<td>CCl4</td>
<td>Increased fibrosis seen after BM transplantation from mice</td>
</tr>
</tbody>
</table>
YIANNIS N. KALLIS, BCHIR, MRCP
Department of Medicine
St Mary’s Hospital Campus
Imperial College London
London, United Kingdom

STUART J. FORBES, MB CHB, PhD,
FRCP(Edinb)
MRC Centre for Regenerative Medicine and
MRC/University of Edinburgh Centre for
Inflammation Research
Edinburgh, United Kingdom

References
marrow cells reduces CCl4-induced liver fibrosis in mice. Hepa-
2. Duffield JS, Forbes SJ, Constandinou CM, et al. Selective deple-
tion of macrophages reveals distinct, opposing roles during liver
3. Nakamura T, Torimura T, Sakamoto M, et al. Significance and
therapeutic potential of endothelial progenitor cell transplanta-
tion in a cirrhotic liver rat model. Gastroenterology 2007;133:91–
et1.
cells repair rat hepatic sinusoidal endothelial cells after liver
application of human CD34+ stem/progenitor cell populations
mobilized into the blood by granulocyte colony-stimulating factor.
6. Terai S, Ishikawa T, Omori K, et al. Improved liver function in
patients with liver cirrhosis after autologous bone marrow cell
autologous bone marrow mononuclear cell transplantation in pa-
ients with advanced chronic liver disease. World J Gastroenterol
8. am Esch JS 2nd, Knoefel WT, Klein M, et al. Portal application of
autologous CD133+ bone marrow cells to the liver: a novel concept
to support hepatic regeneration. Stem Cells 2005;23:463–70.
9. Direkze NC, Forbes SJ, Britton M, et al. Multiple organ engraft-
ment by bone-marrow-derived myofibroblasts and fibroblasts in
11. di Bonzo LV, Ferrero I, Cravanzola C, et al. Human mesenchymal
stem cells as a two-edged sword in hepatic regenerative medi-
cine: engraftment and hepatocyte differentiation versus profibro-
mal stem cells mediated by sphingosine 1-phosphate contributes
13. Forbes SJ, Russo FP, Rey V, et al. A significant proportion of
myofibroblasts are of bone marrow origin in human liver fibrosis.
Gastroenterology 2004;126:955–63.
14. Russo FP, Alison MR, Bigger BW, et al. The bone marrow func-
tionally contributes to liver fibrosis. Gastroenterology 2006;130:
1807–21.
fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol
2006;45:429–38.
marrow-derived stellate cells in a mouse model of alcohol-in-
duced fatty liver. Am J Physiol Gastrointest Liver Physiol 2009.
18. Asawa S, Saito T, Satoh et al. Participation of bone marrow
cells in biliary fibrosis after bile duct ligation. J Gastroenterol
none marrow-derived cells to collagen production during hepatic
remain host-derived independent of the source of the stem-cell
graft and conditioning regimen used. Transplantation 2009;87:
217–21.
marrow stromal cells following allogeneic bone marrow transplan-
mal stem cells mediated by sphingosine 1-phosphate contributes
23. Kuo TK, Hung SP, Chuang CH, et al. Stem cell therapy for liver
disease: parameters governing the success of using bone marrow
mesenchymal stem cells. Gastroenterology 2008;134:2111–21,
2121 e1–3.
24. Fang B, Shi M, Liao L, et al. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-in-
25. Carvalho AB, Quintanilha LF, Dias JV, et al. Bone marrow mul-
tipotent mesenchymal stromal cells do not reduce fibrosis or
improve function in a rat model of severe chronic liver injury.

Reprint requests
Address requests for reprints to: Stuart J. Forbes, The Queen’s
Medical Research Institute, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK; e-mail: stuart.forbes@ed.ac.uk.

Conflicts of interest
The authors disclose no conflicts of interest.

© 2009 by the AGA Institute
0016-5085/09/$36.00
doi:10.1053/j.gastro.2009.08.026