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ABSTRACT
End-to-end models yield impressive speech recognition re-
sults on clean datasets while having inferior performance on
noisy datasets. To address this, we propose transfer learn-
ing from a clean dataset (WSJ) to a noisy dataset (CHiME-
4) for connectionist temporal classification models. We ar-
gue that the clean classifier (the upper layers of a neural net-
work trained on clean data) can force the feature extractor (the
lower layers) to learn the underlying noise invariant patterns
in the noisy dataset. While training on the noisy dataset, the
clean classifier is either frozen or trained with a small learn-
ing rate. The feature extractor is trained with no learning rate
re-scaling. The proposed method gives up to 15.5% rela-
tive character error rate (CER) reduction compared to mod-
els trained only on CHiME-4. Furthermore, we use the test
sets of Aurora-4 to perform evaluation on unseen noisy con-
ditions. Our method has significantly lower CERs (11.3%
relative on average) on all 14 Aurora-4 test sets compared to
the conventional transfer learning method (no learning rate re-
scale for any layer), indicating our method enables the model
to learn noise invariant features.

Index Terms— end-to-end, robust speech recognition,
transfer learning

1. INTRODUCTION

End-to-end speech recognition models simplify the training
procedure compared to conventional hybrid systems and have
offered impressive performance [1–3]. However, end-to-end
models usually have inferior results on noisy data [4, 5].

Several methods have been proposed to help training on
noisy data by exploiting clean data, such as teacher-student
learning [6–8] and multi-task learning [9–11]. However, in
these methods, typically require parallel clean/noisy data,
which limits their usefulness. Transfer learning transfers
the knowledge learned from the source domain to the target
domain and does not require parallel data. In this work, to
exploit non-parallel clean and noisy data in training end-to-
end speech recognition models, we propose a novel transfer
learning from clean speech data to noisy speech data.

The first author performed the work while at Toshiba Cambridge

Transfer learning has been widely employed in training
speech recognition models for low-resource languages [12–
17]. The low-level features of different languages are gen-
erally similar. Thus, a model is usually trained on a well-
resourced language and the feature extractor (the lower layers
of a neural network) is transferred across languages. How-
ever, for transfer learning from clean to noisy data, although
the underlying patterns should be invariant to the noise condi-
tions, it is not suitable to transfer the feature extractor owing
to the mismatch of acoustic conditions,

We propose to transfer the classifier (the upper layers)
from clean to noisy data, rather than transferring the feature
extractor, by first training the classifier on the clean dataset.
While training on the noisy dataset, the clean classifier is ei-
ther frozen or tuned using a small learning rate; the feature
extractor is trained using the normal learning rate. The fea-
ture extractor is constrained to learn features that match the
clean classifier. Since the features fit the clean classifier re-
flect more about the underlying patterns, the clean classifier
helps the feature extractor to learn the noise invariant patterns
from the noisy data.

We apply the proposed transfer learning method to train
connectionist temporal classification (CTC) models trans-
ferring from WSJ [18] to CHiME-4 [19, 20]. Compared to
models trained directly on CHiME-4, the models trained with
the proposed method reduce the character error rate (CER)
by up to 15.5% relative. We also tested the performance of
our method on unseen noise conditions using the Aurora-4
test sets [21]. Compared to conventional transfer learning in
which there is no re-scale of the learning rate for any layer,
the proposed method has significantly lower CERs on all 14
test sets with an average relative reduction in CER of 11%.
These experiments indicate that the proposed transfer learn-
ing method helps the model to learn noise invariant features.

2. RELATED WORK

The core idea of our proposed transfer learning approach
is that clean speech features should be similar to features
which are invariant to different noise conditions. Thus, mak-
ing the features extracted from noisy data similar to features
extracted from clean data should be helpful.



To achieve this objective, teacher-student learning is ap-
plied [6–8]. In general, parallel clean/noisy data is required
for teacher-student, with the noisy data often generated by
adding noise to the clean data. The teacher model is trained
on the clean dataset, and the output distribution of the teacher
model of clean utterances is used as soft labels for the paral-
lel noisy utterances. When training the student model on the
noisy utterances, we employ an objective which minimizes
the KL divergence between the soft labels and the output dis-
tribution of the student model. The transcript of the utterance
is viewed as a hard label sequence and may be optionally used
when training the student model.

Multi-task learning also helps in training robust speech
recognition models by exploiting parallel data [9–11]. In
multi-task learning, the main training objective is to recog-
nise the noisy utterance and the secondary objective can be
to reconstruct the clean utterance. An alternative secondary
objective is to minimize the distance of the output of each
layer between the model training on the noisy utterance and
the model training on the parallel clean utterance.

Although these methods enable models to learn domain
invariant features and improve the speech recognition results
on noisy data, parallel data is necessary. In contrast, our pro-
posed transfer learning method exploits knowledge learned
on non-parallel clean data.

Transfer learning for low-resource languages [12–17]
uses feature extractors trained on well-resourced languages,
following which the classifier is reinitialized and retrained
using the low-resource language. The feature extractor is
either jointly trained or kept frozen, following an optional
fine-tuning stage. For our proposed method, we transfer the
classifier to force the feature extractor to learn noise invariant
features.

3. CONNECTIONIST TEMPORAL
CLASSIFICATION

Connectionist temporal classification (CTC) models [22] be-
long to the family of sequence-to-sequence models. They can
be applied to end-to-end speech recognition since this model
is alignment-free – it considers all the valid alignments. In
this work, the inputs for the CTC models are acoustic features
and the outputs are characters.

For an input sequence X = x1, · · · ,xt, a valid output
sequence A = a′

1, · · · ,a′
t contains repeated characters and

blank symbols (−). The repeated characters between blank
symbols will be merged into one character to generate the
true output sequence Y = y1, · · · ,yn. For example, for
X = x1, · · · ,x5, A = c, c,−, a, t is a valid output for
Y = c, a, t. During training, the model maximizes the prob-
ability of the ground truth character sequence, which is the
sum of the probability of all valid alignments:

P (Y |X) =
∑
A∈S

P (A|X) , (1)

where S represents the set of valid alignments. CTC models
are usually using by bidirectional recurrent neural networks,
and the probability of each valid sequence is given by

P (A|X) =

t∏
i = 1

P (ai|X) . (2)

The probability P (Y |X) can be computed efficiently through
a forward-backward algorithm. The decoding can be per-
formed in a greedy way or using beam search.

4. TRANSFER LEARNING

We view the top layers of a model as a classifier and the layers
beneath these top layers as a feature extractor. The classifier
divides the space, while the feature extractor provides fea-
tures based on this partition of the space. A well-trained clean
model (i.e. a model which has a good speech recognition per-
formance on the clean dataset) gives a “clean classifier”. We
assume the features extracted by the well-trained clean model
are close to the underlying patterns. Moreover, these features
match the clean classifier. If we transfer the clean classifier
and train the feature extractor on the noisy data, then the fea-
ture extractor is forced to extract features that fit the clean
classifier. Since the features that fit the clean classifier should
be close to the underlying patterns, the feature extractor is
forced to extract noise invariant features from the noisy data.

In our transfer learning method, we do not only consider
the output softmax layer as the classifier. We also view the
grouping of the softmax layer and several other upper layers
as the classifier. With more layers, the classifier is more pow-
erful and may ease the burden of learning features from noisy
data for the feature extractor. However, more layers for the
classifier also means fewer layers for the feature extractor. It
also makes the feature extractor less powerful and less flexi-
ble. Thus, with too few layers, the feature extractor may not
have the capacity to fit the classifier. In our experiments, we
set the number of layers for the classifier using the validation
set.

While training on the noisy data, the clean classifier is ei-
ther frozen or tuned with a small learning rate. The feature
extractor is either reinitialized or initialized with the weights
of the clean feature extractor, as if the training on the clean
data is considered as a pre-training stage. The feature ex-
tractor is trained with the normal learning rate without any
learning rate re-scaling.

5. EXPERIMENTS

We apply the proposed transfer learning method from WSJ
[18] to CHiME-4 [19, 20]. For WSJ, we use si284 as the
training set and dev93 as the validation set. For CHiME-
4, we use the single channel simulated noisy and the real



in channel out channel kernel stride
conv 1 64 3× 3 1
conv 64 64 3× 3 1
maxpool 2× 2 2
conv 64 128 3× 3 1
conv 128 128 3× 3 1
maxpool 2× 2 2

Table 1. The CNN architecture for the CNN-BLSTM model

noisy data from all channels as the training set. We use
dt05 multi isolated 1ch track as the development set and
et05 real isolated 1ch track as the evaluation set. For CHiME-
4, the noise conditions in the training and test sets match. To
test the performance of the models in unseen noise condi-
tions, we use all 14 test sets in the Aurora-4 corpus [21].
The 14 test sets contain two clean sets which were recorded
by a primary closed microphone and a distant secondary mi-
crophone. These two sets were corrupted by six different
additive noises to create the other 12 test sets, making 14 test
sets in total.

We use Kaldi [23] to extract 40-dimension mel-scale fil-
terbank features with three pitch features, and the ESPnet
toolkit [24] to build convolutional neutral networks (CNNs)
– bidirectional long short-term memory (BLSTM) [25] CTC
models. The architecture of the CNNs is in Table 1. There
are four BLSTM layers on top of the CNNs. Each BLSTM
layer is followed by a linear layer with tanh activation. All
the BLSTM layers and linear layers have 320 hidden units.
There are 50 output labels in total, correspondingto 26 char-
acters, apostrophe, period, dash, space, noise, sos/eos tokens,
and some other special tokens. Adadelta [13, 26] is used as
the optimizer. The training stops after 5 epochs if there is no
reduction upon the lowest validation loss.

For the transfer learning (TL), firstly a CTC model is
trained using the clean WSJ si284 training set. This model is
used as the base model for the transfer learning experiments.
The top layers of this clean CTC model are viewed as a clean
classifiers. While performing TL in CHiME-4, we either
freeze or tune the clean classifier with a small learning rate
(the learning rate given by Adadelta is reduced by a factor).
The bottom layers are optionally reinitialized. The method is
illustrated in Figure 1. We compare the performance of the
proposed method against models that trained only using the
CHiME-4 dataset and also models trained using conventional
TL from WSJ to CHiME-4, where all the layers are tuned
without learning rate rescaling.

5.1. Random reinitialization of the feature extractor

Table 2 shows the performance of the proposed TL approach
to freeze the clean classifier trained in WSJ, reinitialize ran-
domly and retrain the feature extractor using CHiME-4 data.
When the top two layers (the softmax layer and the topmost

Fig. 1. An illustration of the transfer learning from WSJ to
CHiME-4. Model Clean is trained on WSJ. Then, the top two
layers (we group each BLSTM layer and its following lin-
ear layer as one layer) are either frozen or tuned with a small
learning rates on the CHiME-4 noisy data. The bottom lay-
ers of Model Noisy are either random initialized or initialized
using the weights of Model Clean, and trained on CHiME-4
with no learning rate re-scaling.

Model/CER dt05 multi et05 real
Freeze one layer 28.5 38.9
Freeze two layers 25.7 36.0
Freeze three layers 25.7 37.1
No transfer learning
CNN-BLSTM CTC 29.0 38.7
BLSTM CTC [4] / 48.8

Table 2. Character error rate (CER) of different models. No
transfer learning means the models are trained only using
CHiME-4. The results of BLSTM CTC is from a previous
work [4].

BLSTM layer with its following linear layer) are frozen, the
model gives significantly smaller CER compared to the CNN-
BLSTM model trained only using CHiME-4. We also no-
tice that if only the softmax layer is frozen, the model does
not outperform the baseline, which implies the frozen soft-
max does not have the capacity to force the feature extractor
to learn better features. On the other hand, although freez-
ing three layers surpasses the baseline, it gives inferior re-
sults compared to freezing two layers, which indicates that
although the three-layered classifier has more capacity, the
shallower feature extractor is not powerful/flexible enough to
well fit the classifier. The capacity of the classifier and the
feature extractor are well balanced when the top two layers
are frozen.

5.2. Pre-training of the feature extractor

Here we consider the case of pre-training the feature extrac-
tor using WSJ and further training using CHiME-4. That is,
the feature extractor is not randomly reinitialized. Instead, it



Model/CER airport wv1 babble wv1 car wv1 clean wv1 restaurant wv1 street wv1 train wv1 Average
Model A 11.3 12.0 9.8 8.1 13.1 12.7 13.6 11.5
Model B 12.2 13.1 11.2 9.7 14.1 14.0 14.6 12.7
Model/CER airport wv2 babble wv2 car wv2 clean wv2 restaurant wv2 street wv2 train wv2 Average
Model A 26.6 27.3 24.1 22.1 27.4 27.9 28.2 26.2
Model B 30.5 30.8 26.9 25.2 31.5 31.2 32.5 29.8

Table 3. Character error rate on all 14 test sets of Aurora-4. Both model A and model B are initialized using the clean CTC
model trained on WSJ. For model A, the learning rate for the top two layers (the softmax layer and the topmost BLSTM layer
with its following linear layer) are scaled by a factor of 0.5. For model B, there is no learning rate re-scale. wv1 means the
utterances are recorded by the primary microphone and wv2 means the utterances are recorded by the secondary microphone.

Model/CER dt05 Multi et05 real
Classifier: One layer
Frozen 22.0 33.8
LR scaled by 0.1 22.2 33.5
LR scaled by 0.5 22.6 34.2
Classifier: two layers
Frozen 22.5 33.8
LR scaled by 0.1 22.0 33.3
LR scaled by 0.5 (Model A) 21.9 32.9
Classifier: three layers
Frozen 24.6 36.6
LR scaled by 0.1 22.7 34.5
LR scaled by 0.5 21.9 33.4
No LR re-scale (Model B) 21.9 33.3
LR scaled by 0.5
for all layers (Model C) 22.1 33.4

No transfer learning 29.0 38.7

Table 4. Character error rate (CER) for using the clean CTC
model to initialize the training on CHiME-4. The classifier is
made of the topmost layer(s). During the training on CHiME-
4, the classifier is either frozen or the learning rate (LR) is
scaled by a small factor. No transfer learning means the model
is trained only using CHiME-4.

is initialized by the weights of the clean CTC model. When
training on CHiME-4, the classifier is either frozen, or the
learning rate is reduced by a small factor. There is no learning
rate re-scaling for the feature extractor. We compare the pro-
posed transfer learning method with the conventional transfer
learning method. That is, for all layers, there is no learning
rate re-scale. Table 4 summarizes the results.

The CERs in Table 4 are lower than the CERs in Table
2, indicating that pre-training on WSJ gives a good initializa-
tion for all the layers. Again, the capacity of the classifier
and the feature extractor are well balanced when the top two
layers are grouped as the classifier. The best CER is achieved
by tuning the two-layered classifier using a scaled learning
rate (0.5). To ascertain if the performance gains of the best
model (Model A) is due to the smaller learning rate, we train a
model by scaling the learning rate for all layers by 0.5 (Model

C), which gives inferior results. Thus, these experiments im-
ply that the classifier needs to be slightly tuned (compared to
the feature extractor) for the noisy data to get the best perfor-
mance. We also test a two-stage fine tune, i.e., first freeze the
softmax layer then unfreeze it and do a fine-tuning. However,
it does not give better results compared to the best model.

To show our proposed method forces the models to learn
noise invariant features, we test the performance of Model A
and Model B in unseen noise conditions by decoding them
on all the 14 test sets of Aurora-4 dataset (Model B is trained
by the conventional transfer learning, in where all layers are
trained jointly with no learning rate re-scale). Table 3 shows
that Model A surpasses Model B for all 14 test sets. Com-
pared to Model B, Model A has 11.3% relatively lower CER
on average. These results show that Model A is more capa-
ble of extracting domain invariant features. In the CHiME-
4 dataset, the training set contains the noise conditions of
the test set, and the conventional transfer learning method
makes Model B biased toward these observed noise condi-
tions. Thus, Model B has a good performance in the test set
of CHiME-4 but inferior results in the test sets of Aurora-
4. Our transfer learning method only slightly tuned the clean
classifier and it forces the feature extractor to extract the noisy
invariant underlying patterns. Thus, Model A has the best per-
formance in both seen and unseen noisy condition.

6. CONCLUSION

In this paper, we present a novel transfer learning method
from clean data to noisy data for speech recognition. In our
proposed method, a clean model is firstly trained on clean
data. Then, the clean classifier of the clean model (the top
layers) are either frozen or trained with a small learning rate
on the noisy data. The feature extractor (the bottom layers) is
trained on the noisy data with no learning rate re-scale. Our
experiment results on CTC models show our method forces
the feature extractor to learn noise invariant features and leads
to significant character error rate reductions. Our proposed
method is not only constrained to CTC models. Testing our
transfer learning methods for other models is left as a further
work.
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