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ABSTRACT

Previous work has shown that for low-resource source languages,
automatic speech-to-text translation (AST) can be improved by pre-
training an end-to-end model on automatic speech recognition (ASR)
data from a high-resource language. However, it is not clear what
factors—e.g., language relatedness or size of the pretraining data—
yield the biggest improvements, or whether pretraining can be effec-
tively combined with other methods such as data augmentation. Here,
we experiment with pretraining on datasets of varying sizes, including
languages related and unrelated to the AST source language. We find
that the best predictor of final AST performance is the word error
rate of the pretrained ASR model, and that differences in ASR/AST
performance correlate with how phonetic information is encoded in
the later RNN layers of our model. We also show that pretraining and
data augmentation yield complementary benefits for AST.

Index Terms— speech-to-text translation, transfer learning, pre-
training, speech recognition, data augmentation.

1. INTRODUCTION

Low-resource automatic speech-to-text translation (AST) has recently
gained traction as a way to bring NLP tools to under-represented lan-
guages. An end-to-end approach [[1H7] is particularly appealing for
source languages with no written form, or for endangered languages
where translations into a high-resource language may be easier to
collect than transcriptions [8]]. However, building high-quality end-
to-end AST with little parallel data is challenging, and has led re-
searchers to explore how other sources of data could be used to help.

A number of methods have been investigated. Several of these
use transcribed source language audio and/or translated source lan-
guage text in a multitask learning scenario [4}/6, 9] or to pre-train
parts of the model before fine-tuning on the end-to-end AST task [4].
Others assume, as we do here, that no additional source language re-
sources are available, in which case transfer learning using data from
language(s) other than the source language is a good option. In par-
ticular, several researchers have shown that low-resource AST can be
improved by pretraining on an ASR task in some other language, then
transferring the encoder parameters to initialize the AST model. For
example, Bansal et al. [5]] showed that pre-training on either English
or French ASR improved their Spanish-English AST system (trained
on 20 hours of parallel data) and Tian [[10] got improvements on an
8-hour Swahili-English AST dataset using English ASR pretraining.

Overall these results show that pretraining helps, but leave open
the question of what factors affect the degree of improvement. For
example, does language relatedness play a role, or simply the amount
of pretraining data? Bansal et al. showed bigger AST gains as the

amount of English pretraining data increased from 20 to 300 hours,
and also found a slightly larger improvement when pretraining on
20 hours of English versus 20 hours of French, but they pointed out
that the Spanish data contains many English code-switched words,
which could explain the latter result. In related work on multilingual
pretraining for low-resource ASR, Adams et al. [[11]] showed that
pre-training on more languages helps, but it is not clear whether the
improvement is due to including more languages, or just more data.

To begin to tease apart these issues, we focus here on monolingual
pretraining for low-resource AST, and investigate two questions. First,
can we predict what sort of pretraining data is best for a particular
AST task? Does it matter if the pretraining language is related to
the AST source language (defined here as part of the same language
family, since phonetic similarity is difficult to measure), or is the
amount of pretraining data (or some other factor) more important?
Second, can pretraining be effectively combined with other methods,
such as data augmentation, in order to further improve AST results?

To answer these questions, we use the same AST architecture
and Spanish-English parallel data as Bansal et al. [5]], but pretrain
the encoder using a number of different ASR datasets: the 150-
hour AISHELL corpus of Chinese as well as seven GlobalPhone
languages, each with about 20 hours of data. We find that pretraining
on a larger amount of data from an unrelated language is much better
than pretraining on a smaller amount of data from a related language.
Moreover, even when controlling for the amount of data, the WER
of the ASR model from pretraining seems to be a better predictor of
final AST performance than does language relatedness. Indeed, we
show that there is a very strong correlation between the WER of the
pretraining model and BLEU score of the final AST model—i.e., the
best pretraining strategy may simply be to use datasets and methods
that will yield the lowest ASR WER during pretraining. However, we
also found that AST results can be improved further by augmenting
the AST data using standard speed perturbation techniques [[12f]. Our
best results using non-English pretraining data improve the test set
BLEU scores of an AST system trained on 20 hours of parallel data
from 10.2 to 14.3, increasing to 15.8 with data augmentation.

Finally, we analyze the representations learned by the models
and show that better performance seems to correlate with the extent
to which phonetic information is encoded in a linearly separable way
in the later RNN layers.

2. METHODOLOGY

For both ASR and AST tasks we use the same end-to-end system
architecture shown in Figurem the encoder-decoder model from [5],
which itself is adapted from [2]], [4] and [3]. Details of the architecture
and training parameters are described in Section[3:4]
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Fig. 1: Encoder-decoder architecture used for both ASR and AST.

After pretraining an ASR model, we transfer only its encoder
parameters to the AST task. Previous experiments [5]] showed that
the encoder accounts for most of the benefits of transferring the
parameters. Transferring also the decoder and attention mechanism
does bring some improvements, but is only feasible when the ASR
pretraining language is the same as the AST target language, which
is not true in most of our experiments.

In addition to pretraining, we experimented with data augmen-
tation. Specifically, we augmented the AST data using Kaldi’s [13]]
3-way speed perturbation, adding versions of the AST data where the
audio is sped down and up by a factor of 0.9 and 1.1, respectively[]

To evaluate ASR performance we compute the word error rate
(WER)E] To evaluate AST performance we calculate the 4-gram
BLEU score [[14] on four reference translationsE]

3. EXPERIMENTAL SETUP

3.1. Parallel data

For the AST models, we use Spanish-English parallel data from
Fisher corpus [15]], containing 160 hours of Spanish telephone speech
translated into English text. To simulate low-resource settings, we
randomly downsample the original corpus to 20 hours of training
data. Each of the dev and test sets comprise 4.5 hours of speech.

3.2. Pretraining data

Since we focus on investigating factors that might affect the AST
improvements over the baseline when pretraining, we have chosen
ASR datasets for pretraining that contrast in the number of hours
and/or in the language similarity with Spanish. Statistics for each
dataset are in the left half of Table[T] with further details below.

To look at a range of languages with similar amounts of data, we
used GlobalPhone corpora from seven languages [16], each with
around 20 hours of speech: Mandarin Chinese (zh), Croatian (hr),
Czech (cs), French (fr), Polish (pl), Portuguese (pt), and Swedish (sv).
French and Portuguese, like the source language (Spanish), belong
to the Romance family of languages, while the other languages are
less related—especially Chinese, which is not an Indo-European
language. GlobalPhone consists of read speech recorded using similar
conditions across languages, and the transcriptions for Chinese are
Romanized, with annotated word boundaries.

'In principle, we can augment the ASR pretraining data, the AST data, or
both. However, we only augmented the AST data because in a preliminary
experiment on AISHELL, we found that augmenting the ASR pretraining data
did not improve its WER or the performance of the final AST system. Other
researchers have reported ASR improvements using speed perturbation, and
given the strong correlation we report below between ASR WER and AST
BLEU, we would expect other data augmentation methods that do improve
WER in pre-training to also improve AST.

Zhttps://github.com/belambert/asr-evaluation

3https://www.nltk.org/_modules/nltk/translate/
bleu_score.html

DATA | RESULTS

Dataset Hrs. Spks. \ ASR (WER) AST (BLEU)
ast-20h 20 \ — 10.3

zh-ai-small 20 81 38.7 12.4 (+2.1)
zh-ai-large 150 340 22.5 14.6 (+4.3)
zh-ai-hanzi 150 340 25.3 13.2 (+2.9)
hr-gp 12 72 71.5 10.7 (+0.4)
Sv-gp 18 79 59.4 12.3 (+2.0)
pl-gp 19 79 59.6 10.8 (+0.5)
pt-gp 23 86 80.5 10.5 (+0.2)
fr-gp 25 84 31.1 12.5 (+2.2)
zh-gp 26 111 51.5 12.0 (+1.7)
cs-gp 27 82 53.7 11.1 (+0.8)
multilin6 124 482 ‘ 44.2 13.3 (+3.0)

Table 1: Dataset statistics (left); dev set results from ASR pretraining
and from the final AST system (right). AST results in all rows except
the first are from pretraining using the dataset listed in that row,
followed by fine-tuning using ast-20h. Numbers in brackets are the
improvement over the baseline.

To explore the effects of using a large amount of pretraining data
from an unrelated language, we used the AISHELL-1 corpus of
Mandarin Chinese [17], which contains 150 hours of read speech.
Transcriptions with annotated word boundaries are available in both
Hanzi (Chinese characters) and Romanized versions, and we built
models with each. To compare to the GlobalPhone data, we also
created a 20-hour subset of the Romanized AISHELL (zh-ai-small)
by randomly selecting utterances from a subset of the speakers (81,
roughly the number present in most of the GlobalPhone datasets).

Finally, to reproduce one of the experiments from [5], we pre-
trained one model using 300 hours of Switchboard English [18].
This data is the most similar to the AST speech data in terms of style
and channel (both are conversational telephone speech). However, as
noted by [5]], the Fisher Spanish speech contains many words that are
actually in English (code-switching), so pretraining on English may
provide an unfair advantage relative to other languages.

3.3. Preprocessing

We compute 13-dim MFCCs and cepstral mean and variance normal-
ization along speakers using Kaldi [[13]] on our ASR and AST audio.
To shorten the training time, we trimmed utterances from the AST
data to 16 seconds (or 12 seconds for the 160h augmented dataset).
To account for unseen words in the test data, we model the ASR
and AST text outputs via sub-word units using byte-pair encoding
(BPE) [19]. We do this separately for each dataset as BPE works
best as a language-specific tool (i.e. it depends on the frequency of
different subword units, which varies with the language). We use 1k
merge operations in all cases except Hanzi, where there are around
3000 symbols initially (vs around 60 in the other datasets). For Hanzi
we ran experiments with both 1k and 15k merge operations. For
Chinese Romanized transcriptions we removed tone diacritics.

3.4. Model architecture and training

Following the architecture and training procedure described in [5]],
input speech features are fed into a stack of two CNN layers. In each
CNN layer we stride the input with a factor of 2 along time, apply
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Fig. 2: WER of each ASR model vs BLEU score of the corresponding
pre-trained AST model, computed in both cases on dev sets. Dia-
mond markers are AISHELL data sets; circles are from GlobalPhone.
The points in the circled group come from different runs on the same
dataset but with different BPE or learning rate schedules. The Spear-
man rank correlation of these points is -0.97; the correlation is -0.92
when using test sets to compute both ASR and BLEU.

ReLU activation [20] followed by batch normalization [21]. The
CNN output is fed into a three-layer bi-directional long short-term
memory network (LSTM) [22], with 512 hidden layer dimensions.
For decoding, we use the predicted token 20% of the time and the
training token 80% of the time [23] as input to a 128-dimensional
embedding layer followed by a three-layer LSTM, with 256 hidden
layer dimensions, and combine this with the output from the attention
mechanism [24] to predict the word at the current time step.

We use code and hyperparameter settings from [Sﬂ the Adam
optimizer [25] with an initial learning rate of 0.001 and decay it by a
factor of 0.5 based on the dev set BLEU score. When training AST
models, we regularize using dropout [26] with a ratio of 0.3 over
the embedding and LSTM layers [27]]; weight decay with a rate of
0.0001; and, after the first 20 epochs, 30% of the time we replace the
predicted output word by a random word from the target vocabulary.
At test time we use beam decoding with a beam size of 5 and length
normalization [28]] with a weight of 0.6.

4. RESULTS AND DISCUSSION

4.1. Baseline and ASR results

Our baseline 20-hour AST system obtains a BLEU score of 10.3
(Table[T] first row), 0.5 BLEU point lower than that reported by [5].
This discrepancy might be due to differences in subsampling from
the 160-hour AST dataset to create the 20-hour subset, or from Kaldi
parameters when computing the MFCCs.

WERSs for our pre-trained models (Table|l]) vary from 22.5 for
the large AISHELL dataset with Romanized transcript to 80.5 for
Portuguese GlobalPhone. These are considerably worse than state-
of-the-art ASR systems (e.g., Kaldi recipes can achieve WER of 7.5
on AISHELL and 26.5 on Portuguese GlobalPhone), but we did not
optimize our architecture or hyperparameters for the ASR task since
our main goal is to analyze the relationship between pretraining and
AST performance (and in order to use pretraining, we must use a
seq2seq model with the architecture as for AST).

4.2. Pretraining the AST task on ASR models

AST results for our pre-trained models are given in Table[I] Pretrain-
ing improves AST performance in every case, with improvements

4https://github.com/0xSameer/ast|

ranging from 0.2 (pt-gp) to 4.3 (zh-ai-large). These results make
it clear that language relatedness does not play a strong role in pre-
dicting AST improvements, since on the similar-sized GlobalPhone
datasets, the two languages most related to Spanish (French and Por-
tuguese) yield the highest and lowest improvements, respectively.
Moreover, pretraining on the large Chinese dataset yields a bigger
improvement than either of these—4.3 BLEU points. This is nearly
as much as the 6 point improvement reported by [5]] when pretraining
on 100 hours of English data, which is especially surprising given
not only that Chinese is very different from Spanish, but also that the
Spanish data contains some English words.

This finding seems to suggest that data size is more important
than language relatedness for predicting the effects of pretraining.
However, there are big differences even amongst the languages with
similar amounts of pretraining data. Analyzing our results further,
we found a striking correlation between the WER of the initial ASR
model and the BLEU score of the AST system pretrained using that
model, as shown in Figure 2] Therefore, although pretraining data
size clearly influences AST performance, this appears to be mainly
due to its effect on WER of the ASR model. We therefore hypothesize
that WER is a better direct predictor of AST performance than either
data size or language relatedness.

4.3. Multilingual pretraining

Although our main focus is monolingual pretraining, we also looked
briefly at multilingual pretraining, inspired by recent work on mul-
tilingual ASR [29}|30] and evidence that multilingual pretraining
followed by fine-tuning on a distinct target language can improve
ASR on the target language [[11}/31,32]. These experiments did not
directly compare pretraining using a similar amount of monolingual
data, but such a comparison was done by [33}|34]] in their work on
learning feature representations for a target language with no tran-
scribed data. They found a benefit for multilingual vs monolingual
pretraining given the same amount of data.

Following up on this work, we tried pretraining using 124 hours
of multilingual data (all GlobalPhone languages except Chinese),
roughly the amount of data in our large Chinese models. We com-
bined all the data together and trained an ASR model using a common
target BPE with 6k merge operations, then transferred only the en-
coder to the AST model. However, we did not see a benefit to the
multilingual training (Table|l} final row); in fact the resulting AST
model was slightly worse than the zh-ai-large model (BLEU of 13.3
vs 14.6). Other configurations of multilingual training might still
outperform their monolingual counterparts, but we leave this investi-
gation as future work.

4.4. Augmenting the parallel data

Table [2| (top) shows how data augmentation affects the results of the
baseline 20h AST system, as well as three of the best-performing
pretrained models from Table [T} For these experiments only, we
changed the learning rates of the augmented-data systems so that all
models took about the same amount of time to train (see Figure [3).
Despite a more aggressive learning schedule, the performance of the
augmented-data systems surpasses that of the baseline and pretrained
models, even those trained on the largest ASR sets (150-hr Chinese
and 300-hr English).

For comparison to other work, Table [2] (bottom) gives results for
AST models trained on the full 160 hours of parallel data, including
models with both pretraining and data augmentation. For the latter, we
used the original learning schedule, but had to stop training early due
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dev set test set
Pretrain | Noaug. Withaug. | Noaug. With aug.
- 10.3 13.0 (+2.7) 10.2 13.3 (+3.1)
= fr-gp 12.5 13.7 (+1.2) 12.6 14.3 (+1.7)
A zh-ai-lrg 14.6 15.5 (+0.9) 14.3 15.8 (+1.5)
en-300h | 195  20.1(+0.6) | 201 20.2 (+0.1)
s - 34.1 36.3 (+2.2) 34.6 37.3 (+2.7)
< en-300h 36.3 37.9 (+1.6) 36.4 37.8 (+1.4)

Table 2: BLEU scores on dev and test sets for models trained with
and without data augmentation. We used either 20h of AST training
data (top block) or 160h (bottom block), with various pretraining.
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Fig. 3: The AST performance over time (without beam-search) of
baseline, pretrained, and pretrained+augmented models.

to time constraints (after 15 days, compared to 8 days for complete
training of the non-augmented 160h models). We find that both
pretraining and augmentation still help, providing a combined gain
of 3.8 (3.2) BLEU points over the baseline on the dev (test) set.

5. ANALYZING THE MODELS’ REPRESENTATIONS

Finally, we hope to gain some understanding into why pretraining
on ASR helps with AST, and specifically how the neural network
representations change during pretraining and fine-tuning. We follow
[35]] and [[10]], who built diagnostic classifiers [36] to examine the
representation of phonetic information in end-to-end ASR and AST
systems, respectively. Unlike [[10,35], who used non-linear classifiers,
we use a linear classifier to predict phone labels from the internal
representations of the trained ASR or AST model.

Using a linear classifier allows us to make more precise claims: if
the classifier performs better using the representation from a particular
layer, we can say that layer represents the phonetic information in
a more linearly separable way. Using a nonlinear classifier raises
questions about how to choose the complexity of the classifier itself,
and therefore makes any results difficult to interpret.

We hypothesized that pretraining allows the models to abstract
away from nonlinguistic acoustic differences, and to better represent
phonetic information: crucially, both in the trained language and in
other languages. To test this hypothesis, we used two phone-labelled
datasets distinct from all our ASR and AST datasets: the English
TIMIT corpus (a language different to all of our trained models,
with hand-labeled phones) and the Spanish GlobalPhone corpus (the
same language as our AST source language, with phonetic forced-
alignments produced using Kaldi). We randomly sampled utterances
from these and passed them through the trained encoders, giving us a
total of about 600k encoded frames. We used 400k of these to train

before fine-tuning after fine-tuning
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Fig. 4: Phonetic classification accuracy at different layers of our ASR
(left) and AST (right) models. Different color bars indicate represen-
tations extracted from models (pre)trained on different datasets (pt-gp,
fr-gp, or zh-ai-large). Results from the baseline AST model (without
pretraining) are shown in both panels for comparison. The bars with
black edges are results on TIMIT (majority baseline: 12.9%); the
taller bars are for Spanish GlobalPhone (majority baseline: 15.2%).

logistic regression models to predict the phone labels, and tested on
the remaining 200k frames.

Separate logistic regression models were trained on the represen-
tations from each layer of the encoder. Since convolutional layers
have a stride of 2, the number of frames decreases at each convo-
lutional layer. To label the frames after a convolutional layer we
eliminated every other label (and corresponding frame) from the
original label sequence. For example, given label sequence S; =
aaaaaaann at input layer, we get sequence Sz = aaaan at the first con-
volutional layer and sequence S3 = aan at the second convolutional
layer and at the following recurrent layers.

Results for the two classification data sets (Figure ) show very
similar patterns. In both the ASR and the AST models, the pretraining
data seems to make little difference to phonetic encoding at the early
layers, and classification accuracy peaks at the second CNN layer.
However, the RNN layers show a clear trend where phone classifica-
tion accuracy drops off more slowly for models with better ASR/AST
performance (i.e., zh > fr > pt). That is, the later RNN layers more
transparently encode language-universal phonetic information.

Phone classification accuracy in the RNN layers drops for both
English and Spanish after fine-tuning on the AST data. This is slightly
surprising for Spanish, since the fine-tuning data (unlike the pretrain-
ing data) is actually Spanish speech. However, we hypothesize that
for AST, higher layers of the encoder may be recruited more to encode
semantic information needed for the translation task, and therefore
lose some of the linear separability in the phonetic information. Nev-
ertheless, we still see the same pattern where better end-to-end models
have higher classification accuracy in the later layers.

6. CONCLUSIONS

This paper explored what factors help pretraining for low-resource
AST. We performed careful comparisons to tease apart the effects of
language relatedness and data size, ultimately finding that rather than
either of these, the WER of the pre-trained ASR model is likely the
best direct predictor of AST performance. Given equivalent amounts
of data, we did not find multilingual pretraining to help more than
monolingual pretraining, but we did find an added benefit from using
speed perturbation to augment the AST data. Finally, analysis of the
pretrained models suggests that those models with better WER are
transparently encoding more language-universal phonetic information
in the later RNN layers, and this appears to help with AST.
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