Rapid identification of Rhodococcus equi by a PCR assay targeting the choE gene

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Clinical Microbiology

Publisher Rights Statement:
© 2003, American Society for Microbiology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Rapid Identification of *Rhodococcus equi* by a PCR Assay Targeting the *choE* Gene

Néstor Ladrón, Marta Fernández, Jesús Agüero, Bruno González Zörn, José A. Vázquez-Boland and Jesús Navas

Updated information and services can be found at:
http://jcm.asm.org/content/41/7/3241

REFERENCES

This article cites 42 articles, 17 of which can be accessed free at:
http://jcm.asm.org/content/41/7/3241#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»
Rapid Identification of *Rhodococcus equi* by a PCR Assay Targeting the *choE* Gene

Néstor Ladron,1 Marta Fernández,1 Jesús Agüero,1,2 Bruno González Zorn,3,4 José A. Vázquez-Boland,3,4 and Jesús Navas1*

Departamento de Biología Molecular (Unidad Asociada al Centro de Investigaciones Biológicas, C.S.I.C.), Facultad de Medicina, Universidad de Cantabria, 39011 Santander,1 Grupo de Patogénesis Molecular y Genómica Bacteriana, Facultad de Veterinaria, Universidad de León, 28040 León,2 and Servicio de Microbiología, Hospital Universitario “Marqués de Valdecilla,” Santander;3 Spain, and Veterinary Molecular Microbiology Section, Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS 40N 3DU, United Kingdom4

Received 14 November 2002/Returned for modification 18 January 2003/Accepted 3 April 2003

The actinomycete *Rhodococcus equi* is an important pathogen of horses and an emerging opportunistic pathogen of humans. Identification of *R. equi* by classical bacteriological techniques is sometimes difficult, and misclassification of an isolate is not uncommon. We report here on a specific PCR assay for the rapid and reliable identification of *R. equi*. It is based on the amplification of a fragment of the *choE* gene encoding cholesterol oxidase. The *choE*-based PCR was assessed by using a panel of strains comprising 132 isolates from different sources and of different geographical origins, all initially identified biochemically as *R. equi*, and 30 isolates of representative non-*R. equi* actinomycete species, including cholesterol oxidase producers. The expected 959-bp amplicon was observed only with *R. equi* isolates, as confirmed by sequencing of a variable region of the 16S RNA gene from a random sample of 20 PCR-positive isolates. All *R. equi* isolates gave a positive *choE*-based PCR result, which correlated with a high degree of conservation of the *choE* gene. Three of the 132 strains originally identified as *R. equi* were negative for the *choE* gene, and subsequent analysis of their 16S RNA gene sequences confirmed that they belonged to other bacterial species (*Dietzia maris*, *Mycobacterium peregrinum*, and *Staphylococcus epidermidis*). All non-*R. equi* isolates were negative by the *choE*-based PCR. ATCC 21387, the only known isolate of *Brevibacterium stercolicum*, gave a 959-bp amplicon whose DNA sequence was virtually identical to that of *R. equi choE*. Comparison of the 16S RNA genes indicated that ATCC 21387 should be considered an *R. equi* isolate.

The nocardioform actinomycete *Rhodococcus equi* is a primary pathogen of horses. In foals, *R. equi* causes severe pyogranulomatous pneumonia, often accompanied by ulcerative enteritis and mesenteric lymphadenitis (29). In recent years, *R. equi* has emerged as an important opportunistic pathogen in humans, causing potentially life-threatening infections in severely immunocompromised people, in particular, human immunodeficiency virus-infected patients (43). In humans, *R. equi* causes a lung disease reminiscent of pulmonary tuberculosis. *R. equi* can also infect cattle, in which it has been associated with ulcerative lymphangitis (34), and it has also been recovered from inflamed tonsils and the cervical lymph nodes of pigs (21, 34). The natural habitat of *R. equi* is the soil, especially that enriched with fecal material from domestic and wild animals (37).

R. equi infections are diagnosed by culturing and subsequent phenotypic analysis of the isolates by means of classical morphological and biochemical tests (9). However, the colony characteristics, cellular morphology, and reaction to acid-fast staining differ between *R. equi* isolates (32). Although the API Coryne multisubstrate identification system (bio-Merieux), a commercial kit widely used in clinical microbiology laboratories, includes *R. equi* in its database, its reliability for the biochemical identification of rhodococcal isolates is limited (8, 35). These inconsistent test results for *R. equi* frequently result in misidentification, in which *R. equi* is mistaken as other rhodococcal species or even corynebacteria or other actinomycetes (10, 16, 36). Accurate identification of *Rhodococcus* isolates to the species level is possible on the basis of chemotaxonomic properties (11). However, these techniques are excessively laborious, time-consuming, and expensive for routine use in clinical microbiology laboratories.

We recently identified the *R. equi choE* gene, a chromosomal locus encoding cholesterol oxidase (22), an enzyme believed to be a major virulence factor of *R. equi* (13). Mutational analysis indicated that ChoE is the membrane-damaging factor responsible for the typically shovel-shaped synergistic hemolysis (CAMP-like) reaction elicited by *R. equi* in the presence of sphingomyelinase C-producing bacteria, such as *Listeria ivanovii*, *Bacillus cereus*, and *Staphylococcus aureus* (22). This CAMP-like reaction can be used as a phenotypic marker for the rapid presumptive identification of *R. equi* (30; unpublished data). We describe here a new PCR method for the rapid and specific identification of *R. equi* based on the detection of *choE* sequences. This assay accurately differentiated *R. equi* from other closely related actinomycetes and correctly reassigned strains initially incorrectly identified as *R. equi* to other species on the basis of morphological and biochemical characteristics. It also identified as *R. equi* a well-known cholesterol oxidase-producing strain, *Brevibacterium stercolicum* ATCC 21387 (7).
TABLE 1. Non-\textit{R. equi} strains used in the study

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Corynebacterium} sp.</td>
<td>ATCC® 14665</td>
</tr>
<tr>
<td>\textit{Corynebacterium} kutscheri</td>
<td>ATCC 15677</td>
</tr>
<tr>
<td>\textit{Corynebacterium} variabilis</td>
<td>ATCC 33010</td>
</tr>
<tr>
<td>\textit{Corynebacterium} xerosis</td>
<td>NCIMB® 9956</td>
</tr>
<tr>
<td>\textit{Corynebacterium pseudotuberculosis}</td>
<td>ATCC 19410</td>
</tr>
<tr>
<td>\textit{Corynebacterium} bovis</td>
<td>CA® 23</td>
</tr>
<tr>
<td>\textit{Corynebacterium} aquaticum</td>
<td>CA 29</td>
</tr>
<tr>
<td>\textit{Corynebacterium} urealyticum</td>
<td>ATCC 43042</td>
</tr>
<tr>
<td>\textit{Mycobacterium} sp.</td>
<td>NCIMB 11678</td>
</tr>
<tr>
<td>\textit{Mycobacterium} phlei</td>
<td>ATCC 11758</td>
</tr>
<tr>
<td>\textit{Mycobacterium} smegmatis</td>
<td>ATCC 14468</td>
</tr>
<tr>
<td>\textit{Mycobacterium} bovis BCG</td>
<td>ATCC 35744</td>
</tr>
<tr>
<td>\textit{Mycobacterium} xenopi</td>
<td>CA 78931</td>
</tr>
<tr>
<td>\textit{Mycobacterium} kansasii</td>
<td>CA 70243</td>
</tr>
<tr>
<td>\textit{Mycobacterium} tuberculosis</td>
<td>CA 1908</td>
</tr>
<tr>
<td>\textit{Mycobacterium} teratia</td>
<td>CA 52828</td>
</tr>
<tr>
<td>\textit{Mycobacterium} chelone</td>
<td>CA 71765</td>
</tr>
<tr>
<td>\textit{Mycobacterium} lentiflavum</td>
<td>CA 33805</td>
</tr>
<tr>
<td>\textit{Brevibacterium} sp.</td>
<td>CA 157</td>
</tr>
<tr>
<td>\textit{Brevibacterium} sterolicum</td>
<td>ATCC 21387</td>
</tr>
<tr>
<td>\textit{Nocardia} sp.</td>
<td>CA 158</td>
</tr>
<tr>
<td>\textit{Nocardia} asteroides</td>
<td>ATCC 14759</td>
</tr>
<tr>
<td>\textit{Rhodococcus} sp.</td>
<td>NCIMB 9457</td>
</tr>
<tr>
<td>\textit{Rhodococcus} erythropolis</td>
<td>ATCC 11048</td>
</tr>
<tr>
<td>\textit{Gordonia} sp.</td>
<td>CA 93049</td>
</tr>
<tr>
<td>\textit{Gordonia} bronchialis</td>
<td>ATCC 25592</td>
</tr>
<tr>
<td>\textit{Tsukamurella} pulmonis</td>
<td>CIP® 104791T</td>
</tr>
<tr>
<td>\textit{Dietzia} maris</td>
<td>ATCC 35013T</td>
</tr>
<tr>
<td>\textit{Turicella} otitidis</td>
<td>CA 62716</td>
</tr>
<tr>
<td>\textit{Streptomyces} sp.</td>
<td>CA 163</td>
</tr>
</tbody>
</table>

* ATCC, American Type Culture Collection.
a NCIMB, National Collections of Industrial and Marine Bacteria.
b CA, Collection of Actinomycetes of the Department of Biochemistry and Molecular Biology of the University of Cantabria.
c They were identified by phenotypic analysis and 16S rDNA sequencing.
d CIP, Collection of Institut Pasteur, Paris, France.

RESULTS

\textit{R. equi}-specific PCR based on \textit{choE}. Oligonucleotide primers were designed after alignment of the sequence of \textit{choE} from \textit{R. equi} strain 103, recently determined in our laboratory (22), with other known or putative cholesterol oxidase gene sequences available in databases (\textit{Mycobacterium} \textit{tuberculosis}, GenBank accession no. \textit{X99343}; \textit{Mycobacterium} \textit{leprae}, GenBank accession no. \textit{NC002677}; \textit{Streptomyces} coelicolor, GenBank accession no. \textit{AL161755}; \textit{Streptomyces} sp. \textit{choA}, GenBank accession no. \textit{M31939}; \textit{Streptomyces} sp. \textit{choM}, GenBank accession no. \textit{U11981}; \textit{Pimelobacter} \textit{simplex}, GenBank accession no. \textit{AF247810}; and \textit{Burkholderia} \textit{cepacia}, GenBank accession no. \textit{AB051407}) to identify areas of similarity and difference. On the basis of that analysis we defined the 21-mer \textit{R. equi}-specific primers \textit{COX-F} (\textit{5'GTCACAACCATCGACGAGCGGCG}), corresponding to positions 1221 to 1241 (forward primer), and \textit{COX-R} (\textit{5'-CGAGCGGTCACGACGATCAG}), complementary to the sequence spanning positions 2160 to 2180 (reverse primer) (coordinates are according to the sequence of the \textit{choE} region deposited in the EMBL data bank under accession no. \textit{AJ242746}). These primers are predicted to give an amplicon of 959 bp, according to the sequence of \textit{R. equi} strain 103.

Genomic DNA from \textit{R. equi} reference strains 103, ATCC 6939, and ATCC 33701 and from 132 isolates from different sources and of different geographical origins presumptively identified as \textit{R. equi} were screened by PCR with the \textit{CHO} primers described above. For the 3 reference strains and for 129 of the presumptive \textit{R. equi} isolates, the PCR resulted in the production of the expected 0.95-kbp product (Fig. 1). A region of the 16S rDNA comprising species-specific sequences was amplified by PCR with primers \textit{DG74} and \textit{PL06} (12) from a random sample of 20 of the \textit{choE}-based PCR (\textit{choE} PCR)-positive isolates and sequenced. These 20 strains included both...
human and animal clinical isolates and environmental isolates. Their sequences were compared to the 16S rRNA sequences in databases, which confirmed that all the isolates belonged to \(R. \) equi. Only 3 of the 132 isolates (isolates 11, 20, and 21) gave a negative choE PCR result. The complete sequence of the 16S rDNA of each of these negative strains was determined after PCR amplification with primers 16S-F (5'-AGAGTTTGTATTGCTGGCTCAG) and 16S-R (5'-AGGGAGGTAGCCGACGC GC). Strain 11 was identified as \(S. \) epidermidis (99% identity with \(S. \) epidermidis ATCC 14990 T 16S rDNA), strain 20 was identified as \(D. \) maris (99% identity with \(D. \) maris ATCC 35013 T), and strain 21 was identified as \(M. \) peregrinum (98% identity with \(M. \) peregrinum ATCC 14467).

The specificity of the choE PCR was verified by testing 30 strains from representative actinomycete species (Table 1). These strains included bacteria known to express cholesterol oxidase activity or to encode putative cholesterol oxidase enzymes, such as \(Brevibacterium \) spp., \(Mycobacterium \) spp., \(Nocardia \) asteroides, \(Rhodococcus \) erythropolis, and \(Streptomyces \) spp. (17). No amplification product was detected for any of these strains except one, \(Brevibacterium \) sterolicum ATCC 21387, for which a 0.95-kbp product, i.e., a product of the same size as that obtained with the \(R. \) equi isolates, was observed (Fig. 1). A further detailed analysis of the \(B. \) sterolicum strain indicated that it was misclassified and belonged to the \(R. \) equi taxon (see below).

In vitro sensitivity of choE PCR for \(R. \) equi. The in vitro sensitivity of the PCR test was assessed by determining both the minimum amount of DNA and the minimum number of bacterial cells required for detection of a 959-bp choE amplicon. For these tests, 10-fold dilutions of highly purified DNA or an exponential-phase culture (optical density at 600 nm = 0.5) of \(R. \) equi reference strains ATCC 6939 and ATCC 33701 were used. A positive result was obtained with a minimum of 0.02 ng of DNA or 3 \(R. \) equi CFU (Fig. 2).

Conservation of choE sequences in \(R. \) equi. The choE gene of strain 103 maps to a 2.3-kbp \(PsI \) chromosomal fragment (22). Southern blot analyses revealed this same hybridization pattern in type strain ATCC 6939 and in the 20 choE PCR-positive isolates used for the 16S rDNA cataloguing described above (data not shown), suggesting a high degree of conservation of the choE sequence in \(R. \) equi. We confirmed this by DNA sequencing and RFLP analysis. The complete sequences of the choE genes from 3 of the 20 \(R. \) equi strains, selected on the basis of their different degrees of cholesterol oxidase and cognate CAMP-like activities (strain 2, isolated from a diseased foal, had a high level of activity; strain 3, from a human patient, had an intermediate level of activity; and strain 70, also from a human patient, was exceptional, in that it presented no detectable activity), were determined. These three choE sequences diverged only minimally (sequence identities, >99.5%). RFLP analyses of the 959-bp choE amplicons from the 20 \(R. \) equi isolates previously analyzed by Southern blotting also revealed identical patterns for each of the seven restriction enzymes used (Fig. 3).

Reclassification of \(B. \) sterolicum ATCC 21387 as \(R. \) equi. Comparison of the cholesterol oxidase gene sequences of \(R. \) equi 103 (choE) and \(B. \) sterolicum ATCC 21387 (choB) (22) revealed they were almost identical, consistent with the positive result obtained with \(B. \) sterolicum ATCC 21387 by PCR with the COX primers (see above). This high degree of sequence conservation between \(choE \) and \(choB \) derived from two presumptively different bacterial species was surprising in view of the substantial degree of divergence (81%) that exists between cholesterol oxidase genes from different actinomycetes, even for those belonging to the same genus (as, for example, the case of \(Streptomyces \) sp. \(choA \) and \(choM \) alleles, which are only 86% identical). Given the strong sequence conservation of \(choE \) among \(R. \) equi isolates, the identity between \(choE \) and the reported \(choB \) sequence could be explained either (i) by a recent horizontal gene transfer event between \(R. \) equi and \(B. \) sterolicum or (ii) by the fact that ATCC 21387 is an \(R. \) equi isolate.
To discriminate between these two possibilities, we determined the complete sequence of the 16S rDNA of ATCC 21387 after PCR amplification with primers 16S-F and 16S-R (see above). The sequence was 100% identical to that of R. equi type strain ATCC 6939 (GenBank accession no. X80603), indicating that B. sterolicum ATCC 21387 is in fact an R. equi strain. ATCC 21387 gives a CAMP-like reaction with L. ivanovii. Furthermore, the biochemical profiles of ATCC 21387 determined with the API Coryne system are fully compatible with those of R. equi and less similar to those of Brevibacterium.

DISCUSSION

In this work, we studied the usefulness of the R. equi cholesterol oxidase gene, choE, recently identified and characterized in our laboratory (22), as a target for the development of a species-specific PCR method for the rapid identification of this pathogenic nocardioform actinomycete. Routine application of a PCR-based method requires that the target sequence be highly specific for the microorganism and that it be highly conserved in all strains of that organism. Our results show that the choE target sequence used fulfills these requirements. Sequences complementary to the COX primers were present in all of the isolates included in a large collection of R. equi strains from different sources and of different geographical origins, suggesting that they are universally conserved in this bacterial species. This is consistent with the production of extracellular choE-derived cholesterol oxidase activity and of its associated phenotypic marker, the CAMP-like reaction with L. ivanovii, by virtually all isolates of R. equi (unpublished data). On the other hand, no choE amplicon was detected in any of the 29 actinomycetes used as negative controls, which included relevant pathogenic species, such as N. asteroides and M. tuberculosis, that also produce cholesterol oxidase activity or that carry choE-related genes (17). Most importantly, these negative control strains included cholesterol oxidase-producing rhodococci, demonstrating the species specificity of our PCR method. The choE gene homologs carried by these bacteria were sufficiently divergent to prevent positive amplification with our COX primers. The specificities of these primers for R. equi were corroborated by sequence analysis of the 16S rDNA from a representative sample of the choE PCR-positive strains.

Interestingly, one R. equi isolate from the panel of isolates tested did not produce detectable CAMP-like activity but gave a positive choE PCR result. This illustrates the validity of the molecular method that we developed as a tool to identify R. equi, as it gives positive results even for rhodococcal strains that do not express the choE-associated phenotypic marker. The cholesterol oxidase-nonproducing R. equi isolate, strain 70, acquired the capacity to produce an active enzyme (and CAMP-like reactivity) upon complementation with a plasmid carrying a wild-type choE gene, indicating that that strain bears a nonfunctional choE allele. Analysis of the strain 70 choE sequence revealed the presence of a 1-bp insertion in the 5′ region of the gene that produced a frame shift and, subsequently, the loss of cholesterol oxidase activity (unpublished results).

The choE PCR with the COX primers also identified three isolates that had incorrectly been identified as R. equi according to the negative PCR results, thus further illustrating the value of the assay. These three isolates were confirmed to be non-R. equi isolates by 16S rDNA sequencing. One, an isolate from the bone marrow of a human patient with human immunodeficiency virus infection, was identified as D. maris, a halophilic actinomycete previously reported as being involved in human infections only on two occasions (4, 27). The second isolate was identified as M. peregrinum, a species also rarely found as a cause of opportunistic infections in humans (25, 31). The third was a strain of S. epidermidis, a coagulase-negative Staphylococcus sp., which was possibly identified as R. equi on the basis of positivity by Gram staining, the coccoid aspect often presented by R. equi, and the resemblance of old R. equi colonies to those of staphylococci.

B. sterolicum ATCC 21387 was the only presumptive non-R. equi strain included in our study which yielded a 0.95-kb PCR product with the COX primers. ATCC 21387 is a well-known strain used for the industrial production of cholesterol oxidase and the extensive genetic and biochemical characterization of this enzyme (20, 23, 24). Indeed, the three-dimensional crystal structure of the cholesterol oxidase protein was determined by using the purified enzyme from B. sterolicum ATCC 21387 (15). Our previous data showed that the sequence of the cholesterol oxidase gene from B. sterolicum ATCC 21387, designated choB, was almost identical to that of choE from R. equi (22). Here we found that the 16S rDNA sequence of ATCC 21387 is also identical to that of R. equi. This finding, together with the strong conservation of the choE gene sequence among R. equi isolates, indicates that ATCC 21387, the only known strain of the species “B. sterolicum,” was misclassified and is R. equi.

Only a few rapid molecular methods have been developed for R. equi identification. Clinical isolates from foals can be identified by detection of the VapA antigen, with monoclonal antibodies, or alternatively, by PCR detection of its gene, vapA, which is present on an 85-kb virulence plasmid (38, 39, 40). However, the virulence plasmid is not present in all strains of human and environmental origin (in general, in nonequine isolates) (41), thus limiting the general usefulness of the vapA-based identification of R. equi by PCR. Other PCR-based molecular methods have been used to amplify a chromosomal segment of unknown function (2) or the 16S rDNA (3, 33), but their validities have been assessed with only a small number of strains. Although 16S rDNA sequencing is accepted as a general means for species differentiation, some heterogeneity can exist between different isolates of the same species (14). A recent study of the 16S rDNA sequences of several representative strains showed that R. equi is a very heterogeneous taxon, with variations in 16S rDNAs of up to 4% (19). On the other hand, closely related species may have identical or almost identical 16S rDNA sequences (6, 26). Therefore, it is useful to have other species-specific targets, such as choE, to undertake an assay for the reliable identification of a bacterial species. Finally, a PCR-RFLP method targeting a 65-kDa heat shock protein gene and primarily devised for the identification of mycobacteria was shown to discriminate R. equi strains (42). However, this assay is too laborious and lengthy because, due to the conserved nature of the 65-kDa heat shock protein gene, the amplification product is of the same size for all actinomycete species and R. equi can be discriminated only by restriction analysis of the amplicon.
In summary, we describe a new PCR assay which can be usefully applied for the rapid, sensitive, and reliable identification of *R. equi* isolates and their differentiation from isolates of other pathogenic and nonpathogenic actinomycetes.

ACKNOWLEDGMENTS

We gratefully acknowledge all the colleagues who kindly provided us with bacterial strains for this study (T. Chakraborty, M. de Pablos, A. Enríquez, V. García, J. M. García Arenzana, J. L. Hernández, A. Kodjo, C. Lammler, M. Lantero, P. Martin Rabadán, A. M. Martín Sánchez, A. Morton, and J. F. Prescott). We also thank C. Polidura and Z. Madrazo for their contribution in identifying some of the bacterial strains and I. Andrés for helpful discussions. This work was supported by grants from the Spanish Ministry for Science and Technology (grant PB97-0327-C03) and Fundación Marqués de Valdecilla (grant A/30/01).

REFERENCES

