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INTRODUCTION

The excitable properties of neurons depend not only on the kinds of ion channels expressed in
the plasma membrane, but also on the location of these channels. Among the many different
ion channels expressed in the nervous system, the Kv1 channels are an excellent example of
channels that are restricted to distinct subcellular locations. Mutations or diseases that disrupt
clustering, localization, or composition of Kv1 channels severely compromise nervous system
function and lead to conduction block, episodic ataxia, and/or epilepsies (Rasband et al.,
1998; Eunson et al., 2000; Nashmi et al., 2000; Manganas et al., 2001b).

In the intact nervous system, Kv1 channels are clustered in high density at (1) the basket cell
terminals (BCTs) of cerebellar pinceau where they regulate GABAergic inhibition of the
Purkinje neuron efferent axon, (2) juxtaparanodes of myelinated axons where they modulate
action potential propagation and dampen repetitive firing of injured and developing myelinated
axons, and (3) axon initial segments (AIS) where they regulate action potential waveform,
synaptic efficacy, and threshold of cortical interneurons (Wang et al., 1993; Laube et al.,
1996; Vabnick and Shrager, 1998; Zhang et al., 1999; Devaux et al., 2002; Kole et al., 2007;
Goldberg et al., 2008; Ogawa et al., 2008).

Kv1 channels form macromolecular protein complexes with the cell adhesion molecules
(CAMs) Caspr2 and TAG-1, the membrane associated guanylate kinases (MAGUKs) PSD-93
and PSD-95, and the cytoskeletal scaffold 4.1B (Baba et al., 1999; Poliak et al., 1999; Poliak
et al., 2001; Traka et al., 2002; Horresh et al., 2008). Juxtaparanodal Kv1 channel clustering
depends on CAMs, but not MAGUKs (Rasband et al., 2002; Poliak et al., 2003; Traka et al.,
2003; Horresh et al., 2008). In contrast, AIS Kv1 channel clustering was reported to depend
on MAGUKs rather than CAMs (Ogawa et al., 2008). At BCTs neither Caspr2 nor PSD-95 is
needed for channel clustering (Rasband et al., 2002). Thus, although these different axonal
domains share a similar molecular organization, their mechanisms of assembly are unique.

Here, we identify ADAM22 as a component of the Kv1 channel protein complex. ADAM22
was previously reported to regulate synaptic transmission and to be a binding partner of Lgi1
(leucine-rich glioma inactivated 1), which is mutated in autosomal dominant partial epilepsy
with auditory features (Fukata et al., 2006). ADAM22-null mice have profound
hypomyelination in the PNS (Sagane et al., 2005). We show here that ADAM22 is highly
enriched in axons at juxtaparanodes, AIS, and BCTs. We use a variety of biochemical, cell
biological, and genetic approaches to begin to elucidate the role of ADAM22 at these axonal
locations.

MATERIALS AND METHODS

Animals

Sprague–Dawley rats were purchased from Harlan™ Laboratories. ADAM22-, Caspr-,
Caspr2-, PSD-93-, PSD-95-, and PSD-95/PSD-93 double-null mice were described previously
(Migaud et al., 1998; McGee et al., 2001; Sagane et al., 2005; Horresh et al., 2008). Animals
were housed at the Center for Laboratory Animal Care at the Baylor College of Medicine, at
the Erasmus MC University Medical Center, and at the Weizmann Institute of Science. All
experiments were performed in accordance with the National Institutes of Health guidelines
for the humane treatment of animals.

Constructs

The following plasmids were used: pGW-PSD-93EGFP (a gift from Dr. Bonnie Firestein,
Rutgers, NJ), pGW-PSD95 (a gift from Dr. Morgan Sheng), and RBG4-Kv1.4 (Nakahira et
al., 1996), and pSCT-Adam22 G20. The pSCT-Adam22 G20 construct drives expression from
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temperature. After three washes with PBS, cytoplasmically directed antibodies were added for
1 hour after permeabilization by 0.3 % Triton X-100 with normal goat serum and washed with
PBS. Secondary antibodies were incubated at room temperature for 2 hours and washed with
PBS. Fluorescence images were collected as describe above.

Immunoprecipitation and Mass-spectrometry

Whole rat brains were dissected and homogenized in ice-cold homogenization buffer (in mM:
320 sucrose, 1 EGTA, and 5 HEPES, pH 7.4). The homogenate was centrifuged at 1000 × g
for 10 min. The supernatant was spun for 15 min at 13,000 × g, and the resulting pellet was
resuspended in homogenization buffer. Detergent-resistant or solubilizing membranes were
isolated by solubilizing brain membrane homogenates in 1% Triton X-100 lysis buffer (20 mM
Tris-HCl, pH 8.0, 10 mM EDTA, 0.15 M NaCl, 10 mM iodoacetamide, 0.5 mM PMSF, 10
mM sodium azide, and a mixture of protease inhibitors: 2 µg/ml aprotinin, 1 µg/ml leupeptin,
2 µg/ml antipain, and 10 µg/ml benzamidine) at a concentration of 1 mg/ml protein for 1 hr on
a rotator at 4°C. The resulting lysate was centrifuged at 13,000 × g for 30 min to separate the
soluble and insoluble fractions. For immunoprecipitations, we used the soluble fraction as the
starting material. Rabbit polyclonal or mouse monoclonal antibodies were added overnight at
4°C and precipitated for 3 h at 4°C with Protein A or Protein G Tris-acryl (Pierce). After
washing seven times with 1% Triton X-100 lysis buffer, Immunoprecipitated complexes were
added to 2× concentrated reducing sample buffer, boiled, and then loaded and size fractionated
on SDS-polyacrylamide gels. Polyacrylamide gels were silver stained using the SilverSnap
silver staining kit (Pierce). For identification of proteins by mass-spectrometry, gels were
stained with Colloidal Blue Staining kit (Invitrogen). For immunoblotting, proteins were
electrophoretically transferred to nitrocellulose membranes, followed by immunoblotting
using mouse and/or rabbit antibodies.

In-gel digestion

Protein bands were excised from gels and digested in-gel with trypsin as described (Rosenfeld
et al., 1992). The extracted digests were vacuum-evaporated and resuspended in 10 µl 0.1%
formic acid in water

Reverse-phase LC-MS/MS Analysis

The digests were separated by nanoflow liquid chromatography using a 100-µm × 150-mm
reverse-phase Ultra 120-µm C18Q column (Peeke Scientific, Redwood City, CA) at a flow
rate of 350 nl/min in an Agilent 1100 high performance liquid chromatography system (Agilent
Technologies, Inc, Santa Clara, CA). Mobile phase A was 0.1% formic acid in water, and
mobile phase B was 0.1% formic acid in acetonitrile. Following equilibration of the column
in 2% solvent B, approximately one-half of each digest (5 µl) was injected, and then the organic
content of the mobile phase was increased linearly to 40% over 30 min and then to 50% in 3
min. The liquid chromatography eluate was coupled to a hybrid linear ion trap-Fourier
transform mass spectrometer (LTQ-FT, Thermo Scientific, San Jose, CA) equipped with a
nanoelectrospray ion source. Spraying was from an uncoated 15-µm-inner diameter spraying
needle (New Objective, Woburn, MA). Peptides were analyzed in positive ion mode and in
information-dependent acquisition mode to automatically switch between MS and MS/MS
acquisition. MS spectra were acquired in profile mode using the ICR analyzer in the m/z range
between 300 and 2000. For each MS spectrum, the 5 most intense multiple charged ions over
a threshold of 200 counts were selected to perform CID experiments. Product ions were
analyzed on the linear ion trap in profile mode. The CID collision energy was automatically
set to 25%. A dynamic exclusion window of 0.5 Da was applied that prevented the same m/z
from being selected for 90 s after its acquisition. Peak lists were generated using Mascot
Distiller version 2.1.0.0 (Matrix Science, Boston, MA). Parameters for MS processing were
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Figure 1. ADAM22 is part of the Kv1 channel protein complex
A) Silver-stained gel of a Kv1.2 immunoprecipitate. The asterisk indicates the Kv1.2 band and
the arrowhead indicates the ADAM22 band. B) Tandem mass spectra obtained from precursor
ions with m/z=629.8495+2 (top) and 719.3796+2 (bottom), corresponding to two peptides
spanning respectively the residues Leu-383 to Lys-393, and Ser-466 to Arg-479, of rat
ADAM22. The observed sequence ions are labeled. Ions corresponding to neutral losses are
marked with stars.
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Figure 2. ADAM22 interacts with Kv1 channels, MAGUKs, and Lgi proteins
A) Immunoblot analysis of co-immunoprecipitation reactions using antibodies against Kv1.2,
PSD-95, PSD-93, ADAM22, and Pan-Neurofascin (PanNF). The input lane corresponds to the
detergent soluble fraction, while the remainder of the protein is shown in the insoluble fraction
(insol). B) Co-transfection of ADAM22 and Kv1.4 in COS7 cells shows no surface clustering.
E–F) Co-transfection of ADAM22, Kv1.4, and PSD-95 (C) or PSD-93 (D) results in the
formation of large surface clusters that can be detected using antibodies directed against an
extracellular epitope of ADAM22. Scale bar = 20 µm.
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