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Abstract

We study coordination in dynamic global games with private learning. Play-
ers choose whether and when to invest irreversibly in a project whose success de-
pends on its quality and the timing of investment. Players gradually learn about
project quality. We identify conditions on temporal incentives under which, in
sufficiently long games, players coordinate on investing whenever doing so is not
dominated. Roughly speaking, this outcome occurs whenever players’ payoffs
are sufficiently tolerant of non-simultaneous coordination. We also identify con-
ditions under which players coordinate on the risk-dominant action. We provide
foundations for these results in terms of higher order beliefs.
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1 Introduction

Coordination problems arise in a wide variety of economic situations. A typical exam-

ple is of a setting where the successful implementation of a risky investment project

depends on whether enough agents invest. Strategic uncertainty is an important factor

determining on which action the players coordinate. When players are uncertain about

other players’ actions, they may favor the safe action — not to invest — as opposed

to the risky action of investing.

The global games framework (Carlsson and van Damme [3], Morris and Shin [15])

has often been used to model strategic uncertainty in coordination problems. In these

games, uncertainty about other players’ actions stems from asymmetric information:

even if a player is herself optimistic about the project, she may believe that other

players could be skeptical and hence may abstain from investment.

The canonical global game features a static framework in which actions are simul-

taneous and the information of each player does not evolve. In this paper, we focus on

dynamic coordination problems in which players may act at different times while they

privately learn about the project. How do such dynamic elements impact the nature

of strategic uncertainty? In these enriched settings, strategic uncertainty hinges not

only on players’ beliefs about their opponents’ current beliefs, but also about their

opponents’ beliefs at other stages of the learning process.

In this paper, we characterize rationalizable behavior in a large class of dynamic

coordination games. We allow payoffs to depend on the timing of each player’s in-

vestment choice in a general way. This enables us to examine the nature of strategic

uncertainty in a rich variety of circumstances. We introduce a generalized higher order

beliefs framework to unify the analysis of this class of problems. Using this framework,

we show that small differences in the way payoffs depend on the timing of actions

can have radical consequences for behavior. This suggests that caution is warranted

when drawing policy implications from the static analysis of fundamentally dynamic

coordination problems.

To illustrate the importance of dynamic considerations for strategic uncertainty,

consider two extreme variations of a specific coordination problem. Two players decide

whether to invest in a project while receiving a sequence of noisy private signals about

the state of the project. The players privately learn the true state asymptotically. The
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project succeeds if the state is good and both players invest. The two variations differ

in how success depends on the timing of players’ investment. In the first variation, the

timing of investment is entirely inflexible — for success, players must both invest in a

specific period. In the other, the timing of investment is entirely flexible — the precise

time at which players invest has no impact on the project’s outcome.

The game with inflexible timing is effectively a static global game. Consequently,

in the limit as the noise in players’ signals vanishes, we know from the global games

literature that players coordinate on the risk-dominant action.

Now consider, instead, the game with flexible timing. For tractability, we assume

that exactly one of the actions, say investment, is irreversible.1 Until they commit

to it, players choose in each period whether to invest. The project succeeds if both

players invest, not necessarily in the same period. Players do not observe each other’s

actions (in Section 8 below, we show how to reinterpret this information structure in

terms of social learning). The choice between early and late investment is driven by a

trade-off: the investment opportunity shrinks over time, but late investors have more

accurate private information.

We show that whenever the state is good, the players are very likely to coordinate

on the irreversible action at the beginning of the process, i.e., both invest in the first

round, as long as they each acquire sufficiently precise information.

If the risk-dominant and irreversible actions do not coincide, the outcomes of the

flexible and inflexible timing games may be significantly different. To understand why

this is the case, suppose that investment is not risk-dominant in the inflexible variant

of the game. This means that a necessary condition for each player to invest is that

she assigns probability greater than 1/2 to the success of the project (conditional on

her own investment).

The problem that precludes coordination on investing in the inflexible game has

its roots in the nature of players’ second-order beliefs: for any p, a player who assigns

probability p to the state being good assigns probability 1/2 to her opponent being

less confident than herself about the state. Therefore, there does not exist a sufficient

confidence level p above which players invest; if such a p existed, then a player with

confidence level p strictly prefers not to invest, for even if she is optimistic about the

1This assumption is concordant with a large literature on irreversible investment under uncertainty,
see, e.g., Dixit and Pindyck [7].
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state, she assigns probability 1/2 to the other player not investing.

In contrast, in the flexible game, the problem with second-order beliefs disappears.

In this case, each player asks a much less demanding question about her opponent’s

belief and behavior, namely, whether her opponent attains the requisite belief at some

point over the course of the game. As a result, there is a sufficient confidence level p

above which players invest. Suppose a type assigns probability p to the state being

good. If the state is indeed good then it is almost inevitable that the opponent shares

this belief at least once during a sufficiently long learning process. Hence if a type

assigns a high probability to the state being good, she also assigns a high (albeit

slightly smaller) probability to the opponent investing during the game. We show later

in the paper that, although a trace of strategic uncertainty remains in the flexible

game, it does not undermine coordination on investing.

The flexible and inflexible games represent extremes of the range of games we

consider. Our higher order beliefs framework may be applied to games with more

realistic preferences over the timing of actions taken by one’s opponent. Section 3

introduces two such games. In the first of these games, each player prefers not to

invest before the other player invests: there are small losses for being (exclusively) the

first to invest. In the second, each player prefers to invest one period before the other

player invests: there is a small reward for being (exclusively) the first to invest. We

show that players coordinate on the risk-dominant action in the first game. In contrast,

when learning is sufficiently fast, players coordinate on the irreversible action in the

second game. Thus small changes in timing preferences can have dramatic effects on

outcomes.

The analysis of higher order beliefs has proved to be useful in explaining strate-

gic behavior in static coordination games. As discussed above, in order to invest, a

first-order belief that the project is sound is not sufficient. Players must also have a suf-

ficient second-order belief that other players are sufficiently sure about the soundness

of the project, a sufficient third-order belief, etc. In fact, players coordinate on invest-

ment only if they achieve a sufficient degree of approximate common knowledge that

the project is sound. However, for the information structure of the canonical global

game, approximate common knowledge of the project’s quality is never attained. Thus

strategic uncertainty may preclude coordination on investment in the inflexible game.

Building on the standard notion of approximate common knowledge due to Mon-

4



derer and Samet [13], we construct a generalization that is suitable for characterizing

behavior in dynamic coordination games. This allows us to unify the analysis of a

wide class of dynamic games and to highlight the role of higher order beliefs. Our

generalization lies in allowing the required beliefs to be attained at different times. For

each game we study, we utilize a particular version of the generalized belief operators

that reflects preferences over the timing of investment in that game.

1.1 Literature Review

The present paper bears a general connection to models of information dynamics in

multi-stage global games. One strand of the literature (e.g., Chamley [4], Angeletos,

Hellwig and Pavan [2]) focuses on the robustness of equilibrium uniqueness in global

games when learning is based on endogenously generated public signals. This paper

belongs to the other strand that focuses on settings with pure private information.

This strand originated in the work of Dasgupta [6] who documents the effect of private

learning on coordination in two-stage global games.2 We explain behavior in a related

dynamic framework in terms of higher order beliefs.

Our generalization of approximate common knowledge builds on the work of Mon-

derer and Samet [13] and Morris and Shin [14]. The analysis is also related to the work

of Cripps, Ely, Mailath, and Samuelson [5] (henceforth CEMS), who delineate general

conditions under which agents asymptotically attain approximate common knowledge

via private learning. The analysis of CEMS is relevant in situations which can be di-

vided into two distinct phases: agents learn privately in the first phase, and attempt to

coordinate simultaneously in the second. We study situations in which those two phases

are merged together: players attempt to coordinate while they privately learn about

payoffs. Both papers study whether private learning leads to approximate common

knowledge; however, the relevant form of approximate common knowledge depends on

the intertemporal incentives in the game. CEMS study standard common beliefs as

defined in Monderer and Samet [13], while we study a more general form of common

beliefs suitable when coordination need not be simultaneous. The two concepts turn

out to have very different properties. In our model, private learning fails to deliver

common knowledge in the standard sense, but succeeds in delivering a relaxed form

2Another example of a dynamic global game with private learning can be found in Heidhues and
Melissas [11].
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of common beliefs. This explains why coordination failure arises in the game with

inflexible timing but does not arise in the game with flexible timing.3

Gale [9] provides an elegant analysis of the extent of inefficient delay in dynamic

coordination games with complete information. He shows that inefficient delay can

be eliminated when the period length becomes very small. Hörner [12] and Xue [17]

similarly obtain efficient coordination in incomplete information games with observable

irreversible actions. While in some settings our main result implies delay-free coordi-

nation on investing in the limit as private signals become accurate, and thus bears a

resemblance to Gale’s, the forces driving the results are very different. Gale’s result

builds on backward induction based on the observability of past actions in a game

of perfect information, while we consider an asymmetric information setting in which

players do not observe each others’ actions. When the efficient action is irreversible,

Gale’s observability assumption favors efficient coordination by eliminating strategic

uncertainty once a player has chosen the irreversible action. Our results indicate that

coordination on the irreversible action does not require observability per se; it may

arise even in games with large numbers of players where perfect observation of actions

is not feasible. In Section 8 below, we describe how to reinterpret our model as one of

noisy social learning in a large population.

2 Example

In order to highlight the key ideas of the general case, we devote this section to an

analysis of the flexible and inflexible games. Our aim at this point is to cover most of

the insights without getting too deeply into technicalities. Thus we postpone discussion

of the solution concept (which is rationalizability). We also postpone the introduction

of our general higher order beliefs framework, and the description of more realistic

(but also more complex) applications. The two main results of this section have more

general counterparts in Propositions 3 and 5.

We start by describing parts of the setup that are common to both games. Two

players participate in a joint investment game ΓT with T periods, where T ∈ N. The

3Ely [8] informally discusses a notion of common belief relevant for non-simultaneous coordination,
but only to contrast it to the standard common belief which is the relevant concept for the problems
he considers.
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action of player i in period t ∈ {1, . . . , T} is denoted by ait ∈ {0, 1}; we interpret action

1 as “invest”, and 0 as “wait”. Investment is irreversible. To keep notation simple,

players choose an action in each round but action choices become payoff-irrelevant

after a player has invested once. Whenever we refer to an action choice, we implicitly

condition on the player not having invested in an earlier round.

The payoffs in the game depend on the action profile and the value of a fundamental

parameter θ. The fundamental θ is drawn before the first round from an improper

uniform distribution on Θ = R, and remains fixed over all rounds.

The players do not observe θ directly, but receive private noisy signals of θ in every

round. Specifically, each player i receives a signal yit = θ + νtεit in round t, where the

errors εit are standard normal random variables that are independent across players

and rounds. The standard errors νt are strictly positive for all t, and the sequence

(νt)
∞
t=1 is fixed throughout independent of the value of T , which we vary. Players do

not observe each other’s actions.4

Players form beliefs about θ in each period through Bayesian updating. Conditional

on signals (yis)
t
s=1, player i believes that θ is distributed as N(xit, σ

2
t ), where

xit =
t∑

s=1

yis
σ2
t

ν2
s

, and
1

σ2
t

=
t∑

s=1

1

ν2
s

.

We refer to xit as the cumulative signal, and to σt as the cumulative standard error.

We assume throughout that each player’s strategy depends, in each period, only on

her cumulative signal, not on the full sequence of signals to date.

We assume that players asymptotically privately learn the true fundamental, that

is, limt→∞ σt = 0. Note that, since each νt is strictly positive, each cumulative standard

error σt is also strictly positive. Thus even though players learn the true fundamental

in the limit over all periods, some uncertainty remains in each round.5

The outcome of the project is binary: success or failure. Which outcome occurs

is determined at the end of the game by the fundamental θ and the actions of the

players. For θ ≤ 0 or θ ≥ 1, the project fails or succeeds, respectively, regardless of

4However, as we demonstrate in Section 8, under certain circumstances, the signals yit can be
thought to arise from noisy social learning based on the observation of past actions.

5Note that νt is not required to converge to 0. For instance, players asymptotically learn θ if νt is
constant.
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the players’ actions; we call these intervals the dominance regions. For θ ∈ (0, 1), the

project succeeds if and only if both players invest by round T , possibly at different

times.

We compare two versions of the game: the inflexible and the flexible one. In the

inflexible game, the players choose an action only at round T . In the flexible game the

players can (irreversibly) invest in any period t ∈ {1, . . . , T}.
We assume the following properties of the best response correspondences.

Assumption. There exist some p, p ∈ (0, 1) such that,

• (necessary condition for investing) in the inflexible game, each player prefers

to invest only if she assigns probability greater than p to the success of the project

(provided she invests).

• (sufficient condition for investing) in the flexible game, each player prefers to

invests in period t whenever she assigns probability greater than p to the success

of the project (provided she invests).

One example in which the assumption holds is given by the following payoffs: never

investing yields a payoff of 0; investing in round t yields δtb (respectively −δtc) if the

project succeeds (respectively fails). The parameters b and c are both strictly positive,

and δ ∈ (0, 1) captures the rate of “shrinking of the investment opportunity.” It is easy

to verify that the trade-off between investing early when the investment opportunity is

large and waiting for additional information implies the above best-response property

in the flexible game with p = c
(1−δ)b+c . In the inflexible game, the property holds with

p = c
b+c

.6

First consider the inflexible game. The following proposition implies that players

coordinate on investment only if they believe that it is the dominant action (i.e. that

θ > 1).

Proposition 1. Suppose p > 1
2
. There exists q ∈ (0, 1) such that each player invests

in the inflexible game only if she q-believes that θ > 1.

6Note that the irreversible action in this example corresponds to the efficient outcome for posi-
tive θ. However, efficiency per se plays no role in the analysis. To see this, consider the following
modification. In addition to the above payoffs, each player incurs a penalty of 2b whenever her
opponent invests. Since this modification does not affect the best response correspondence, rational-
izable behavior remains the same while coordination on investing is now Pareto dominated by mutual
non-participation.
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This result can be, in various forms, found in the extant literature on static global

games (see Morris and Shin [15]), and so we only briefly describe the intuition here.

Suppose that the two players use symmetric strategies characterized by a threshold

cumulative signal x∗ at time T above which each invests and below which each does not

invest. A player who receives exactly the threshold signal must be indifferent between

investing and not investing. The threshold type, regardless of the precision of her

private signal, suffers from strategic uncertainty. By symmetry, she assigns probability

exactly 1/2 to her opponent receiving a signal above x∗, and hence probability 1/2 to

her opponent investing. Since p > 1/2, not investing is a strict best response unless

the player assigns high enough probability to θ > 1.

In contrast to the previous proposition, for sufficiently large T , players coordinate

on the irreversible action in the flexible game whenever they believe that this action is

not dominated (i.e. that θ > 0).

Proposition 2. For any q ∈ (p, 1) there exists some T such that for any T > T , each

player invests in any period t of the flexible game of length T whenever she q-believes

at t that θ > 0.

Propositions 1 and 2 imply a stark difference between the coordination outcomes

across the two games. Consider the limit in which players receive increasingly precise

signals in all periods; that is, multiply every cumulative standard error by a common

scaling factor σ and consider the limit as σ → 0. Consider a particular realization of

θ ∈ (0, 1), where neither action is dominant. The values of q in Proposition 1 and T

in Proposition 2 are uniform across σ. Thus, in the limit, in the flexible game, both

players irreversibly invest immediately in round 1. In the inflexible game, players do

not invest.

As discussed in the introduction, the stark difference in behavior across the two

games is a caused by a subtle difference in the nature of strategic uncertainty. In the

inflexible game, a player who believes that the project is sound may doubt whether

her opponent shares this belief. In the flexible game, this problem with second-order

uncertainty is mitigated. In the remainder of this section we discuss the lack of strategic

uncertainty in the flexible game in more detail.

Before proving Proposition 2, we briefly outline some notation and formulate a core

lemma that establishes the lack of strategic uncertainty in the flexible game. We then
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use a contagion argument to show that the lack of strategic uncertainty implies the

result.

For any q ∈ (0, 1) let Eq
it(θ
∗) denote the event that player i q-believes θ > θ∗ in

period t; that is, that xit ≥ θ∗+σtΦ
−1(q), where Φ is the standard normal distribution

function. Denote by

lqT (θ, θ∗) = Pr

(
T⋃
t=1

Eq
it(θ
∗)

∣∣∣∣∣ θ
)

the probability that, when the realized fundamental is θ, the player q-believes in at

least one round up to T that the fundamental exceeds θ∗. One can show that the

function lqT (θ, θ∗) is continuous and increasing in θ.

Let lq(θ, θ∗) = limT→∞ l
q
T (θ, θ∗). This limit exists because lqT (θ, θ∗) is non-decreasing

in T and bounded from above by 1. The following lemma is crucial for our claim that

strategic uncertainty is mitigated in the flexible game.

Lemma 1. For each q ∈ (0, 1) and each θ∗, lq(θ∗, θ∗) = 1 and lq(θ, θ∗) is continuous

in θ at θ∗.

When θ∗ = 0 the lemma implies that, as T →∞, the probability that each player

q-believes that the fundamental is positive at least once during the game converges to

1 uniformly across all θ ≥ 0. Thus, in a relaxed sense, the players do not suffer from

second-order uncertainty: if a player believes that the fundamental is positive then

she also believes that her opponent shares this belief at least once over the course of

a sufficiently long game. Compare this to the inflexible setup, in which a player may

believe that the fundamental is good but still doubt whether the opponent shares this

belief. At a formal level, the relevant object in the inflexible game that corresponds to

lqT (θ∗, θ∗) is Pr (Eq
iT (θ∗)| θ∗). Unlike lqT (θ∗, θ∗), this expression does not tend to 1 as T

goes to infinity.

The proof of the lemma is based on the assumption that players asymptotically learn

the fundamental. Conditional on the fundamental being equal to θ∗, the probability

that a player does not q-believe θ > θ∗ is q in each round, but with the complication

that the posterior probabilities Pr (θ > θ∗ |xit ) are correlated across periods. We show,

roughly, that beliefs across sufficiently distant rounds t and t′ are approximately in-

dependent. The intuition is that if the amount of information that a player receives

between t and t′ is large relative to what she knew at t, then the information at t
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has only a negligible impact at t′. For long games, we can choose a long subsequence

of rounds such that all rounds in the subsequence are sufficiently distant. Hence the

probability that the player fails to q-believe θ > θ∗ in all of these rounds approaches 0

as the length of the subsequence grows large.7

Proof of Proposition 2. Fix q ∈ (p, 1) throughout. Let S(θ) denote the following state-

ment:

There exists some T such that for every T > T , each player in the game

ΓT invests at time t if she q-believes at t that θ ≥ θ.

The statement clearly holds for θ ≥ 1. We establish the following contagion step. If for

some θ′ ≥ 0, the statement S(θ) holds for all θ > θ′, then S(θ′) holds, and, moreover,

if θ′ > 0, then there exists some ε > 0 such that the statement S(θ) holds for all

θ > θ′ − ε. Let θ′′ denote the infimum of those θ for which S(θ) holds. We must have

θ′′ = 0, for otherwise taking θ′ = θ′′ contradicts the contagion step. It follows that

S(θ) holds for all θ > 0 and hence S(0) holds, as needed.

It remains to establish the contagion step. Suppose that, for some θ′ ≥ 0, S(θ)

holds for all θ > θ′. Fix some r ∈ (p/q, 1). Lemma 1 implies that there exists θ > θ′

such that

lq (θ′, θ) > r.

Hence there exists some T ′ such that

lqT ′ (θ
′, θ) > r.

Since the function lqT ′(θ, θ
∗) is continuous in θ, there exists some ε > 0 such that

lqT ′ (θ
′ − ε, θ) > r.

Since lqT (θ, θ∗) is increasing in T and θ, we have

lqT (θ, θ) > r

for all T > T ′ and θ > θ′ − ε.
7We are grateful to an anonymous referee for providing a particulary instructive proof formalizing

this intuition.
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Suppose the statement S(θ) holds with T = T ′′. Consider a game ΓT with T >

max {T ′′, T ′}. Suppose, for some t, player i q-believes at t that θ > max{0, θ′ − ε}.
Since T > T ′, the inequality θ > θ′ − ε implies that lqT (θ, θ) > r. Since T > T ′′, by

hypothesis, player −i invests in any period at which she q-believes that θ > θ. Thus,

conditional on θ > θ∗ − ε, the probability that player −i invests exceeds r. Therefore,

at t, player i attaches probability at least rq to the event that the project succeeds.

Since rq > p, this implies that investing is the best response for player i at t.

3 Additional Games

Before developing a general higher order beliefs framework for solving a large class of

dynamic coordination games, we outline two additional games exhibiting a mixture of

features from the inflexible and flexible games. In these additional games, although

both players do not have to invest at the same time for the project to succeed, the

relative timing of their investment affects their payoffs. In the first of these games,

when θ ∈ (0, 1), each player prefers not to invest before the other player invests: there

are small losses for being (exclusively) the first to invest. In the second, each player

prefers to invest one period before the other player invests: there is a small reward for

being (exclusively) the first to invest.

The players, action sets, and information structures remain the same and invest-

ment continues to be irreversible as in Section 2; only the payoffs differ. In both games

players receive flow payoffs that depend on whether the other player has invested. The

rules for success of the project are the same as in Section 2 but success is determined

during the coordination process instead of at the end.

Recalling that investing is irreversible, let âit = max{ai1, . . . , ait} indicate whether

player i has invested up to t (âit differs from ait only for convenience; we assume that

once a player has committed to investing, her subsequent actions are payoff-irrelevant).

Game 1 (in which neither player wants to invest before the other). Let st be a success

indicator at round t, defined by

st =

1 if âit = â−it = 1 and θ > 0, or if θ ≥ 1,

0 otherwise.
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One may think of st as indicating whether the project has succeeded if we take into

account only actions up to t. Each player i maximizes the discounted sum

1

1− δ

T∑
t=1

δtuit

of flow payoffs uit, where

uit =


0 if âit = 0,

b if âit = 1 and st = 1,

−c if âit = 1 and st = 0.

One may readily verify that, in Game 1, investing is a best response for player i

at time t only if she p-believes at t that the project will succeed at t (if she invests),

where p = c
b+c

.

Game 2 (in which each player wants to invest before the other). This game is identical

to the previous one except that players begin to receive the payoff b one period before

the project succeeds. That is, flow payoffs are defined by

uit =


0 if âit = 0,

b if âit = 1, and st+1 = 1,

−c if âit = 1 and st+1 = 0,

where sT+1 is defined to be equal to sT .

Let p = δb+c
b+c

. In Game 2, investing is a best response for player i at time t if she

p-believes at t that (if she invests) the project will succeed at or before time t+ 1.

We show in Section 7 that behavior in Game 1 is the same (for large T and small

σ) as in the inflexible game of Section 2: players choose the risk-dominant action. In

contrast, when learning is sufficiently fast, the small incentive to invest just before the

opponent leads to coordination on the irreversible action in Game 2, exactly as in the

flexible game (again for large T and small σ).
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4 General Game and the Solution Concept

Throughout the remainder of the paper, we retain the same set of players, and same

information and action structure as described in Section 2, but allow for more general

payoffs. We restrict attention to symmetric, common value games in which payoffs

depend only on θ and chosen actions, and not on players’ signals. We focus on asymp-

totic results characterizing behavior in games with many rounds and small noise. We

denote by Γ = (ΓT (σ))T,σ a class of games with varying noise-scaling factor σ > 0 and

number of rounds T ∈ N. The payoff functions may vary across T but not across σ.

We refer to each pair (i, t) as an agent. The type of agent (i, t), denoted by xit ∈
Xit = R, consists of player i’s cumulative signal at time t. A strategy for player i is a

collection si = {sit}Tt=1 of measurable functions sit : Xit −→ {0, 1}. Let Ui (a, si, s−i|xit)
denote the expected payoff for type xit choosing action a conditional on player i having

chosen the reversible action 0 in every period 1, . . . , t − 1 and following strategy si in

every period t+ 1, . . . , T . Letting A denote the set of strategies for each player, define

the (interim8) best response correspondence BR(·) over subsets S ⊆ A by

BR(S) =

{
si | ∀xit ∃s−i ∈ S such that sit (xit) ∈ argmax

a∈{0,1}
Ui (a, si, s−i|xit)

}
.

Note that, since we restrict our attention to symmetric games, we do not distinguish

between the best response correspondences of the two players. The set of (interim)

rationalizable strategies in game ΓT (σ) is defined to be
⋂∞
n=1 BRn(A). We say that

action a is rationalizable for xit if there exists a rationalizable strategy si such that

si(xit) = a.

For simplicity, the definition of strategies above implicitly makes two related as-

sumptions: players do not use mixed strategies and their strategies depend only on

their cumulative signal, not on the full history of signals they have received. Neither

of these assumptions is important for our results. For the former, since each type has

only two actions, any action that is never a best response for some type against a set

of pure strategies cannot be a best response against a mixture of those pure strate-

8“Interim” refers to the feature that every type of every agent chooses an optimal action given
its beliefs about types of other agents (as opposed, for example, to every player choosing an optimal
strategy at the ex ante stage). Since we consider only interim best responses, we omit the term
“interim” throughout.
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gies. Therefore, the set of rationalizable mixed strategies would consist precisely of

all distributions over the set of rationalizable pure strategies (as defined above). Sim-

ilarly, conditioning strategies on full histories of signals is payoff-equivalent to some

mixed strategy that depends only on cumulative signals. For any type with a unique

rationalizable action, allowing such strategies would have no effect.

Notions of rationalizability in dynamic games are typically more complicated than

the one employed here. The main complication is how players revise conjectures about

their opponents’ strategies that are contradicted by their opponents’ actions (see, e.g.,

Pearce [16]). This issue does not arise in our model because actions are unobservable.

5 Generalized Higher Order Beliefs

It is well known that approximate common knowledge plays an important role in de-

termining the outcome of static coordination games. The current section develops a

generalization of the notion of approximate common knowledge that is relevant for a

large class of dynamic coordination games.

5.1 Preliminary notation and definitions

The ordinary state space is Ω = Θ × (×itXit) (we omit dependence on T from the

notation here and elsewhere). Let ΣΩ denote the Borel σ-algebra on Ω (endowed with

the usual Euclidean topology) and ΣΘ the Borel σ-algebra on Θ. An element of ΣΩ

is an ordinary event. Note that the posterior beliefs of each agent (i, t) over ordinary

events are well-defined and continuous in the uniform topology as the type xit varies.

To conveniently describe strategy profiles, we follow Morris and Shin [14] and intro-

duce compound events. A compound event F is a vector (Fit)it of length 2T in which

each component Fit is a Borel-measurable subset of the type space Xit. We identify

each compound event F = (Fit)it with the strategy profile in which each agent (i, t)

invests if and only if xit ∈ Fit. Let S denote the class of all compound events.

For two compound events F, F ′ ∈ S, we write F ⊆ F ′ if Fit ⊆ F ′it for each (i, t).

We define binary operations ∧ and ∨ by

F ∧ F ′ = (Fit ∩ F ′it)it and F ∨ F ′ = (Fit ∪ F ′it)it .

15



Negation of a compound event is defined as ¬F =
(
Fit
)
it
, where Fit denotes the

complement of the set Fit. Note that the class of compound events S is closed under

the operations ∧, ∨, and ¬. We abuse notation by writing ∅ for the empty compound

event defined as the negation of X = (Xit)it.

For each agent (i, t) and p ∈ [0, 1], define the belief operator Bp
it : ΣΩ −→ 2Xit by

Bp
it(E) = {xit ∈ Xit : Pr (E|xit) ≥ p} .

Thus, Bp
it(E) is the set of types of agent (i, t) that p-believe the ordinary event E.

Let Bp : [ΣΩ]2T −→ S denote the vector of belief operators given by

[Bp(E)]it = Bp
it (Eit) ,

where E = (Eit)it is a vector of ordinary events Eit ∈ ΣΩ. Thus Bp(E) is a strategy

profile under which agent (i, t) invests if and only if she p-believes Eit.

5.2 Necessary and sufficient conditions for investment

We now introduce a formalism describing conditions on the timing of one’s opponent’s

investment under which a player prefers to invest. These conditions, describing many

varieties of dynamic coordination games, are the primitives of our model. In the next

section, we connect these conditions on timing of investment to the belief operators Bp
it.

We develop generalized beliefs that are behaviorally relevant in our class of dynamic

games.

Let U = [1,∞) denote the upper dominance region, and G = (0,∞) denote the set

of “good” fundamentals . Roughly, we assume that each player prefers to invest if she

believes either that the fundamental is very good (θ ∈ U), or that the fundamental is

good and the timing of the opponent’s investment satisfies certain conditions.

These conditions make use of operators OT
it : S −→ ΣΩ that map strategy profiles

to ordinary events. We denote by OT =
(
OT
it

)
it

the vector of these operators. Finally,

we denote by O =
(
OT
)
T

the sequence of operators OT . Note that O is independent

of σ. When there is no risk of confusion, we sometimes omit dependence of OT and

OT
it on T . Let p ∈ [0, 1].

Definition 1. We say that (O, p) describes sufficient conditions for investment
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in a class of games Γ if for any strategy profile F , in every game ΓT (σ), action 1 is

the unique best response for type xit whenever

xit ∈ Bp
it

([
G ∩OT

it(F )
]
∪ U

)
. (1)

Definition 2. We say that (O, p) describes necessary conditions for invest-

ment in a class of games Γ if for any strategy profile F , in every game ΓT (σ), action

1 is a best response for type xit only if

xit ∈ Bp
it

([
G ∩OT

it(F )
]
∪ U

)
. (2)

Since we focus on symmetric games, we assume that Oit is symmetric across the

players. To illustrate the definitions, consider the games in Sections 2 and 3.9

• In the flexible game of Section 2, (O, p) describes sufficient conditions for invest-

ment with

Oit(F ) =
T⋃
s=1

F−is

and p = p (as defined in Section 2).

• In Game 1, (O, p) describes necessary conditions for investment with

Oit(F ) =
t⋃

s=1

F−is

and p = c
b+c

.

• In Game 2, (O, p) describes sufficient conditions for investment with

Oit(F ) =
t+1⋃
s=1

F−is,

with the convention that F−i,T+1 = ∅, and p = δb+c
b+c

.

9In each case, we abuse notation by identifying measurable subsets Fit ⊆ Xit with the ordinary
events consisting of all states whose it-coordinate lies in Fit.
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We restrict attention to sufficient or necessary conditions for investment satisfying

four natural properties that are assumed to hold throughout the paper.

Assumption 1. For any F and F ′ such that F−is = F ′−is for all s, OT
it(F ) = OT

it(F
′)

for all T and (i, t).

Assumption 1 states that conditions for investment do not depend on the player’s own

strategy.

Assumption 2. For each F and F ′ such that F ⊆ F ′, OT
it(F ) ⊆ OT

it(F
′) for all T and

(i, t).

Assumption 2 states that if the conditions for investment are satisfied, then they con-

tinue to be satisfied if the opponent invests on a larger set of types.10

Definition 3. Let D and R be classes of subsets of partially ordered sets. An operator

H : D −→ R is point-monotone if for every upper contour set D ∈ D, H(D) is also

an upper contour set.

Assumption 3. The operator OT
it is point-monotone for each T and (i, t).

Assumption 3 is a relaxed version of the state monotonicity typically assumed in the

global games literature.

The final assumption requires that O satisfy translation and scale invariance, en-

suring that conditions for investment are consistent as σ varies and across translations

of strategy profiles.

Assumption 4. For each F ∈ S, ν ∈ (0, 1), x ∈ X, and T , OT (νF +x) = νOTF +x.

5.3 Generalized belief operators

We characterize rationalizable behavior using a generalization of the common beliefs

introduced by Monderer and Samet [13]. In particular, we formulate conditions for

rationalizability of investment in terms of generalized common belief that the funda-

mental is good (θ > 0). To that end, it is useful to introduce a modification of the

10This assumption is weaker than the usual action monotonicity assumption in static global games
that requires the best response correspondence be non-decreasing in the opponent’s strategy. Assump-
tion 2 requires monotonicity only of a lower or upper bound of the best response correspondence.
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operators Bp that captures both beliefs about the fundamental θ and about the timing

of one’s opponent’s investment.

Given a pair (O, p), define the generalized belief operator Bp : ΣΘ ∪ S −→ S by

Bp(F ) =

Bp(F ) if F ∈ ΣΘ,

Bp(OTF ) if F ∈ S.

Generalized belief Bp(F ) is a strategy profile: it is a vector with 2T components, one

for each agent (i, t), where each is a set Bpit(F ) of types of agent (i, t). If F ∈ ΣΘ is an

event describing θ then Bpit(F ) is the set of types of (i, t) that p-believe F . If F ∈ S is

a strategy profile then Bpit(F ) is the set of types of (i, t) that, given F , p-believe that

the timing of their opponent’s investment satisfies the conditions described by O.11

The following definition generalizes Monderer and Samet’s notion of common be-

liefs.

Definition 4. For any operator K : S ′ −→ S with S ⊆ S ′, let C1
K(F ) = K(F ),

and recursively define Cn
K for n = 2, 3, . . . by Cn

K(F ) = K(Cn−1
K (F )) ∧ Cn−1

K (F ). The

generalized common belief operator CK is defined by

CK(F ) =
∞∧
n=1

Cn
K(F ).

To intuitively understand the relationship between the generalized common belief

operator and Monderer and Samet’s notion of common p-belief, recall that (standard)

common p-belief of an event G refers to the event that both players p-believe G, both

p-believe that both p-believe G, and so on. Since the standard notion focuses on fixed

beliefs for each player, timing of beliefs is not explicitly considered.

In static environments, generalized common belief corresponds to the standard

notion. Suppose that T = 1 and for each strategy profile F , let Oi1(F ) = F−i1 be the

event that the opponent invests. Then CBp may be identified with the common p-belief

operator of Monderer and Samet.

The crucial difference between generalized and standard common beliefs is that

generalized common belief allows the timing of beliefs to vary across players and across

11We suppress the dependence of Bp on O, T and σ from the notation, and we abuse notation by
identifying F ∈ ΣΘ with the ordinary event F ×it Xit.
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orders of belief in dynamic setups. For example, consider the generalized belief operator

with Oit(F ) =
⋃T
s=1 F−is, which corresponds to our flexible game. Generalized common

belief is the event that both players eventually p-believe G, both eventually p-believe

that both eventually p-believe G, and so on. More precisely, generalized common belief

CBp(G) is a vector of length 2T with components [CBp(G)]it where the component

indexed by it is the event that, at period t, player i p-believes

1. G, and

2. that there exists t′ such that −i p-believes G at t′, etc.

The essential difference between this and the hierarchy of beliefs in the standard case is

that, at each order, the player is required only to believe that the other player attains

the preceding order in some round.

For this particular O, the times t, t′, and those from higher orders are unrelated.

This corresponds to the feature of the flexible game that the specific timing of −i’s
investment is irrelevant to player i. For more restrictive conditions O, corresponding

to games in which the timing of −i’s investment is relevant to i, the timing of beliefs

in the above list could be connected.

Next we define an operator, called the expansion operator, that is similar to the

generalized common belief operator except with componentwise unions instead of in-

tersections. Our use of the two operators is complementary; we use the generalized

common belief operator to identify necessary conditions and the expansion operator to

identify sufficient conditions for coordination on the irreversible action.

Definition 5. For any operator K : S ′ −→ S with S ⊆ S ′, let E1
K(F ) = K(F ),

and recursively define En
K for n = 2, 3, . . . by En

K(F ) = K(En−1
K (F )) ∨ En−1

K (F ). The

expansion operator EK is defined by

EK(F ) =
∞∨
n=1

En
K(F ).

6 Results

In order to characterize coordination outcomes in terms of generalized higher order

beliefs, we first define two concepts describing rationalizable behavior.
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In the inflexible game, players turn out to be “strategically pessimistic” in the sense

that they believe that the opponent does not invest unless investing is dominant. In

the flexible game, players believe that the opponent invests unless investing is domi-

nated, and are thus “strategically optimistic.” The following definitions formalize these

notions.

Definition 6. There is strategic pessimism in a class of games Γ if for some T ,

for each T > T , there exist q ∈ (0, 1) and σ > 0 such that for all σ < σ, investing is

rationalizable in ΓT (σ) for type xit only if

xit ∈ Bq
it(U).

Definition 7. There is strategic optimism in a class of games Γ if for some T , for

each T > T , there exist q ∈ (0, 1) and σ > 0 such that for all σ < σ, investing is the

unique rationalizable action in ΓT (σ) for type xit whenever

xit ∈ Bq
it(G).

Note that in both of the preceding definitions, q may depend on T but not on σ.

Strategic optimism and pessimism are closely related to the coordination outcome.

If there is strategic pessimism, then players fail to coordinate on investing for funda-

mentals bounded away from the upper dominance region U in games with many rounds

and precise signals. Similarly, if there is strategic optimism, then players coordinate

on investing without delay for fundamentals bounded away from the lower dominance

region Θ \G in games with many rounds and precise signals.

The next proposition characterizes rationalizability of investment using the gener-

alized common belief operator CBp and the expansion operator EBp . The first part

generalizes the well known necessary condition for rationalizability of investment in

static coordination games (see, for example, Morris and Shin 2003). The second part

is derived from the first using a duality argument.

Theorem 1. 1. Suppose that (O, p) describes necessary conditions for investment

in a class of games Γ. Suppose moreover that for some p′ < p and T , for each

T > T there exists σ > 0 such that CBp′ (G) = ∅ for all σ < σ. Then there is

strategic pessimism in Γ.
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2. Suppose that (O, p) describes sufficient conditions for investment in a class of

games Γ. Suppose moreover that for some p′ > p and T , for each T > T there

exists σ > 0 such that EBp′ (U) = X for all σ < σ. Then there is strategic

optimism in Γ.

The following result describes a condition for strategic optimism that is easier to

apply than that of part 2 of Theorem 1.

Theorem 2. Suppose that (O, p) describes sufficient conditions for investment in a

class of games Γ. Suppose moreover that for some p′ > p, q ∈ (0, 1), and T , for each

T > T there exists σ such that for all σ < σ and all θ∗ ∈ R, we have

Bq(θ ≥ θ∗) ⊆ Bp′ (Bq(θ ≥ θ∗)) . (3)

Then there is strategic optimism in Γ.

The discerning reader may notice that Theorem 2 generalizes the contagion argu-

ment from the introductory example. There the event that both players eventually

q-believe θ ≥ θ∗ is evident in a non-simultaneous sense (in sufficiently long games) —

whenever the event holds each player believes it at some time. As shown in Section

2, this observation implies the contagion step: if investment is rationalizable whenever

players believe θ ≥ θ∗ then it is also rationalizable whenever players believe θ ≥ θ∗− ε.
Theorem 2 states that if Bq(θ ≥ θ∗) is evident in a generalized sense that reflects

sufficient conditions for investment (O, p) then strategic optimism arises. The proof is

based on a similar contagion argument.

One can formulate conditions for strategic pessimism symmetric to Theorem 2 based

on contagion of not investing from the lower dominance region in games with necessary

conditions for investment. We omit such a result because it is not required in the next

section where we apply the results of this section to particular games.

7 Applications

In this section we apply the preceding theorems to the games introduced in Sections 2

and 3 above. For each game, we show that there is strategic optimism or pessimism.

We start with two games that exhibit strategic optimism, followed by two games with

strategic pessimism.
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7.1 The flexible game

The next proposition essentially replicates Proposition 2 to illustrate the general method

of Section 6.

Proposition 3. Suppose that (O, p) describes sufficient conditions for investment in

a class of games Γ, where

OT
it(F ) =

T⋃
s=1

F−is (4)

and p ∈ (0, 1). Then there is strategic optimism in Γ.

Recall that if p = p as defined in Section 2, then this pair (O, p) describes sufficient

conditions for investment in the flexible game.

Proof. We show that for each p′ there exist q and T such that for each T > T and all

σ > 0,

Bq(θ ≥ θ∗) ⊆ Bp′ (Bq(θ ≥ θ∗)) .

Theorem 2 then implies strategic optimism in Γ.

By Lemma 1, we have (for any (i, t))

lim
T→∞

Pr
(
OT
itB

q(θ ≥ θ∗) | θ∗
)

= 1.

Choose p′ > p, q > p′, and T such that

Pr
(
OT
itB

q(θ ≥ θ∗) | θ∗
)
≥ p′

q

for all T > T and σ > 0, which is possible since the given probability is independent

of σ. Every type xit ∈ Bq(θ ≥ θ∗) assigns probability at least q × p′

q
= p′ to the event

OT
itB

q(θ ≥ θ∗), as needed.

7.2 Game 2

The following proposition shows that, if learning is sufficiently quick, there is strategic

optimism in Game 2 of Section 3.

23



Proposition 4. Suppose that (O, p) describes sufficient conditions for investment in

a class of games Γ, where

OT
it(F ) =

t+1⋃
s=1

F−is, (5)

with the convention that F−i,T+1 = ∅, and p ∈ (0, 1). If there exists τ ∈ (0, 1) such that

σt+1 ≤ τσt for each t, then there is strategic optimism in Γ.

For p = δb+c
b+c

, this pair (O, p) describes sufficient conditions for investment in Game

2.

Proof. We again show that for each p′ there exist q and T such that for each T > T

and σ > 0,

Bq(θ ≥ θ∗) ⊆ Bp′ (Bq(θ ≥ θ∗)) . (6)

Theorem 2 then implies strategic optimism in the class Γ.

We use the following lemma to prove (6).

Lemma 2. Suppose there exists τ ∈ (0, 1) such that σt+1 ≤ τσt for every t. Then for

each p′ ∈ (0, 1), there exists q ∈ (0, 1) such that

Bq
it(θ ≥ θ∗) ⊆ Bp′

it

(
Bq
−i,t+1(θ ≥ θ∗)

)
for all t = 1, . . . , T − 1.

Lemma 2 states that if a player believes θ ≥ θ∗, then she also believes that her

opponent will believe θ ≥ θ∗ in the next period. This property implies that the first-

order belief Bq(θ ≥ θ∗) is evident in a generalized sense reflecting sufficient conditions

for investment in this class of games.

Given p′, let q be as in Lemma 2. The lemma implies that

Bq
it(θ ≥ θ∗) ⊆ Bp′

it

(
OT
itB

q(θ ≥ θ∗)
)

for each t = 1, . . . , T − 1 since Bq
−i,t+1(θ ≥ θ∗) ⊆ OT

itB
q(θ ≥ θ∗).

All that remains is to show that in the last round T ,

Bq
iT (θ ≥ θ∗) ⊆ Bp′

iT

(
OT
iTB

q(θ ≥ θ∗)
)

24



when T is sufficiently large. This last containment follows from the proof of Proposition

3 since OT
i,T =

⋃T
s=1 F−is is identical to the corresponding operator for the flexible

game.

7.3 Inflexible game

The following proposition shows that there is strategic pessimism in the inflexible game

of Section 2, in which players invest only in round T . The proof essentially replicates

the argument for the failure of common knowledge in static global games (see Morris

and Shin [15]).

Proposition 5. Suppose that (O, p) describes necessary conditions for investment in

a class of games Γ, where

OT
it(F ) =

F−iT if t = T ,

∅ otherwise,

and p > 1
2

. Then there is strategic pessimism in Γ.

Letting p = c
b+c

, this pair (O, p) describes necessary conditions for investment in

the inflexible game.

Proof. Fix p > 1
2
. We show that CBp(G) = ∅ for any T and σ > 0. Strategic pessimism

then follows from Theorem 1.

Clearly [CBp(G)]it = ∅ for any t < T by the definition of O. Consider round T .

Recall that BpiT (G) is the set [σTΦ−1(p),∞) of types of (i, T ) that p-believe G. Turning

to the second order of beliefs,
[
(Bp)2]

iT
(G) is the set of types of (i, T ) that p-believe

that (−i, T ) p-believes G. Conditional on xiT , (i, T ) believes that x−iT is normally

distributed with mean xiT and variance 2σ2
T . Therefore, we have

[
(Bp)2 (G)

]
iT

=
[
σTΦ−1(p) +

√
2σTΦ−1(p),∞

)
.

Proceeding inductively, we see that

[CBp(G)]iT =
⋂
n

[(Bp)n (G)]iT =
⋂
n

[
σTΦ−1(p)

(
1 + (n− 1)

√
2
)
,∞
)

= ∅,
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as needed.

7.4 Game 1

The following proposition shows that there is strategic pessimism in Game 1 of Section

3.

Proposition 6. Suppose that (O, p) describes necessary conditions for investment in

a class of games Γ, where

OT
it(F ) =

t⋃
s=1

F−is (7)

and p > 1
2

. Then there is strategic pessimism in Γ.

If p = c
b+c

then (O, p) describes necessary conditions for investment in Game 1.

Proof. Fix any p > 1
2
. We show that CBp(G) = ∅ for any T and σ. Strategic pessimism

then follows by Theorem 1.

First note that [CBp(G)]i1 can be identified with the usual common p-belief of G,

which is empty for p > 1
2

(as shown in the proof of Proposition 5). The result for periods

t ≥ 2 follows by induction. Suppose [CBp(G)]is = ∅ for i = 1, 2 and s = 1, . . . , t − 1.

Then [CBp(G)]it coincides with the usual common p-belief of G in period t, which is

again empty.

8 Discussion

In this section, we discuss our major assumptions, and consider potential extensions.

In order to simplify the analysis, we restrict the information structure in several

ways. For one, we assume that the fundamental is drawn from a uniform prior. As is

well understood in the global games literature, this assumption is not important when

signals are precise. Any prior with a continuous density leads to posteriors close to

those arising from a uniform prior when the noise in signals is small.

A significant feature of our information structure is that players do not observe

each other’s past choices. Instead, in each period, they observe a noisy private signal

yit of the state θ. The lack of learning from past actions may seem artificial. However,

we can reinterpret our model as one with a continuum of players, as described in brief
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below. Under this reinterpretation, in the class of symmetric monotone equilibria, the

per-period signals yit can be shown to be equivalent to noisy observation of the past

actions of other players.

To see this, we begin by describing how to reinterpret our flexible game as having

a continuum of players of unit measure. Let lt denote the measure of players who

have invested by period t. Payoffs for investing at t are given by δt(blT − c(1− lT )) if

θ ∈ (0, 1), by b if θ ≥ 1, and by −c if θ ≤ 0. At each time t, each player can either

invest irreversibly or wait. At t = 1, let the information structure for each player be

identical to that of the original two player game. If players follow symmetric monotone

strategies at t = 1, then there exists an increasing function λ1 such that l1 = λ1 (θ).

At t = 2, players observe a monotone statistic based on the measure of first period

investors, with some private noise. In particular, suppose that at t = 2, each player i

observes yi2 = λ−1
1 (l1) + σ̃2εi2, where εi2 ∼ N(0, 1) independently across players. Since

λ−1
1 (l1) = θ, the observation of yi2 is informationally equivalent to the observation of a

noisy private signal directly about θ given by yi2 = θ+σ̃2εi2. Thus the exogenous private

signal at t = 2 in the original model can be microfounded as a particular form of noisy

social learning. But now, if players follow symmetric monotone strategies at t = 2, there

is an increasing function λ2 such that l2 = λ2 (θ). In turn, by allowing agents to observe

λ−1
2 (l2) with private noise at t = 3, we can also reinterpret the private signal at t = 3 as

arising out of the noisy observation of past play. Proceeding iteratively in this way, we

can microfound the entire sequence of private signals in the original model. Thus, while

our baseline analysis abstracts from the observability of past actions for tractability,

our exogenous learning process can be viewed through the lens of endogenous noisy

social learning. Although the precise translation between exogenous and social learning

relies on particular parametric assumptions, this approach to modeling social learning

has become common in the global games literature because of its tractability (see,

for example, Angeletos, Hellwig, and Pavan [2] (online supplement), Angeletos and

Werning [1], and Goldstein, Ozdenoren, and Yuan [10]).

Another key feature of our examples is that, in each one, one of the two actions

is irreversible. However, this feature is not necessary for the general results found in

Section 6. Even when actions are reversible in a given game, there may exist a pair

(O, p) describing necessary or sufficient conditions for investment based on which we

can derive conditions for strategic pessimism or optimism respectively.
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9 Conclusion

Static coordination games represent a useful abstraction for studying coordination

problems in the real world. However, the associated requirement of simultaneity in

participation may be a strong restriction: the outcomes generated in such models may

not be good representations of real-world coordination problems where agents are able

to participate at different points of time and can learn about payoffs while deciding

when to participate. Our results illustrate the radical difference between inflexible and

flexible coordination problems within the framework of global games.

This paper introduces a class of global games with enriched timing where agents

have many opportunities to participate, while they asymptotically and privately learn

the true payoffs. In our benchmark analysis, we consider an extreme version of such

games, in which the specific timing of the other player’s investment is irrelevant to one’s

own payoffs. We show that rationalizable play in such a game ensures coordination on

the irreversible action, thus differing from the outcome in the inflexible setup.

We also analyze intermediate cases in which players care to some extent about the

timing of their opponent’s investment. Our results indicate that the coordination out-

come can be very sensitive to the precise way in which relative timing of investment

influences payoffs. Assuming that investing is irreversible, a small reward for investing

before one’s opponent results in coordination on investment, as in the benchmark flexi-

ble game. A small penalty for investing before one’s opponent ensures coordination on

the risk-dominant action, as in the canonical static global game. A deeper understand-

ing of timing incentives in dynamic coordination problems may pinpoint details in the

design of coordination processes that could help to prevent coordination failures. Our

results provide a starting point for such design exercises.

A Appendix

Proof of Lemma 1. We are indebted to an anonymous referee for suggesting this proof,

which is much more transparent than our original proof.

We begin by showing that lq(θ∗, θ∗) = 1. To further simplify notation, and without

loss of generality, we consider the case in which θ∗ = 0. In what follows, all distributions

are conditional on θ = 0. In addition, since the result concerns only the beliefs of a
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single player, we drop the index i.

For each t, let Ht be the event that the player does not q-believe θ > 0 in period t.

We need to show that limT→∞ Pr
(⋂T

t=1Ht

)
= 0. The limit exists because the sequence

is decreasing and bounded from below.

We construct an increasing sequence of periods tk such that, for a given r ∈ (q, 1)

and for all K,

Pr

(
HtK

∣∣∣∣∣
K−1⋂
k=1

Htk

)
< r.

Then Pr
(⋂K

k=1Htk

)
< rK , which converges to 0 as K → ∞. Since Pr

(⋂K
k=1 Htk

)
>

Pr
(⋂tK

t=1 Ht

)
, this proves the result.

The construction of the sequence tk is recursive. Let t1 = 1. For T > tK ,

Pr

(
HT

∣∣∣∣∣
K⋂
k=1

Htk

)
=

∫
Pr (HT |xtK ) f (xtK ) dxtK , (8)

where f is the distribution of xtK conditional on
⋂K
k=1Htk . We show that limT→∞ Pr (HT |xtK ) =

q. Therefore, by the Dominated Convergence Theorem, the integral on the right-hand

side of (8) converges to q. In particular, for T sufficiently large, the integral is less

than r; choosing some such T , let tK+1 = T .

Let
1

σ̂2
t

=
T∑

t=tK+1

1

ν2
t

and x̂T =
T∑

t=tK+1

σ̂2
T

ν2
t

yt.

Thus x̂T captures the information that the player receives in periods tK +1 through T ,

and 1
σ̂2
t

is the precision of this information. The player’s beliefs in period T are deter-

mined by the information received by time tK together with the additional information

x̂T based on the cumulative signal

xt =
σ2
T

σ2
tK

xtK +
σ2
T

σ̂2
T

x̂T .

The player does not q-believe θ > 0 in period T if and only if xT/σT < Φ−1(q).
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Hence we have

Pr (HT |xtK ) = Pr

(
σT
σ2
tK

xtK +
σT
σ̂2
T

x̂T < Φ−1(q)

)
.

As T →∞, the term σT
σ2
tK

xtK converges to 0 and σT
σ̂T

converges to 1. Therefore,

Pr (HT |xtK )→ Pr

(
1

σ̂T
x̂T < Φ−1(q)

)
= Φ

(
Φ−1(q)

)
= q

since 1
σ̂T
x̂T is a standard normal random variable.

To prove that lq(θ, θ∗) is continuous in θ at θ∗, note that for each T , lqT (θ, θ∗) is

continuous in θ and bounded from above by 1. Given ε > 0, let T be such that

lqT (θ∗, θ∗) > 1 − ε/2; such a T exists since lq(θ∗, θ∗) = 1. Since lqT (θ, θ∗) is continuous,

there exists some δ > 0 such that lqT (θ, θ∗) > 1− ε for every θ ∈ (θ∗ − δ, θ∗ + δ). Since

lqt (θ, θ
∗) is nondecreasing in t, it follows that lq(θ, θ∗) > 1−ε for every θ ∈ (θ∗−δ, θ∗+δ),

and therefore lq(θ, θ∗) is continuous at θ∗ since it is bounded above by 1.

A.1 Proof of Theorem 1

Before getting to the main proof we provide two lemmas.

Lemma 3. [Morris and Shin [14]12] Suppose that K : S −→ S is an increasing

operator such that for any strategy profile that prescribes action a ∈ {0, 1} on Fit for

each (i, t), action a is a best response for any agent (i, t) in ΓT (σ) only on a subset

of Kit(F ). Then action a is rationalizable in ΓT (σ) for each agent (i, t) only on some

subset of [CK(X)]it.

Proof. Recall from the definition of generalized common beliefs that C1
K = K(X)

and Cn
K = K

(
Cn−1
K

)
∧ Cn−1

K for n ≥ 2. Consider iterated deletion of never best

responses. Action a is never a best response for types outside K(X) = C1
K since K is

increasing. After one round of deletion, action a is never a best response outside C2
K .

Proceeding in this fashion, action a is deleted for all types of each agent (i, t) outside

[CK(X)]it =
⋂
n [Cn

K ]it.

12There is a small difference between Lemma 3 and Proposition 10 of Morris and Shin [14]. Lemma
3 specifies necessary conditions for rationalizability based on a bound on the best response correspon-
dence whereas Morris and Shin [14] specify necessary and sufficient conditions based directly on the
best response correspondence.
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If (O, p) describes necessary conditions for investment, then Lemma 3 gives neces-

sary conditions for rationalizability of investment. Define B̃p : S −→ S by

B̃p(F ) = Bp
(
[G ∧OTF ] ∨ U

)
.

Note that the operator B̃p(F ) differs from the generalized belief operator Bp(F ) defined

in Section 5.3, which is independent of G and U .

One can express necessary conditions for rationalizability of investment in terms of

generalized common belief CB̃p(X). However, such a characterization is complicated by

the influence of the upper dominance region on the operator B̃p. The following lemma

provides a partial characterization of CB̃p(X) in terms of the simpler common belief

operator CBp , which is independent of the upper dominance region.

First we extend the definition of the operator B̃p by replacing the particular sets G

and U with arbitrary upper contour sets Y and Z in ΣΘ such that Y ⊆ Z. For any O

satisfying Assumptions 1 through 4, define B̃p : S −→ S by

B̃p(F ) = Bp
(
[Z ∧OTF ] ∨ Y

)
.

Lemma 4. For each p′ ∈ (0, p) and T , there exist q ∈ (0, 1) and σ > 0 such that

¬CBp′ (Z) ∧ CB̃p(X) ⊆ Bq(Y )

for all σ ≤ σ.

To interpret the statement of the lemma, consider Z = G and Y = U . Roughly

speaking, the lemma says that if the necessary conditions for rationalizability from

Lemma 3 are satisfied in some state where (generalized) common belief of G fails, then

players must assign some probability to the upper dominance region U . The failure of

common belief refers to the common belief operator based on (the simpler) Bp, where

Bp reflects sufficient conditions for investment (O, p).

Proof of Lemma 4. We prove the equivalent statement

¬Bq(Y ) ∧ CB̃p(X) ⊆ CBp′ (Z). (9)

Recall that that O is symmetric across players.
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Let T (q, σ) ⊆ {1, 2} × {1, . . . , T} be the set of agents (i, t) for which the left hand

side of (9) is empty; that is, T (q, σ) is the set of (i, t) for which, given σ,

[CB̃p(X)]it ⊆ Bq
it(Y ). (10)

We claim that T (q, σ) is non-increasing in q and non-decreasing in σ. The first of

these monotonicity properties is trivial. To prove the second, take σ′ < σ and suppose

(i, t) /∈ T (q, σ). We need to show that (i, t) /∈ T (q, σ′). Let θ = inf Y , θ = inf Z, and

R =
(
σ′

σ
θ + (1− σ′

σ
)θ,∞

)
. Let

B̂pσ(F ) = Bp
σ

(
[R ∧OTF ] ∨ Y

)
,

where Bp
σ denotes the belief operator when the noise parameter is σ. Let 1 denote

the vector of ones. Letting ν = σ′

σ
and x =

(
1− σ′

σ

)
θ1, for any upper contour set F ,

Assumption 4 implies that

B̂pσ′(νF + x) =
σ′

σ
B̃pσ(F ) +

(
1− σ′

σ

)
θ1

and therefore

CB̂p
σ′

(X) =
σ′

σ
CB̃pσ(X) +

(
1− σ′

σ

)
θ1. (11)

Since inf
[
CB̃pσ(X)

]
it
/∈ Bp

σ,it(Y ) by assumption, (11) implies that inf
[
CB̂p

σ′
(X)

]
it
/∈

Bp
σ′,it(Y ). Finally, CB̃p

σ′
(X) ⊇ CB̂p

σ′
(X) since Z ⊇ R, and therefore inf

[
CB̃p

σ′
(X)

]
it
/∈

Bp
σ′,it(Y ), as needed.

Let

T (q) =
⋂
σ>0

T (q, σ)

and T =
⋃

q∈(0,1)

T (q).

Note that the lemma holds for all components (i, t) ∈ T : there exists q such that all

(i, t) ∈ T belong to the set T (q, σ) for sufficiently small σ, and (9) holds trivially for

such (i, t) because the left-hand side is empty.

It remains to show that the lemma holds for all (i, t) /∈ T . Take any such (i, t).
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We have (i, t) /∈ T (q) for each q > 0, and hence, by the monotonicity of T (q, σ) with

respect to σ, for each q > 0 there exists σ such that (i, t) /∈ T (q, σ) for each σ ≤ σ.

Let q′ and σ′ be such that T ⊆ T (q′, σ) for all σ ≤ σ′; such q′ and σ′ exist because

T is finite. Let q < q′ and σ′′ > 0 be such that T (q, σ) ⊆ T for all σ ≤ σ′′. Letting

σ = min{σ′, σ′′}, we have T = T (q, σ) for all σ ≤ σ since T (q, σ) is non-increasing in

q. Henceforth, we restrict σ to be at most σ.

Let C̃n = Cn
B̃p(X) and Cn = Cn

Bp′ (Z), and similarly for C̃ and C. Let x∗it = inf C̃it.

For each (i, t) /∈ T , we have x∗it /∈ B
q
it(Y ), for otherwise (10) would hold for (i, t) and

(i, t) would belong to T (q, σ) = T .

We prove by induction that C̃n
it ⊆ Cn

it for all n and all (i, t) /∈ T . This implies that

C̃i,t ⊆ Cit for all t /∈ T , as needed.

The statement C̃n
it ⊆ Cn

it holds trivially for n = 1. Assume for induction that the

statement holds for n− 1 for all (i, t) /∈ T . We show that C̃n
it ⊆ Cn

it, that is, that

Bp
it

((
Z ∩OitC̃

n−1
)
∪ Y

)
∩ C̃n−1

it ⊆ Bp′

it

(
OitC

n−1
)
∩ Cn−1

it .

Let xnit = inf C̃n
it. Note that, by induction, C̃n is a closed upper contour set for each n

since Bp(S) is closed for any upper contour set S, and hence xnit ∈ C̃n
it. Since xnit ≤ x∗it,

it follows that xnit /∈ B
q
it(Y ).

For q sufficiently small relative to q′, the type xnit assigns arbitrarily small probability

to the event Y
⋃
t:(−i,t)∈T B

q′

−it(Y ), independent of σ. Hence, for sufficiently small q,

xnit ∈ B
p
it

((
Z ∩OitC̃

n−1
)
∪ Y

)
implies that

xnit ∈ B
p′

it

(
Z ∩ ÔitC̃

n−1
)
,

where the operator Ôit is defined by

Ôit(F ) = Oit(Q(F )),

where

Q(F )it =

∅ if (i, t) ∈ T ,

Fit otherwise.
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Next, we have

xnit ∈ B
p′

it

(
Z ∩ ÔitC̃

n−1
)
⊆ Bp′

it

(
ÔitC̃

n−1
)
⊆ Bp′

it

(
ÔitC

n−1
)
,

where the last containment follows from the induction hypothesis that
[
C̃n−1

]
it
⊆

[Cn−1]it for all (i, t) /∈ T , together with Ô being increasing. Finally, we have

xnit ∈ B
p′

it

(
ÔitC

n−1
)
⊆ Bp′

it

(
OitC

n−1
)

because ÔitF ⊆ OitF for any F . Since xnit ∈ C̃n−1
it ⊆ Cn−1

it for all (i, t) /∈ T , we have

xnit ∈ B
p′

it (OitC
n−1) ∩ Cn−1

it for all (i, t) /∈ T .

All that remains is to show that Bp′ (OCn−1)∧Cn−1 is an upper contour set. This

follows by induction on n since O and Bp′ are point-monotone and A ∧B is an upper

contour set whenever A and B are.

Proof of Theorem 1. First we prove part 1. By Lemma 3, action 1 is rationalizable in

ΓT (σ) only on a subset of CB̃p(X), where the operator B̃p : S −→ S is defined by

B̃p(F ) = Bp ([G ∧OF ] ∨ U) .

Suppose that for some r ∈ (0, p), CBp−r(G) = ∅ whenever T is sufficiently large and

σ ≤ σ (given T ). By Lemma 4 with Y = U and Z = G, we have CB̃p(X) ⊆ Bq(U) for

some q ∈ (0, 1). Therefore, action 1 is rationalizable in ΓT (σ) (for all sufficiently large

T and σ ≤ σ) only if agent (i, t) q-believes U , as claimed.

Next we prove part 2. Suppose (O, p) describes sufficient conditions for investment

in a class of games Γ. Consider a strategy profile F in a game ΓT (σ). Action 0 is a

best response for type xit in ΓT (σ) only if

xit /∈ Bp
it ([G ∩OitF ] ∪ U) ,
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or equivalently, only if

xit ∈ B1−p
it

[
([G ∩OitF ] ∪ U)

]
= B1−p

it

([
G ∪OitF

]
∩ U

)
= B1−p

it

(
[U ∩OitF ] ∪G

)
,

where X denotes the complement of an event X.

By Lemma 3, action 0 is rationalizable in ΓT (σ) only on CB̂1−p(X), where the

operator B̂1−p : S −→ S is defined by

B̂1−p(F ) = B1−p ([U ∧ ¬OF ] ∨G) ,
where ¬O is defined component-wise by ¬OT

it(F ) = OT
it(F ). Note that since ¬O is

decreasing, the operator B̂1−p satisfies the monotonicity requirement for K in Lemma

3: if F ′ prescribes action 0 to more types than does F , then B̂1−p(F ′) prescribes 0 to

more types than does B̂1−p(F ).

Applying Lemma 4 with Y = G and Z = U , we find that for each r ∈ (0, 1− p),

(
¬CB1−p−r(U) ∧ CB̂1−p(X)

)
⊆ Bq(G) (12)

for some q ∈ (0, 1).

Suppose that for some r ∈ (0, 1− p),

¬CB1−p−r(U) = X (13)

whenever T is sufficiently large and σ ≤ σ. Then (12) implies that

CB̂1−p(X) ⊆ Bq(G),

which in turn implies that ¬Bq(G) ⊆ ¬CB̂1−p(X), and therefore

B1−q(G) ⊆ ¬CB̂1−p(X).

Thus, given (13), if (i, t) (1− q)-believes G then not investing is not rationalizable and

hence investing is the unique rationalizable action (for sufficiently large T and σ ≤ σ).
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It remains to show that (13) is equivalent to

EBp+r(U) = X.

This equivalence follows from the following duality argument. We say that L is the dual

operator to K if L(F ) = ¬K(¬F ) for all F . One may readily verify that if L is dual

to K then EL is dual to CK . Noting that B1−p−r(F ) = ¬Bp+r(¬F ), the equivalence

follows from the fact that B1−p−r is dual to Bp+r.

A.2 Additional Proofs

Proof of Theorem 2. We prove that (3) implies that there exists r > p such that

EBr(U) = X whenever T is sufficiently large and σ ≤ σ (given T ). This result in

turn implies strategic optimism by part 2 of Theorem 1.

Define the function πit : Xit −→ [0, 1] by

πit(x) = Pr
(
OT
itB

q(θ ≥ θ∗) | xit = x
)
.

Note that the dependence of πit on σ, T , and θ∗ is suppressed from the notation. The

function πit(·) is continuous since posterior beliefs are continuous in types.

Relation (3) implies that πit(x) ≥ p′ for all x ≥ θ∗ + σtΦ
−1(q). Choose some

r ∈ (p, p′). By the continuity of πit, there exists εit > 0 such that πit(x) ≥ r for all

x ≥ θ∗ + σtΦ
−1(q)− εit. Thus we have

Bq
it (θ ≥ θ∗ − εit) ⊆ Brit (Bq(θ ≥ θ∗)) .

Letting ε = min(i,t) εit, it follows that

Bq(θ ≥ θ∗ − ε) ⊆ Br (Bq(θ ≥ θ∗)) , (14)

where ε depends on T and σ but is always strictly positive.

Let E1 = Br(U), and recursively define Ek = Br(Ek−1) ∨ Ek−1 for k = 2, 3 . . . .

We prove that

Bq(θ ≥ 1− kε) ⊆ Ek+1 (15)
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for each k. For q > r, the statement holds trivially for k = 0. Suppose for induction

that the statement holds for k − 1. Then

Bq(θ ≥ 1− (k − 1)ε− ε) ⊆ Br (Bq(θ ≥ 1− (k − 1)ε)) ⊆ Br
(
Ek
)
⊆ Ek+1,

where the first containment follows from (14) with θ∗ = 1 − (k − 1)ε, and the second

from the fact that Br is increasing.

By (15), we have

∞∨
k=0

Bq(θ ≥ 1− kε) ⊆
∞∨
k=0

Ek+1 = EBr(U).

Since
∨∞
k=0B

q(θ ≥ 1− kε) = X, it follows that EBr(U) = X, as needed.

Proof of Lemma 2. The set Bq
−i,t+1(θ ≥ θ∗) consists of those x−i,t+1 exceeding θ∗ +

σt+1Φ−1(q) and x−i,t+1 | xit ∼ N
(
xit, σ

2
t + σ2

t+1

)
. Therefore

Pr
(
Bq
−i,t+1(θ ≥ θ∗) | xit

)
= Φ

(
xit − θ∗ − σt+1Φ−1(q)√

σ2
t + σ2

t+1

)
. (16)

The set Bq
it(θ ≥ θ∗) consists of all xit exceeding θ∗ + σtΦ

−1(q). Thus for every

xit ∈ Bq
it(θ ≥ θ∗), the right-hand side of (16) is at least

Φ

(
θ∗ + σtΦ

−1(q)− θ∗ − σt+1Φ−1(q)√
σ2
t + σ2

t+1

)
= Φ

(
Φ−1(q)

1− τt√
1 + τ 2

t

)
,

where τt = σt+1/σt. The last expression is decreasing in τt for τt ∈ (0, 1). Since

0 < τt ≤ τ < 1 by assumption, each type xit ∈ Bq
it(θ ≥ θ∗) assigns probability at least

Φ
(

Φ−1(q) 1−τ√
1+τ2

)
to Bq

−i,t+1(θ ≥ θ∗). For q sufficiently large, Φ
(

Φ−1(q) 1−τ√
1+τ2

)
≥ p′,

as needed.
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