
 

 

 
 
 

Edinburgh Research Explorer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Using Powerdomains to Generalize Relational Databases

Citation for published version:
Buneman, P, Jung, A & Ohori, A 1991, 'Using Powerdomains to Generalize Relational Databases',
Theoretical Computer Science, vol. 91, no. 1, pp. 23-55. https://doi.org/10.1016/0304-3975(91)90266-5

Digital Object Identifier (DOI):
10.1016/0304-3975(91)90266-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 03. Oct. 2023

https://doi.org/10.1016/0304-3975(91)90266-5
https://doi.org/10.1016/0304-3975(91)90266-5
https://www.research.ed.ac.uk/en/publications/1bca2061-6a7b-4133-873d-9e02d97dcae6


Theoretical Computer Science 91 (1991) 23-55 

Elsevier 
23 

Using powerdomains to generalize 
relational databases* 

Peter Buneman 
Department of Computer and Information Science, University of Pennsylvania, 

200 South 33rd Street, Philadelphia, PA 19104-6389, USA 

Achim Jung 
Fachbereich Mathematik, Technische Hochschule Darmstadt, W-6100 Darmstadt, Germany 

Atsushi Ohori 
Department of Computer and Information Science, University of Pennsylvania, 

200 South 33rd Street, Philadelphia, PA 19104-6389, USA 

Communicated by G. Ausiello 

Received July 1987 

Revised July 1989 

Abstract 

Buneman, P., A. Jung and A. Ohori, Using powerdomains to generalize relational databases, 

Theoretical Computer Science 91 (1991) 23-55. 

Much of relational algebra and the underlying principles of relational database design have a 

simple representation in the theory of domains that is traditionally used in the denotational 

semantics of programming languages. By investigating the possible orderings on powerdomains 

that are well known in the study of nondeterminism and concurrency it is possible to show that 

many of the ideas in relational databases apply to structures that are much more general than 

relations. This also suggests a method of representing database objects as typed objects in 

programming languages. 

In this paper we show how operations such as natural join and projection-which are funda- 

mental to relational database design-can be generalized, and we use this generalized framework 

to give characterizations of several relational database concepts including functional dependencies 

and universal relations. All of these have a simple-minded semantics in terms of the underlying 

domains, which can be thought of as domains of partial descriptions of “real-world” objects. We 

also discuss the applicability of relational database theory to nonrelational structures such as 

records with variants, higher-order relations, recursive structures and other ordered spaces. 

* This research was supported in part by grants NSF IRI86-10617, ONR NOOO-14-88-K-0634, AR0 

DAA6-29-84-k-0061. Atsushi Ohori was also supported in part by OKI Electric Industry Co.. Japan. 

0304-3975/91/$03.50 @ 1991-Elsevier Science Publishers B.V. All rights reserved 



24 P. Buneman et al. 

1. Introduction 

There are two motivations for this study. The first is to draw together a number 

of approaches to data models and to examine the extent to which they can be viewed 

as generalizations of the relational data model. The second is to try to draw out the 

connection between data models and data types, something that is crucial if we are 

to achieve a proper integration of databases [4, 5, 391 and programming languages. 

The main focus of this paper is the first of these. There are a number of attempts 

to generalize the relational data model beyond first-normal-form relations [17, 36, 

321; there are also numerous formulations of other data models [l, 18, 7, 191 that 

at first sight appear to have little to do with relations. We shall see that by exploiting 

the basic ideas of domain theory, well-known in the study of semantics of program- 

ming languages, we can obtain generalizations of many of the basic results of 

relational databases in a way that has very little to do with the details of the data 

structures that are used to define them; and which allows the application of relational 

database principles to a much wider range of data models. Although some observa- 

tions have been made [34, 141 that suggest a connection between database and 

programming languages semantics, there appears to have been no attempt directly 

to characterize relational databases in the appropriate semantic domains. 

To the hardened first-normal-form relational database theorist this paper offers 

little more than alternative, and perhaps simpler, derivations of some existing results. 

However, given the recent activity in the study of “higher-order” relations, which 

attempts to apply the basic results of relational databases to other structures, it is 

interesting to ask how far this work can be pushed. What are the properties of the 

data model that allow us to define relational operators, functional dependencies 

etc.? In doing this, we shall find it useful to produce a simple denotational semantics 

for relations and other structures, which is an extension to the semantics for missing 

values proposed by Lipski [23]. The idea is that these structures denote sets of 

values in some space which we may think of as the “real world”. One of the 

advantages of our approach is that it allows us to provide a denotational semantics 

for structures such as sets of attribute names, which usually receive an operational 

treatment. Such a semantics will, we hope, ultimately be useful if we are ever to 

achieve our second goal of achieving a healthy marriage of databases and program- 

ming languages. 

The organization of this paper is as follows. In Section 2 we describe the 

properties of the underlying domains that we shall need. Section 3 then shows how 

powerdomain orderings (orderings on sets of values) can be used to characterize 

the various joins that are discussed in relational algebra. In Section 4, in trying to 

characterize projection, we introduce the notion of schemes, which generalize rela- 

tional schemes (sets of column names). Schemes enjoy some nice properties with 

respect to powerdomain orderings and allow us to characterize functional dependen- 

cies and universal relations, which is done in the following sections. Section 7 

concludes by showing how these ideas can be applied to various extensions of 



Using powerdomains to generalize relational databases 25 

relational databases including typed relations, relations with null values and various 

forms of higher-order relations; it also suggests that there may be some limitations 

to what one can do with non-first-normal-form relations. The reader who is more 

interested in data types and structures rather than some of the more esoteric areas 

of database theory may wish to skip much of Sections 5 and 6, and turn directly to 

Section 7. 

2. Orderings and domains 

The idea that is fundamental in denotational semantics is that expressions denote 

values, and that the domain of values is partially ordered. In the same way we can 

think of database structures as descriptions and that these descriptions are partially 

ordered by how well they describe the real world. Without putting any particular 

structure on the real world, we can define the meaning [IdI of a description d as 

the set of all real-world objects described by d. We can then say that a description 

d, is better than d2, d, 2 d2, if d, describes a subset of the real-world objects described 

by dZ, i.e. [d,] c I[d& 

An example of such an ordering is to be found in flat record structures. A flat 

record is a partial function from a set L!? of labels to an unordered set 2’ of values. 

If r1 and rZ are two such functions, then r, 2 r2 if the graph of r, contains the graph 

of r2. For example, 

{NameJ’J. Doe’; Dept+‘Sales’; Ojice+33} 

2 {Name +‘J. Doe’; Dept J’Sales’}. 

Using the term “real world” to describe the semantics of such records is, of 

course, contentious. It is better to think of these records as partial descriptions (or 

approximations) to elements in some space or “universe” of total descriptions, in 

this case large-possibly infinite-record structures. Suppose that this universe were 

the function space L? + V where 2 = {Name, Dept, O&e}, we would then have 

[I{ Nume+‘J. Doe; Dept +‘SaZes’}] 

= {{Nameg’J. Doe’; Dept+‘Sales’; OfJice+v}I u E Zr}. 

Note that this formulation of the denotation of a record with incomplete informa- 

tion corresponds with that given in [23], and as it will shortly appear, this space of 

flat records provides the basis for the relational model; however there are a number 

of other orderings that we shall examine later in this paper. These include Bancilhon’s 

complex objects [7], orderings on tree structures that give rise to higher-order 

relations [17, 1, 36, 35, 321, the feature structures in unification-based grammar 

formalisms (see [43] for a survey), finite state automata [37], +-terms [2]. In this 

catalog we should also include Scott’s aptly-named “information systems”- 

consistent, deductively closed sets of predicates [42]. In all of these it is possible 

to describe certain generalizations of relational operations. 



26 I? Buneman et al. 

We shall require somewhat more structure on our space 9 of partial descriptions 

than being partially ordered. The most important property is that it is bounded 

complete: 

(1) Any nonempty subsets S of 9 has a greatest lower bound n S. 

In addition we shall also make two further assumptions that are common in 

denotational semantics [38]: 

(2) Any directed subset S of 9 has a least upper bound L, S. 

(3) The set K(D) of compact elements in 9 forms a countable basis for 9. 

Partially ordered set (9, c) with these properties are widely used in the semantics 

of programming languages, and are often called Scott domains [42]. Throughout 

this paper we shall refer to them as domains. We shall also use the notation s1 U s2 

and s, n s2 for LJ {si , s2} and n {sr , s2} respectively. 

It is an immediate consequence of the first condition that any subset of S of 9 

that is bounded above has a least upper bound US and also that 9 has a bottom 

element, l_9. The second condition, when taken with the axiom of choice, ensures 

that every member of 9 is bounded above by some member of B,,,,,, the set of 

maximal elements of 9. We shall therefore use 9,,,,, as the universe of complete 

descriptions; and the definition of l[dl is then simply {x E 9,,,,, 1 d L x} = Td n CBa,,,. 

Apart from some remarks at the end of the paper, we shall not make any use of 

the third condition; however we should note that in any practical database context 

this condition will surely be satisfied. 

There is one extra condition which we shall need when we introduce schemes 

below. 

(4) A domain 6% is distributive if every principal idea J,x is a distributive lattice. 

Note that the space of flat record structures is a distributive domain. Even more is 

true of this domain: each principal idea is a complete atomic boolean algebra, that 

is, a powerset. We shall not need to assume this in general, however. 

We shall see that there are a number of ways to construct domains that represent 

the kinds of data structures we use in databases; particularly simple are the flat 

domains. Given a set of atomic values V, a flat domain VL of “Ir is obtained by 

adding bottom element _L to 7” and ordering them as x E y if and only if x = y or 

x = 1. This domain is a domain of atomic descriptions; an element v E 7f1 is either 

a complete description (v # I) with the meaning {v} or the noninformative descrip- 

tion I with the meaning V. The bottom element introduced in “Ir, can be interpreted 

as a null value representing “unknown values”. There is a number of other 

approaches to null values, some of them distinguish “inappropriate” and “unknown” 

values. Such an approach is entirely consistent with what we develop here and can 

be modeled by domains that are more complicated than ‘Ir, . Later we shall comment 

more on null values. 

We can now describe more precisely the domain of labeled records that we 

discussed in the introduction. Given a countable set of labels 9 and a domain 9, 

a domain of labeled records Z’+ 9 over 9 is a set of total functions from .Y to 9 

with the ordering defined as r, c r, if and only if for all 1 E -Ce, ri( I) c r2( 1). This can 



Using powerdomains to generalize relational databases 27 

be thought of as a domain of descriptions by attributes. This ordering represents 

the fact that r2 is a better description than r, if r, has better descriptions than r, in 

all attributes. The minimal element lip,9 in Z-+ 9 is the constant function I~ and 

if S is a set of functions, then n S is the function r such that for all I, r(l) = 

n {s(Z) 1 s E S} and LJ S is the function r’ such that for all 1, r’(l) = L. {s(I) 1 s E S} 

provided that all the least upper bounds exist. 

The space of flat records is a special casee of a domain of records where 9 is a 

flat domain “Ir,. Indeed, the space of partial functions from .Y to 2’ is isomorphic 

to .Y + 2’, . To make our notation for records precise, {I, + d, ; . . . ; 1, =SJ d,} denotes 

an element r in .LY+ 9 such that r( I,) = di for 1 G i c n otherwise r( 1) = .L~. For 

example, in 2 + “Ir, , if 

and 

r, = {Emp#J12345; NameJ’J. Doe’} 

r,={Emp#+12345; Sa1320000) 

then 

r,Flr,={Emp#~12345} 

and 

r,U r2 = {Emp#~12345; Name+‘J. Doe’; Sa1+20000}. 

However { Emp# j 12345; Name+‘J. Doe’}U { NameJ’K. Smith’} does not exist. 

An advantage of treating the space of flat records as Z+ VL is that many results 

concerning flat records can be regarded as special cases of more general records 

and are readily applied to L?+ 9 for a more complicated domain 9. 

As an example consider a database which lists the values of physical constants 

as they have been determined in particular experiments. Set up as a relational 

database, a typical entry might contain the following fields (among others): author, 

publication, name of constant, lower bound, upper bound, dimension. Being forced to 

express every record in first-normal-form has two obvious disadvantages. First, it 

does not reflect the property that the intervals [lower bound, upper bound] are 

partially ordered, smaller intervals being better approximations and second, there 

is no way how the obvious dependency (name of constant+[ lower bound, upper 

bound]) could be expressed in ordinary relational algebra. Our formalism as 

developed below will allow to state such a dependency and will provide a simple 

formula for checking the consistency of the database. (An inconsistency is reached 

in our example if asserted intervals for the same constant do not overlap.) 

3. Powerdomains and relational algebra 

Databases usually contain sets of values which, from our foregoing discussion, 

we would expect to describe sets of objects in the real world. If we interpret database 

values as elements in a domain, then database sets, such as relations, must be 

interpreted as sets of elements in that domain. Indeed, we can interpret ajirst-normal- 

form relation r of a relational scheme (a set of attribute names) R in the relational 



28 P. Buneman et al 

model as a set S of elements in the domain of flat records Z+ V1 such that for 

any d E S, {E 1 d(I) # I} = R. Later in this section, we shall see that this interpretation 

is faithful to various relational operations and that the domain of flat records, 

therefore, serves as a domain of the relational model. This is how relations are 

described in languages such as Pascal/R [39] and extensions of this representation 

are to be found in Taxis [8] and Galileo [3]. Figure 1 shows a very simple relation 

and its representation as a set of flat records. 

If we consider these sets of elements in a domain as sets of descriptions then we 

would like to order the sets themselves by how well they describe sets of real-world 

objects, but how? The study of the semantics of nondeterminism, which attempts 

to describe the behavior of sets of processes, provides us with some answers. 

However, we must first decide whether we are prepared to work with arbitrary sets, 

or whether some restrictions are needed. 

Given a domain (9, c), a set S c C!A is a co-chain if no member of S is greater 

than any other member of S, i.e. Vx, y E S. x 2 y implies x = y. If S c 9 has the 

property that any two members of S are inconsistent, i.e. they do not have a defined 

join, then we shall call S independent. Note that an independent set is necessarily 

a co-chain. 

First-normal-form relations are independent sets. If, however, we admit null values 

in relations by relaxing the condition {II d(l) # _L} = R of first-normal-relation to 

{I 1 d(l) # I} c R, we have to decide whether structures such as (i) or (ii) of Fig. 2 

are valid relations. (i) fails to be a co-chain because {AJu}~{AJu; B+b}, and 

(ii) fails to be independent because {A=+u; B~b}LJ{A+a; C+c} is defined. 

In what follows we shall assume that database sets are finite co-chains and we 

shall use the words $nite co-chain and relation interchangeably. Using our simple 

{ { Nume*‘J. Doe’; Dept+‘Sales’; Sal=%20,000; Ofice+147}, 

{ Nume+‘K. Smith’;Dept=+‘Mktg’; Sa1~30,000 Ofice+275}} . 

Fig. 1. A relation and its representation as a set of records. 

A B 

t 

a b 

a I 

ABC 

-t-i- 

a b -L 

a _L c 

Fig. 2. Some problematic relations 



Using powerdomains to generalize relational databases 29 

notion of database semantics, we might justify this assumption by saying that if d, 

and d2 are descriptions with d, a better description than d, then d, is redundant 

and can be eliminated from the database. This is equivalent to saying that for all 

pairs d,, d2 in S neither Id,] c [d2] nor [d,j c [d2j. Whether or not this justification 

is reasonable depends on the intended semantics of the operations on co-chains 

which, in turn, depends on the circumstances in which they are used. See [28] for 

a more detailed examination of the semantics of relational operations. Independence 

means that no two descriptions in S can describe the same real-world object, i.e. 

[Id,] n [dzj = 0. We shall need to discuss independent sets when we generalize the 

notion of schemes. We shall use +& to refer to the set of finite co-chains in 9 and 

LJa, for the set of finite independent sets. 

To return to the problem of finding orderings on sets the study of the semantics 

of nondeterminism provides us with three orderings’. 

Ac”B if VaEAZlbEB.ar=b 

Ac*B if VbEB3acA.acb 

A & B if A ~~ B and A c” B 

respectively called the Hoare, Smyth and Egli-Milner ordering. Figure 3 shows 

examples of these orderings in first-normal-form relations. 

For arbitrary sets, these are not orderings; they are pre-orderings and orderings 

are derived by taking equivalence classes. However, in each case there are canonical 

representatives for each equivalence class. 

Rr 

Dept Office 

t 

‘Mk tg ’ 275 

‘Sales’ 147 

R3 

Name 

‘K. Smith’ 

‘L. Jones’ 

‘J. Doe’ 

‘M. Blake’ 

Dept 

‘Mktg’ 

‘Mk tg ’ 

‘Sales’ 

‘Sales’ t 

Office 

275 

275 

147 

147 

Fig. 3. Examples of the three orderings. 

Lemma 1. Let P be a partial order. Then the following is true for all subsets A and B 

0fP: 

(i) A =b LA. 

I This melodious notation was suggested to us by Carl Gunter. 



30 P. Buneman et al. 

(ii) A & Be&Ac&B. 

(iii) A =’ ?A. 

(iv) AE’B@~BE~A. 

(v) A =4 TAnJA. 

So in reasoning about these orderings it is helpful to think in terms of lower sets, 

upper sets, and order-convex sets, respectively. We said before that we want to 

model database sets (or relations) as finite co-chains in our domains. Since databases 

tend to get bigger and bigger during their existence one might think that the Hoare 

ordering is the most natural for them. However, viewed as approximations of sets 

of real-world objects it is the Smyth ordering which corresponds to this semantics. 

We regard it as a strength of our approach that it allows to formalize different 

intuitions about databases. The mathematics is nice in each case. 

Lemma 2. If 9 is a domain then (%&, c~) and ( %f9, c’) are distributive lattices with 

bottom element. (C,, c”) also has a top element, namely, the empty co-chain. 

Proof. Given two finite co-chains S, and S,, it is clear how the sup and inf are 

found for each of the two orderings. 

l S, Lib S, = the maximal elements of IS, u JS, = the maximal elements of Si u S2. 

l S, fib S, = the maximal elements of J.S, n J,S, c S, n S, = {s, n s21 s, E S, , s2 E S,}. 

l S, Ll’ S2 = the minimal elements of TS, n TS, G S, U S2. 

l S, n’ S2 = the minimal elements of TS, u TS, c S, u S2. 

Distributivity follows because we can embed Y& in the distributive lattice of all 

lower (upper) sets in 9. 0 

We wish to remark that these lattices are not complete. Neither (%&, c~) nor 

(%,, L’) contains sups for directed subsets. If we want completeness then we have 

to take certain computability considerations into account which translate into 

topological restrictions on infinite subsets of a domain. We have no need to pursue 

this theme further but note that sup and inf in both orderings are defined for any 

set of subsets of a domain. They may not be representable by their subset of minimal 

or maximal elements, however. 

In the space of finite co-chains with the three orderings we represent various 

operations on database sets, some of which will emerge as generalizations of 

relational operations. We also mention that these ordered spaces are not the same 

as powerdomains in the programming language literature [33,45], where the ordered 

spaces of sets are constructed in such a way that they are themselves domains. True 

powerdomain constructions are not needed until we discuss higher-order relations, 

where a tuple can itself contain a set as an attribute value. We shall discuss how 

our presentation of database sets can also contain these higher-order values in 

Section 7, but for the time being we shall exploit the representation of database 

sets in the space of finite co-chains. 



Using powerdomains to generalize relational databases 31 

There is an immediate connection with relational algebra that indicates the 

importance of these orderings. 

Theorem 1. Interpreting relations as jinite co-chains A, B in 6p + VL, A U” B is the 

natural join of A and B. If a least upper bound for A, B exists in cb then it is a lossless 

join. 

Proof. This statement is actually more of a definition than a result. We can only 

prove it in the case of first-normal-form relations, for it is only then that we have 

accepted definitions for the various joins. Given relation schemes (sets of attribute 

names) R, , R, E 9 and relation instances r, , r2, let r: , r; and r; be the interpretations 

ofr,,r,and r,wr,in2!?+VL.Suppose tErS, then by the conventional definition 

of natural join, there are t, E ri such that t(1) = t,(l) for all 1 E R, and f2 E r; such 

that t(1) = tz( 1) for all 1 E R,. By the definition of the interpretation, t,( 1) # I iff 

1 E R, , tz( 1) # I iff 1 E Rz. This implies t, c t and tZC t and clearly 1 is minimal with 

respect to this property. Therefore t E r; U” r:. Conversely suppose t E r{ U’ r$. There 

must exist t, E r,, f2 E r2 such that t, c t and t2c t. Since “Ir, is flat this implies that 

t(1,) = t,( II) when 1, E R, and t(lz) = f2(12) when l2 E R,. By the minimality of t with 

respect to c, t(1) = I iff I& R, u R2. Hence t E r;. See [28] for a discussion of the 

semantics of lossless join and the proof of the second part of this result. 0 

The importance of this result is that it provides a generalization of natural join 

to sets of values in arbitrary domains. Figure 4 shows an example of natural join 

in nested records. 

r1 = { {Name=+- ‘J. Doe’ ;Status+{ Student-status+‘Graduate’}} 

{Name+ ‘M. Blake’; Status=+{ Student-status+‘Undergradunte’} 

r2 = { {Nume+‘J. Doe’; Status=+{ Employee-status=+‘TA’}} 

{ Name+‘L. Jones’; Status=%{ Employee-status+‘Fuculty’}}} 

rl LIP r2= { { Nume+‘J. Doe’; 
Status+{ Student-status~‘Graduate’;Employee-status~’TA’}}} 

Fig. 4. Natural join in “nested” records. 

I> 

A more intuitive way of thinking of these results is to view the natural join as 

the appropriate operation when two sets of database descriptions “over-approxi- 

mate” some desired set in the real world. Suppose, for example, that we want to 

find the set of TEACHING FELLOWS, but we only have available database sets 

describing EMPLOYEES and STUDENTS. Both of these over-approximate our 

desired set (any teaching fellow is both an employee and a student) and so the 

appropriate operation to achieve a better approximation to TEACHING FELLOWS 

is to take the natural join of EMPLOYEES and STUDENTS. 



32 P. Buneman et al. 

The partial ordering Lo does not give rise to least upper bounds when applied to 

co-chains. However, if two database sets have a least upper bound in c’, then any 

real world set that is “exactly” described by (i.e. above in c’) the two database sets 

is also “exactly” described by the least upper bound. Since a least upper bound in 

& is also a least upper bound in L’, ’ tf Ll’ exists then the natural join is the lossless 

join. Traditionally the lossless join condition is stated operationally, in terms of 

projections; from this we see that it has a simple denotational interpretation. 

We might also ask whether Ub corresponds to anything in the relational algebra. 

S, Ub Sz is simply the set of maximal elements in S, u S2 and is awkward to deal 

with in relational algebra as it generally requires the introduction of null values. 

However, we shall make some use of this operator later. If we are prepared to 

introduce null values, then Lib is what [35] calls the “null union”, and 

S, Ub (S, Ll” S,) Ub S, is what is sometimes called the outerjoin. Merret [26] describes 

this operation and also the “left-wing” and “right-wing” operations, which are 

S, Ub (S, U* S,) and (S, U” S,) Ub S2 respectively. 

In some cases these operations preserve independence. 

Lemma 3. If S, and Sz are independent, so are S, U” S2, S, Ub (S, U’S,) Ub S2, 

S, Ub (S, U” S,) and (S, Ur Sz) Ub S,. 

However, the other operators (fib, n” and Ub) do not, in general, carry independent 

sets into independent sets. 

We should also note that the co-chain S, n” S2 is the set of minimal elements of 

S, u S1. When S, u S, is a co-chain, S, n” Sz = S, Ub S,. The operator nb is, as we 

shall see in the next section, a general form of projection. 

In order to conform to traditional notation, we shall generally replace the symbol 

U4 by what is conventionally used in databases, W. 

4. Projection 

The main point of the previous section is that we are able to define various joins 

without reference to the special structure of relations. In particular, we do not 

require any notion of sets of column names (or schemes as they are called in the 

relational database literature [24, 461) in order to characterize natural join. Projec- 

tion, however, makes explicit mention of a scheme. For example {Name, Ofice} 

is a scheme and the projection rlNNume,Oficej (R) where R is the relation shown in 

Fig. 1 is 

{{Nameq’J. Doe’; Ofice=9147}, {Name=3’K. Smith’; Ojfice*275}}. 

If, therefore, we are to carry further the idea of casting relational algebra in the 

theory of domains, we need to generalize the notion of relational schemes and 

projection. 



Using powerdomains to generalize relational databases 33 

We have essentially two options. The first is to look at what properties are desired 

of the projection function itself; the second is to identify schemes with some set of 

elements in the underlying domain 9. The second approach is motivated by the 

idea that a set of column names gives rise to smaller universe of descriptions. For 

example, we might say that the relational scheme {Name, Ofice} denotes the set of 

all descriptions (functions) of the form {{Name+ z), Ofice+ w} 1 ZI, w E V}. The 

course we shall follow is to look at both possibilities with the goal of finding some 

characterization that is natural in the sense that it admits some natural algebra over 

the set of schemes. This is essential if we are to generalize ideas about functional 

dependencies which are usually cast in the boolean algebra of sets. However, the 

authors should admit here that the generalization of schemes that we are going to 

provide, while it arises from extremely natural conditions and captures a number 

of relational database constructs, may require further refinement if it is to be used 

for all of relational database theory. We do not know, for example, whether we can 

represent multi-valued dependencies using our characterization. 

We start from the observation that in relational databases we can say what 

projection means for a single tuple. It is simply the function that throws away certain 

fields from a tuple or record. More generally, we can think of projection as a function 

p E 9 + 9 that is decreasing, idempotent and monotone, i.e. for all x, y E 9, p(x) E x, 

p(p(x))=p(x) and p(x)cp(y) whenever xcy. Computability of a projection is 

reflected in the property of preserving directed sups: p(u,,, x,) = u,,, p(x,). Such 

functions are also known as projections in domain theory, and it is clear that a 

(relational) projection onto a set of column names satisfies these conditions. 

Projections are completely determined by their image, as follows from the next 

lemma. 

Lemma 4. Let 9 be a domain and p, p’ be projections on 9. 

6) p(x)=Ll{~lp(~)=y~x). 
(ii) pcp’tiim(p)c im(p’)epop’=p’op=p. 

(iii) p preserves inf ‘s of nonempty sets. 

(iv) im( p) is closed under existing sup’s. 

We feel that arbitrary projections as defined above do have a significance in 

modeling databases domain theoretically. In this paper, however, we shall concen- 

trate on a more restricted notion of projection which we shall develop in two steps. 

In the case of a relational domain Z+ z’,, restricting the set of labels to some 

subset L of OCR gives rise to a downward closed subset of 2’+ W,, namely the set 

of all functions s for which s(E) = I if 1 E L. 

Definition. Let 9 be a domain. A strong ideal in 9 is a downward closed subset A 

of 9 which is closed under existing joins. By pA we denote the unique projection 

on 9 with image A. 



34 l? Buneman et al. 

Projections onto strong ideals enjoy several desirable properties. 

Lemma 5. (i) Let A be a strong ideal in a domain 9 and let y be an element of A 

above pA(x) for some x E: 9. Then pA(x) = xny. 

(ii) If 9 is distributive then pa preserves all existing sup’s. 

Proof. (i) By definition we have pa(x)&x and pa(x)~y so pa(x)~xny. On the 

other hand, xFly is an element of A below x and pA(x) is the sup of all those 

elements, hence xnycp,(x). 

(ii) Suppose x L. y exists. Then 

~~(~)up~(Y)=(xnp,(xuY))U(Ynp,(xuY)) (by (9) 

=PA(XUY)n(XUY) (distributivity) 

=Pa(xUY). 

The sup of any set is equal to the directed sup of its finite subsets. Our projection 

preserves both kinds of sups, hence arbitrary sups. 0 

The intersection of an arbitrary set of strong ideals is again a strong ideal. This 

immediately gives us the following theorem. 

Theorem 2. The set (Y’.F,, C) of strong ideals on a (distributive) domain 9 is a 

(distributive) algebraic lattice. 

The second condition on projections we want to consider here is also easily 

motivated by the example of flat record structures 2 + ‘V1. Suppose we project onto 

records with labels from some subset L of 22 and we find that a record s is projected 

onto pL(s) below some s’ E L+ 7f1. This means that pL(s) contains null values for 

some labels from L and can be updated using the corresponding entries of s’. It is 

clear, then, that s itself can be updated, resulting in the record s U s’. We incorporate 

this property in our model as follows. 

Definition. A strong ideal A in a domain 9 satisfies the slide condition if Vx E 9. Vy E 

A. (pa(x)cy-xUy exists). A co-chain S in 9 is a scheme if IS is a strong ideal 

which satisfies the slide condition. The corresponding projection we denote by ps 

(instead of pls). 

We first note that projections defined by schemes fit in with our proposed 

semantics. 

Theorem 3. A strong ideal A on a domain 9 is generated by a scheme if and only if 

vx E 2% P.4U& =uPA(Xm‘t. 

Proof. (“+“) Let x be maximal in 9 and suppose pA(x) is not maximal in A, that 

is, p+,(x) c y E A. By the slide condition, x U y exists and since x is maximal, x U y = x 



Using powerdomains to generalize relational databases 35 

and pA(x)7y. Contradiction. Given any XE 9 and any y E [pa(x)la, the sup of x 

and y exists and is below some maximal element z of 9. Clearly, pA(z) = y by the 

maximality of y. 

(“e”) Given XE 9 and y E A, yip+,, let y’ be an element of A,,, above y. 

This element must be in the image of pa[xlS, that is, there exists an element z of 

9 mcIx n TX which is mapped onto y’. Therefore x and y are bounded and XL. y 

exists. 0 

In Section 7.1 we shall further substantiate our claim that schemes properly 

generalize the notion of schemes in relational database theory by showing that 

schemes in the domain Y’+ V1 of flat record structures correspond exactly to the 

subsets of 22. 

Lemma 6. Let 9 be a distributive domain. 

(i) If A and B are strong ideals generated by schemes then so is AU B = 

{aLlblaEA, bg B}. 

(ii) If A and B are strong ideals generated by schemes then so is A n B. 

(iii) If (Ai)i,, is any set of strong ideals generated by schemes then so is uli, Ai = 

{Ll,EI ai 1 ai E Ai}. 

(iv) If A, B are schemes then so is AU B = {a U b 1 a E A, b E B}. 

(V) If (At)ict is any set of schemes then so is U,Er A, = {u,E, ai 1 ai E Ai}. 

Proof. (i) AUB is downward closed: xEaUb implies x=xfl(aUb)=(xfla)U 

(xn b) and xn a is in A and xn b is in B. If M is a bounded subset of AU B then 

M,={aEAlgbEB.aUbEM} and M,={bEBI3aEA.aUbEM} are bounded 

and UM,=m,EA and UM,=m,EB. Hence UM=m,Um, is in AUB. As 

for the slide condition, assume that x is an element of 9 and that patie is below 

some aUb. Because p,(aUb)za and p,(aLJb)zb we may assume that a= 

pa(aUb) and b=p,(aUb). We can then calculate: pA(x)=pA(pAUB(x))~ 

pa(a U b) = a and similarly p,(x) E b. Since A satisfies the slide condition, the sup 

of a and x exists and by Lemma 5, pe(aUx)=p,(a)Up,(x)cp,(aUb)Ub=b. 

Using the slide condition for B we find that the sup of aUx and b must exist. This 

proves the slide condition for AU B. 

(ii) An B is clearly a strong ideal. The slide condition is seen to hold by the 

following argument. If pa, iB(x) is below y E An B then because of pAns = pa 0 pe, 

pa maps pB(x) below y. Hence yUp,(x) exists and is an element of B. Using the 

slide condition for B we see that y U x exists. 

(iii) If Z is empty then Uit, A, equals {I} which is a scheme. If Z is infinite then 

we may think of Z as the directed union of its finite subsets. From part (i) we already 

know how to construct the sup of a finite set of strong ideals, so it remains to 

consider directed collections. Assume, therefore, that Z is directed and that Ai c Aj 

whenever is j. Given an element x of A = Ult, Ai first note that x = Uic, p&x) 

and that this join is directed. It is clear that A is a strong ideal. Let X be any 



36 P. Buneman et al. 

element of 9 and let y E A be above pA(x). Then for each 

pa, ( pA( x)). So the sup zi = pA, (y) U x exists and the directed 

the sup of y and x. Therefore A satisfies the slide condition. 

i E I, pa,(y) is above 

sup of all zi gives us 

(iv) By (i) it remains to show that AU B is an independent set. Indeed, if x is 

above a, U b, and a,L! b2 it follows that a, = a2 and b, = 6, because both A and B 

are independent sets. 

(v) Same proof as for (iv). 0 

Distributivity is essential for Part (i) of this lemma, as the example shown in 

Fig. 5 demonstrates. There the pointwise sup of the schemes {a,, a2, I} and 

{b, , b,, I} does not satisfy the slide condition. 

We plan to present a deeper investigation into the mathematics of schemes in a 

later paper, but mention that ideals generated by schemes form a complete lattice. 

a2 

Fig. 5. A domain where the join of two schemes cannot be calculated pointwise. 

Theorem 4. If 9 is a distributive domain then (.!Y9, Lo) is a distributive complete lattice. 

In the remainder of this section we shall work with the generating co-chain of 

an ideal, that is, with schemes. It turns out that the ordering G on strong ideals is 

replaced by the Egli-Milner ordering g7 on schemes. 

Theorem 5. If A and B are schemes on a domain 9 then A ~~ B ifand only ifA G” B. 

Proof. (‘3”) Let x be an element of B and let y be maximal above x in 9. Then 

pa(y) = pA(ps(y)) = pA(x) and therefore pA(x) is maximal in LA which means that 

it is contained in A. 

“W’ If x is an element of A, let y be maximal in 9 above x. Since x = pA(y) 2 

p,(ps(y)), the sup of x and ps(y) exists. ps(y) is maximal in JB and because of 

A G* B it is above some x’ E A. The set {x, x’} is bounded by x Up,(y) which is only 

possible if x =x’. Hence xcpH(y) and A & B. 0 

So far we have discussed the projection of individual elements (“records”) into 

strong ideals. We shall now proceed to discuss the projection of relations, that is, 



Using powerdomains to generalize relational databases 37 

finite co-chains. The obvious choice, namely, to apply the projection pointwise, has 

its particular applications. However, we might not get a co-chain as the image. 

Throwing away redundant information means in our case to keep only the maximal 

elements of the image. 

Definition. Let 9 be a domain and A be a scheme in 9. 

(i) The function rrA: Vi9 + %Ls is defined by ITS = {x E p,(R) 1 x maximal in 

p,(R)}. 
(ii) If R E %‘* is a subset of A, we shall call R an instance of A. 

(iii) If R E +Zy is a subset of LA, we shall call it a subinstance of A. 

Theorem 6. Let A, B be schemes in a distributive domain 9. 

(i) If R is an instance of A then R & A and A C” R. 

(ii) If R is an (sub-)instance of A and S is an (sub-)instance of B then R w S and 

R Uq S (ifit exists) are (sub-)instances of AU B and R Ub S is a subinstance of AU B. 

(iii) If R is an instance of A then ‘TT~(R) is a subinstance of B. 

(iv) If R is a finite co-chain in 9 then pA( R) w R = R. 

(v) If R is a jinite co-chain in 9 then rr_,,( R) w R at R. 

(vi) If R is ajnite independent set in 9 then QT~(R) w R 2’ R. 

Proof. Of these only (vi) is nontrivial. One half of the Egli-Milner ordering follows 

from (v). As for the “Hoare’‘-part we can copy the corresponding proof of 

Theorem 5. 0 

Let us recapitulate the development of our theory so far. We have exhibited a 

general structure which may take the place of attribute value sets in relational 

databases, namely distributive Scott-domains. We proposed to model relations as 

finite co-chains in these domains. In Lemma 2 we have shown that relations form 

a distributive lattice under two natural orderings which correspond to the two 

intuitions one might have about a relation: One being that a relation gives information 

about a part of a set of real-world objects, the other being that a relation approximates 

every element of a set of real-world objects. We then proceeded to model the notions 

of scheme and projection and found (Theorem 4) that schemes form a distributive 

complete lattice. This says that the set of schemes is nearly a powerset and allows 

to intepret intuitionistic logic in it. Along the way we have indicated the possibilities 

for fine tuning in this model: Using independent sets instead of co-chains or 

generalizing schemes to strong ideals. We shall now go on to test our theory in two 

fields, that of functional dependencies and that of universal relations. 

5. Functional dependencies 

We start again with the familiar example of a relational database. Given some 

set of functional dependencies and given a set A of attribute names one can use 



38 k? Buneman et al. 

Armstrong’s Axioms in order to produce a set A’? A which contains all attribute 

names depending on A. In our domain theoretic setting we may view this process 

as a function on the lattice of schemes, which is monotone, idempotent and increas- 

ing. These functions are the exact counterpart of projections as discussed in the 

previous section. 

Definition. A closure on a domain 9 is a monotone function f: 9 + 9, such that 

fof=fgid9. 

Lemma 7. Let 9 be a domain and f, f’ be closures on 9. 

(i) f(x)=n{yIf(y)=yax). 
(ii) faf’eim(f)r im(f’)ef of’=f’of =f 

(iii) f preserves all existing sup’s. 

(iv) im (f) is closed under nonempty inf ‘s. 0 

This is, of course, the exact dual of Lemma 4. Note that because of part (iii), 

closures are always continuous. 

Given a function f: 9 + 9, we can define a relation f, 9 x 9 by f = 

{(x, y) 1 y c f (x)} and obtain an immediate connection with Armstrong’s Axioms. 

Theorem 7. If f is a closure in 9 + 9, f satisfies 

(a) Vx,y~9 ifx~y then (x,y)~j(r 

(b) if Sc_ 9 is such that Vy E S. (x, y) of then L. S exists and (x, US) ~7, and 

(c) Vx,y,zED.(x,y)Efand (Y,~)E~J(x,z)E_~ 

When 9 is finite (b) may be replaced by 

(b’) forx,y, w~9if (x,y)EfandxUwexiststhenwUyexistsand (wUX, wUy)~ 

.? 
Conversely, supposefz 9 x 9 satisfies (a), (b) or (b’) as appropriate and (c) above 

anddefinef:9+9byf(x)=U{y~(x,y)~~}. Thenfisaclosure. 

From which (a), (b’) and (c) are immediately seen to be generalizations of 

Armstrong’s Axioms. Before discussing the connection, we should prove this result. 

Proof. (a) follows immediately from the definition of a closure since if yrx, then 

y cf(x) and (x, y) E_? (b) is also immediate because f(x) must be a bound for S, 

therefore US exists and LlS~f(x). To show (c), if (x,y)~f then y&f(x) and by 

monotonicity and idempotence f(y) &f(x). The conditions also imply z&f(y). 

Combining these last two inequalities we have zcf(x), i.e. (x, z) EJ Conversely, 

we first note that condition (b) implies that U {y 1 (x, y) ET} exists and f is well 

defined. If x1 EX, and (x,, y) ET then (x,, y) of by (a) and (c) so that {y 1 (x,, y) E 

fMYI(x2,YkJI, and hence f(x,) cf(xJ guaranteeing monotonicity. By (a) 

(x,x)E~ so f(x)zx. Finally, by (b) (x, Ll{yI(x,y)~j:})~x and so (x,f(x))Ej; 

similarly (f(x), f(f(x))) of: Using (c), (x, f(f(x)) E? and so f(f(x))cf(x). But we 

have just shown that f is increasing. Hence f( f(x)) = f(x). 



Using powerdomains to generalize relational databases 39 

Suppose (a), (b), (c) hold and that (x,Y)E~ For any WEE, (wUX, W)E~ and 

(wUx,x)~J by (a) and by (c) (wLJx,y)~j Therefore, by (b) (wUx, wLly)~J 

Conversely, assume 9 finite. First note that, by putting w = x in (b’) we have XU y 

exists. Suppose Vy E S. (x, y) E 3 If S has just two members, y, , y, then (x, x U y,) E 7 

by (b’) and (x, XU y,Llyz) EJ: by (c), therefore y,U y, exists. Using (c) and (a) we 

get (x, y,Uyz) l 1 i.e. (x, US) EJ By induction, we can repeat this argument to 

derive (b) for any finite S. 0 

Armstrong’s Axioms are precisely (a), (b’), (c) when applied to the lattice of 

subsets of the set of attribute names. Related characterizations of Armstrong’s 

Axioms in a lattice-theoretic setting have been given by [20]. It is also interesting 

that in Scott’s information systems [42] functions on domains are defined by a 

similar device of taking approximating relations. 

We now connect this abstract notion of a functional dependency with our earlier 

semantics in which sets of attribute names are represented by schemes. A relation 

satisfies a functional dependency A + B if any two tuples that agree on the attribute 

names A agree on the attribute names B. Another way of stating this is to follow 

[16] and say that a relation r satisfies A+ B if the partition on r induced by A (i.e. 

the equivalence relation induced on the tuples by equality on A) is finer than the 

partition induced by B. In the standard theory there are no null values allowed in 

places corresponding to attributes from Au B. We keep this strong interpretation 

of satisfaction. 

Definition. Let A, B be schemes in a domain 9. A relation R E %& satis-es the 

functional dependency A+ B if R 3% A and R 2’ B and if pA(x) =pa(y) implies 

p8(x) =pe(y) for all x, y E R. 

Theorem 8. For relations in distributive domains Armstrong’s Axioms are consistent 

and complete. 

Proof. Given a relation R in a distributive domain 9 and given a scheme A c’ R 
it is clear that R satisfies A+ A. If S is a collection of schemes and R satisfies A+ B 

for all BE S and some scheme A, then S is bounded by R in the Smyth ordering. 

We claim that the sup of S is also below R: If x is an element of R and B is a 

scheme contained in S then x is above some element xs of B. Therefore x bounds 

the set X = {xs 1 B E S}. The sup of X is an element of u S by Lemma 6 (v) and is 

below x. This proves u S E# R. Assume, then, that pA(x) =pA(y). By assumption 

weknowthatp,(x)=p,(y)forall BES. Hencewealsohavep,,(x)=U,,,p,(x)= 

Utlts PLJ(~) = PUS(Y), which proves A+ U S. 
It is clear that transitivity holds. This proves that Armstrong’s Axioms are correct 

with respect to our definition of satisfaction. 



40 I? Buneman ef al. 

Completeness is trivial because we have more models available than in the 

relational case. 0 

It is an immediate consequence of the preceding theorem and Theorem 7 that a 

relation R E ?‘& induces a closure f on the lattice of schemes with the property 

f(A) 1 B if and only if R satisfies A + B. 

Our definition of satisfaction of a dependency requires that the relation under 

consideration contains no partial information. If a relation does contain partial 

elements, a different concept is called for. 

Definition. Let A, B be schemes in a domain 9. A relation R E %, is consistent with 

the functional dependency A -+ B if there is a relation R’ zh R which satisfies A + B. 

This is natural enough. However, in a practical instance consistency may be hard 

to check. We therefore introduce a weaker notion of consistency with a more 

operational flavor. Given a scheme (or any independent set) A and a relation R 

then A induces a partial equivalence relation -A on R: x -A y if there is a E A such 

that a r x, y. We may say that --,., identifies those elements in R which contain the 

same total information in their A-part. By R/A we denote the set of equivalence 

classes of -A. 

Now assume that A + B is a dependency where A cti B and that R is some relation. 

The result of restricting R to the “columns” of B is expressed by n,(R). Wherever 

two elements of ITS contain the same total information in their A-part, con- 

sistency with A+ B implies that their B-part can be updated to a common (total) 

value. This amounts to saying that each equivalence class in rrTTB( R)/A has an upper 

bound in 9. Let us denote the resulting set of suprema by (T,(R)/A)~. Formally 

we define 

Definition. For A C’ B schemes and R a relation in a domain 0, we say that R is 

weakly consistent with the dependency A + B if (T~(R)/A)~ exists. 

Remember the example of physical constants, given in Section 2. Certainly we 

expect that the name of a constant will imply its value, although the exact numbers 

will never be known. To say that our database is weakly consistent with the 

implication name of constant + [lower bound, upper bound] amounts to the require- 

ment that the entries for the same constant report intervals with at least one common 

point. 

The reader will have noticed that weak consistency makes no requirement about 

those elements of the relation R which contain partial information in their A-part. 

The philosophy here is that any finite set of elements with partial information over 

some scheme A can be updated in such a way that its elements are pairwise different 

in their A-part. We may call a domain in which this is always the case rich and 

obtain the following immediate characterization. 



Using powerdomains to generalize relational databases 41 

Lemma 8. A domain 9 is rich if and only iffor each x E 9 the denotation [xl of x 

cannot be covered by a finite set of denotations [yin with all yi E x. 

With this we can formulate the following theorem. 

Theorem 9. Let A C’ B be schemes in a domain 9. Let R be a relation in 9. If R is 

consistent with A+ B then R is weakly consistent with A + B. If LA is rich and D 

distributive then the converse also holds. Moreover, if R’ 2’ R and R’ satisjies A -+ B 

then R’ zb ( nB( R)/A)-l. 

Proof. Suppose R’ 2’ R and R’ satisfies (A, B), then TV zb rTTB(R) and the 

members of ( rTTR( R’)/A) are singleton sets. Thus any class in (n,(R)/A) is bounded 

above by one of these singletons, and ( nB( R)/A)U exists. This also establishes the 

second part of the theorem. Conversely, if (T,(R)/A)~ exists, we have, for each 

aEA, the element b,=U{rlrErTTR(R) and rza}c&B. Now for each rcRn?A 

form the point r’ = b, U r with a E A being the unique element of A below r. (This 

is where the slide condition comes in.) The set R’ of these points certainly satisfies 

A+ B. But we also have to update the other elements of R which contain partial 

information in their A-part. We use the assumption that LA is rich for this. The set 

pA( R\TA) is a finite poset contained in &A. Because &A is rich, we can find elements 

FE upA(r such that r, # r2 implies r, # f* and also r# PA(r)) for all r’E R’. (Given 

rEpA(R\?A), choose ~~Udl~\(U{tsIs~r, ~E~,(R\~A)}~U{~~‘I~‘ER’}).) 
Finally let F be an element of B above FUp,(r) for each PA(r) E~,(R\TA). The 

set i of all these elements satisfies A+ B and so does R’u l? Ll’ R. 0 

Dependencies are often divided [46, 241 into two classes, those like functional 

dependencies that generate equality constraints and those that generate new tuples. 

The “chase” is a procedure that performs all possible inferences on a set R to 

produce a new set R’ where R’ a3 R. In fact, we can also use functional dependencies 

in the same way. The co-chain (v,(R)/A)~ describes the inferences that can be 

made, given that R is consistent with A + B. In fact the co-chain 

T=((T,(R)/A)~~ R)Ub R (1) 

is the least (in cb) set that contains all these inferences. Note that T is the outer 

join of (T,(R)/A)~ and R and that R c’ T. 

6. Universal relations 

Without involving ourselves in a discussion of the usefulness or practicality of 

the universal relation assumption [47, 48, 21, 61, we now investigate a general 

characterization of universal relations that shows how the general form of their 

implementation can be derived from their abstract properties. Behaviorally, a uni- 

versal relation can be thought of as a simple query language, or transducer, in which 



42 P. Buneman et al. 

the possible queries, or inputs, are sets of column names and the output from the 

input of a given set of column names is a relation defined on those names. More 

precisely, we can think of a universal relation as a function p : Y, + T& with the 

property that p(S) is an instance of S, i.e. p(S) G S. 

In a survey [25] of the various definitions of universal relations Maier et al. give 

a condition, “containment”, that all reasonable definitions satisfy. The condition, 

which is also noted in [41], is that if A, B are schemes with A cti B, then ~~(p( B)) c 

p(A). This is equivalent to requiring that p be monotone as a function from schemes 

under the natural ordering to the finite co-chains V& under the Smyth ordering, i.e. 

if A c’ B then p(A) E’ p(B). There are various ways of obtaining such a function. 

A particularly simple method is given by the total projection of an arbitrary subset 

T of 9 onto the schemes of 9, 

p(A) = vA(Tn?A). (2) 

(The expression v~( T n ?A) is called the total projection of T onto the scheme A.) 

A more genera1 method is obtained by projecting onto A those subsets T of some 

collection T of finite subsets of 9 that are contained in the upward close of A, 

~(A)=u{~~(T)ITET and TcTA}. 

Most of the various definitions of universal relations given in [25] appear to be 

expressible in this form. Lemma 9 is readily proved from Theorem 6. 

Lemma 9. If A is a scheme, and S,, S, are co-chains in 23 with S, 2’ A and S2 2” A 

then T~(S, n” SJ = T~(S,)U v~(&). 

By using Lemma 9 we can write (3) as p(A) = rA(Fl” { TE TI T C’ A}). We shall 

call a universal relation that can be described in this fashion a closure universal 

relation (because this last equation is closely related to the definition of a closure 

in (&, E’). By taking T as a collection of singleton sets, equation (2) can be seen 

as a special case of (3). An example of a universal relation satisfying (2) is the 

universal instance assumption, which says that p(A) = v~( I) where I is a subset of 

the maxima1 elements of 9. 

Theorem 10. A universal relation dejined by the universal instance assumption is a 

closure relation. 

Proof. The proof follows immediately from the observation that Z, being a finite set 

of maxima1 elements, is contained in ?A for any scheme A. 0 

Another reason for believing that closure universal relations are an appropriate 

class to consider is given by the following result. 



Using powerdomains to generalize relational databases 43 

Theorem 11. In the relational domain 9 = 9+= vL, any universal relation satisfying 

the containment condition is a closure universal relation. 

Proof. If p is the given universal relation define p’(A) = ~~(n” {p(B) 1 BE Y’, and 

p(B) c_ ?A}). p’ is then a closure universal relation, and we need to show that, for 

any scheme A, p(A) = p’(A). Because we are dealing with the relational domain, if 

B is a scheme such that 4 #p(B) s ?A then B ;‘A. Using this fact and the 

containment condition, whenever p(B) E ?A, we must have v,(p(B)) G p(A). Hence 

p(A) = p’(A) for any scheme A. 0 

It is not true that any universal relation satisfying the containment condition can 

be cast in the form of a closure relation. Consider, for example, the domain in 

Fig. 6, in which the schemes are A, = {I}, A, = {a,, a,, d}, A3 = {b, , bZ, d}, A, = 

{aI, a2, e, , e2}, A5 = {b, , bZ, e, , ez} and A6 = {c, , c2, c3, c4, e, , ez}. Now consider a 

universal relation p such that p(A,)={l}, p(A,)=p(A,)={d}, p(AJ={e,, e,}, 

p(A,) = {e,} and p(A,) = {e,}, which satisfies the containment condition. If p is a 

closure universal relation, then T (as used in (3)) must contain a set T which 

contains e2 such that T c TA4, but T cannot be contained in ?A5 because e2 is not 

a member of p(A,). Therefore T must contain a, or a,. But if this happens then 

p(A,) must also contain a, or az, which contradicts the definition of p. 

Fig. 6. A universal relation not extending to a closure. 

A more sophisticated example of a universal relation definition arises from the 

F-weak instance universal relation [25]. Suppose we are given a set of schemes 

{R,, Rz,. . . ,R,} in 9 and instances ri G R,, i E 1, . . . , n. Suppose we are also given 

a set F of functional dependencies and that Ub {ri 1 i E 1, . . . , n} is consistent with 

F. Consider the universal relation defined by 

p(C) =n {T~(S’)(S’J~ ri, ie 1,. . _, n, S’E %& and S’ satisfies F} (4) 

which, for each scheme C defines an instance of C. Let us assume, for simplicity, 

that F+ is generated by the single nontrivial dependency (A, B) where B 2’ A. 

From (1) of the previous section, we can write p(C) as 

P(C) = TC(((Q(S)/A)~ w S) Ub S) (5) 



44 l? Buneman ef al, 

where S=Ub{~,Ii~l,..., n} and rc( T) is the total projection of a set T onto C, 

rc( T) = $Tc-( 7-n TC). 

By manipulation of (5) we can now write it in a form consistent with the general 

form for closure universal relations given in (3). First observe that if S,, S2 are 

co-chains in 9, then rc (S, Ub S,) = TV u TV. Therefore we can rewrite (5) as 

P(C) = rc.((r~(S)/A)~’ w S)u U Tc({c 1 Ri 2’ Cl). (6) 

Now consider the set Q = ( nB( S)/A)U which, by the definition of S is (rB(Ub {ri 1 i E 

1, . . . , ~I})/A)~, by the distributivity of (%:,, cb), Q = (Ub {ra( r,) 1 i E 1,. . . , u}/A)~. 

A point in Q is the least upper bound of some set of points, each chosen from some 

~a( ri) where R, 2’ A. Let I be the set of indices of all such schemes, I = {i I i E 1, . . . , n 

and Ri 2’ A}. We can then express Q as 

The term rc (( T~( S)/A)L tx S), which is the left-hand component of (6) can therefore 

be written as the union projections of terms of the form 

rio W rf3(ri,) W nt3 (ri,) W . . . Wrf3(r,, 1 (8) 

where Rjiz9Aforj~l,..., k. The right hand component can, trivially, be written 

in this form too. 

We have therefore succeeded in reducing the universal relation definition given 

in (5) to the projection of the union of a set of joins. More importantly, (5) is an 

example of an “FD-join” expression. A theorem of Maier et al. and Chan [25, 151 

shows that the F-weak instance universal relation (5) can be computed as the union 

of FD-joins. Their proofs work by considering the properties of specific algorithms, 

whereas by considering the general properties of the spaces involved we have been 

able to produce a reasonably concise algebraic derivation. It should be noted that 

the proof outlined here is incomplete. We need to close this off under all functional 

dependencies; but this presents no difficulties. 

7. Higher order relations and other models 

One of the contentions of this paper is that much of our theory of relational 

databases is independent of the detailed structure of the relational model and 

depends only on some rather general properties of the spaces out of which we can 

construct such a model. It should be stressed that we have based the preceding 

analysis only on the assumption that the underlying space was a domain. Nowhere 

did we assume that we were dealing with relations, although we frequently appealed 

to the first-normal-form relations for examples. 



Using powerdomains to generalize relational databases 45 

In trying to generalize various operations, we had no problem with the natural 

join, but in order to make projection generalize smoothly when dealing with func- 

tional dependencies and universal relations, we had to characterize first independent 

sets and then schemes. We shall therefore be particularly interested in identifying 

schemes in these other models. If we can do that, we can be sure that the basic 

ideas of functional dependencies, universal relations etc., generalize properly. 

7.1. Typed first-normal-form relations 

We have seen that the domain 2?+ clr, of flat records is a domain of the relational 

model in the preceding sections, and it deserves little extra comment here. As we 

have noted earlier, this domain is a special case of a product domain. 

Given a function F from a set of labels 2 to a set of sets S, a labeled product 

n,, Y F(Z) is the set of functions f: 2’+ U S such that for all 1 E 22, f(I) E F(I). If S 

is a set of domains, then n,, Y F(I) is also a domain, a domain of labeled products, 

under the componentwise ordering, i.e.f, cfi ifff, (l) ~f~( I) for all 1 E 2. Furthermore, 

a scheme in a domain of labeled products is a product of schemes, i.e. it is easy to 

proof the following lemma. 

Lemma 10. The set ofschemes in nIIEY F( 1) is the set of labeled products of the form 

fl,,, 4(I), where 4 is any function from 2 to IJ {Ys 1 SE S} such that 4(I) E YFC,). 

Since the domain of flat records Z+ ‘Ir, is the domain of labeled product nltr YfL, 

where we take 2’, as the constant function on 2, the above result shows that a 

scheme in this domain is a product nlti, 4(I) where C$ is any function from 2’ to 

YI._ . Since YTpzL = {{i}, V}, each such function 4 : 22 + .Y, i is identified by the subset 

L = {II $(I) # {I}} of 22 and the corresponding scheme is isomorphic to the set of 

total functions from L to V. Therefore the set of all schemes in this domain is 

isomorphic to the set of spaces of total functions L+ ‘If, LG 2 and is identified by 

the set of all subsets of 2. However, restrictions on these function spaces do not 

produce schemes, for example 

{{Nume+s; Ageqi; Shoe-size+i}Is, ig 2’) 

is not a scheme if V has more than one element. 

If we require that the columns of a relation are “typed”, we are given a set of 

flat domains ^y_ and an assignment of domains in V to labels in 2, i.e. a function 

@: 2’+W” (Q(1) are called “domains” in database parlance). Then the domain of 

typed flat records LB@ is the domain of labeled products sn, = n,, y @(I). A scheme 

in this domain is a product n,,. 4(I) where C$ is any function 4 :2+l_l,E,j Y*(,, 

such that for all I E 2, 4(I) E .YOcr,. Since each @(I) is a flat domain, YOcr, is either 

{I} or the set of all maximal elements in Q(Z). Thus the set of all schemes in this 

domain is isomorphic to the set of all product domains of the form nlCL @(I), 

LC 2. If each @(I) is represented by a type rlr then for a finite L = {I,, . . . , I,,}, a 

scheme nliL @(I) is represented by the type {I, : T,, , . . . , /,, : T,,,}. 



46 P. Buneman et al. 

7.2. Null values 

Our first “nonflat” example arises from the introduction of null values, which 

give rise to an ordering on tuples. The framework that we have developed here 

should allow us to ascribe semantics to the various kinds of null values and to 

investigate how the mathematical properties generalize. 

Combining work in [9, 22,401 Zaniolo [49] introduced an ordered space V, with 

null values shown in Fig. 7. 

Fig. 7. A domain V, with null values. 

li is interpreted as no information; ne, means nonexistent, or wrong; uk, means 

unknown-a value exists (other than nei), but it is not yet known. 

Tree-like domains such as this are domains with a particularly simple structure. 

In fact we can call a domain 53 a tree if, whenever x, y E SB and x LJ y exists then 

xcy or ycx. A section of a tree !B is a set S such that any path in 63 from the root 

(I) to a leaf contains exactly one member of S. The following results characterize 

independent sets and schemes in a tree. 

Lemma 11. 9 is a tree if %& = 9, (i.e. the co-chains are the independent sets). 

Lemma 12. S is a section of 9 iff it is a scheme for 9. 

For example, the schemes for V, in Figure 7 are {li}, {nei, uki} and 

{nei, v,‘, vf, . . . , vl~}. 

We can use this to define domains of typed records with null values by simply 

replacing flat domains with tree-like domains in the previous development. Given 

a set 9 of tree-like domains and a type assignment @ : 2 + 9, a domain of typed 

records g@ is the domain L?3@ = n,,, @(I) of labeled products. A scheme in this 

domain is a product nrEY +(I) where 4 is a function 4 : Lk’-+ lJlty Y@(l) such that 

for all 1 E 3, +( 1) E YQC,). Unlike the case of typed flat records, YOc,, may contain 

schemes which are neither {I} nor the set of maximal elements in @(I) and the set 

of schemes in this domain is no longer isomorphic to the set of products of the 

form ILL @(I), L E 3. In order to represent schemes in this domain in a type system, 



Using powerdomains to generalize relational databases 41 

we need to define “scheme-types” to represent schemes 9$-, FE F. We will show 

an example of such a definition in the next section. 

This allows us to establish that the whole apparatus of functional dependencies, 

universal relations, etc. works smoothly in the domain of relations with null values, 

i.e. relations defined over tree-like domains. 

To take an example, in a payroll database, the values {u: , vf , . . . , vrx} could be 

the state tax rate with ne, being used when such a tax was inappropriate, e.g., for 

overseas employees. There is then a functional dependency ADDRESS+ 

{ne,,v,‘,vf ,..., vT1) and an inferred dependency ADDRESS+ {nei, uki}. The 

investigation of such dependencies may be useful when attempting to do database 

design on databases with exceptional values such as those investigated in [lo]. 

7.3. Record structures 

In programming languages such as Pascal, record types are constructed both by 

giving a labeled set of fields and by giving a case statement or discriminated union. 

Moreover, record types can be components of other record types, and we can carry 

this construction to any depth. The domains of such records allow us a further 

generalization of the domains we have just considered. These domains can also be 

regarded as the domain of feature structures which are used to represent linguistic 

information [43]. 

In the previous sections, we have constructed domains and their schemes of 

first-normal-form relations with null values by using labeled product constructors. 

By simply iterating this construction process, we can construct domains and schemes 

of general record structures without discriminated union. Domains corresponding 

to discriminated union can be constructed by labeled sum constructors. 

Given a function F from a set of labels 25 to a set of sets S, a labeled sum C ,E,Y F(I) 

is the set of pairs {(I, v) 1 v E F(l)}. If S is a set of domains, we define the domain of 

labeled sums Cf,, F(Z) to be the set {(I, v)l v E F(I)} u {I}. This is indeed a domain 

under the ordering defined as x cy if and only if either x = I or x = (Z, v) and 

y = (l, v’) and v c v’. Corresponding to the result for labeled products (Lemma lo), 

a scheme in a domain of labeled sums is a labeled sum of schemes, i.e. it is easy 

to prove the following. 

Lemma 13. A scheme in Cf,,, F(Z) is either the singleton set {I} or a labeled sum 

CltY S(Z), where S is any function from 2’ to I., (9’s 1 S E S} such that S(l) E LfF(l,. 

Starting with given primitive domains such as the flat domain of integers, we can 

now construct domains of record structures by applying product and sum construc- 

tions. We can then identify the set of schemes in those domains. Suppose we are 

given primitive domains 93,, _ . . , 6ZZ13, with corresponding sets of schemes 
Y .%, 3 . . . 9 Y,,7. Then we can define the family Dom of domains with associated sets 

of schemes generated by 93,‘s as 

(1) 93; E Dom. The associated set of scheme is 5Ffi,. 



48 I? Buneman et al. 

(2) If 9 c Dom with associated sets of schemes Lf9, 9 E 9, then for any function 

@:9?+9, 9@=nltY, @(I) E Dom with the set of schemes 

(3) If 9 s Dom with corresponding sets of schemes Yhr‘, 9 E 9, then for any 

function 0:9+9, adO =C:,, O(Z) E Dom with the set of schemes 

Dom corresponds to domains of record structures generated from primitive values 

in 93,). . . , B3,. 

We give an example of concrete representation of domains of record structures. 

By the analogy of a type system of a programming language, we call expressions 

representing domains types and define the membership relation between records 

and domains as typing rules. We will comment more on the relationship between 

domains and types in a programming language later. We start with types. A type 

expression is one that can be constructed by the following rules: 

(1) B,, . . . , B,, the (names of) base types such as int, bool, string etc. are type 

expressions. 

(2) If ?-r,rz,. . . , T,, are type expressions then {Ii : T, ; 1,: TV; . . . ; 1, : 7,) is a type 

expression. 

(3) If r1,rz,...r 7, are type expressions then [I, : 7, ; 1,: TV; . . . ; 1, : ~~1 is a type 

expression. 

The notation [I, : T, ; Z2 : TV ; . . . ; 1, : T,,] indicates a discriminated union. An example 

of such a type expression is 

T, = {Name : string; Age : int; Status : [Employee : { Ofice : string; 

Extension : int}; Consultant : {Address : string; Telephone : int}]}. 

The syntax for records is similarly defined. 

(1) For each base type B, we assume that we are given the corresponding primitive 

domain CB such as the flat domain N, of integers. Then elements in LB are records. 

1% represents a null value in %? 

(2) If II, r2, . . . , r, are records then {I, =+ r, ; I,=+ r2 ; . . . ; I, + r,,} is a record. 

(3) If r is a record, [l=+r] is a record. 

(4) If T is a discriminated union type then 1, is a record. 

The following is an example of record. 

r, = { Name+‘1 Doe’; Age=+21; Status+[Ernployee 

=+{OfJice~Gl; Extension35556}]}. 



Using powerdomains to generalize relational databases 49 

Moreover, we regard the record r, having the type T, . Formally, a record r has type 

r if one of the following conditions holds: 

(1) TE 9 and T is the base type B corresponding to 9% 

(2) r={Z,*r 1;ZZ~rZ;...;Zn~r,},T={Z,:T,;Z2:T2;...;Zn:T,},andr,hastype 

TV for 1 d i C n. 

(3) r=[Zidri], T=[Z,:T,;Z~:T~;...;Z,,,:T,,,], ism,and ri hastype 7;. 

(4) r=L T=[zl:T ,,..., z,:T,,]. 

Records are ordered by the following rules: 

(1) zl c v’ if v, U’ E 9 and U, U’ are ordered in 9% 

(2) {Zr*rr; Z2*r2;. . ; Zn*rn}C{Z,*r:; Zz=9r;;. .; Z,*rk} if ricr: for all 

lSiC?7. 

(3) [Z=+r]C[Z*r’] if r&r’. 

(4) l_,cl_, for any discriminated union type T. 

(5) -LL,l..I ,...,,, >:,,,,L[Z,+r] if 1s is n and r has type 7;. 

Informally, one record is better than another if it has better values in the same 

fields. For example, if 

r2 = { Name+‘J. Doe’; Age+li,,; 

Status+[EmpZoyeeJ{ Ofice+ G7; Extension +L~,,]} 

then r,c r, . From these definitions we can immediately see that the set of all records 

of a type T is a domain 9, belonging to the family of domains Dom constructed 

from the set of primitive domains %‘, , . . . , W, and the ordering relation on records 

corresponds exactly to the orderings on domains in Dom. 

We next define the syntax of scheme-types for a type 7. 7’ is a scheme-type for 7 

if 

(1) T is a base type and T’ = T or T’ = unit,. unit, denotes the trivial scheme {I#} 

in 93. 

(2) T’={Z,:T~;Z,:T~;...;Z,:T~},T={Z,:T,;Z~:T~;...;Z,:T,}~~~T/~~~~~~~~~- 

type for T;, for 1 S is n. 

(3) T’=[/,:T;;&:T;;... ; I,, : T;], T = [I, : T, ; I,: T*; . . ; I,, : ~~1 and T: is a scheme- 

type for 9, for 1 d is n. 

(4) T’ = unit, and T is any discriminated union type. unit, denotes the trivial 

scheme {.L~} in 9,. 

The following is a scheme-type of the type T, defined in our example of a record 

type above: 

TV = {Name : string; Status : [Employee : { Ojjice : string; 

Extension : uniti,,}; 

Consultant : (Address : string; 

Telephone : uniti,,}]}. 

Moreover, we regard the record r2 having the above scheme-type 72. Formally, a 

record r has a scheme type 7 if 

(1) rE9, and T= B,. 



50 P. Buneman et al. 

(2) r = IBB,, T= unit,,. 

(3) r={Z,*r,; . . . . Z,=Sr,}, 7={11:7 ,,..., I,: T,,} and ri has the scheme-type 7i 

for 1CiGn. 

(4) r=[&=5ri], T=[&:T,,...,/~:T,,], isn and r, hasscheme-type Ti. 

(5) I,, and 7 is any scheme-type of any discriminated union type T'. 

Then by the definition of the scheme-types, we can also see that the set of all records 

of the scheme-type T' for the type T is a scheme in ga,. 

Sets of records belonging to a given type therefore form an interesting generaliz- 

ation of first-normal-form relations for which we can define relational operations, 

functional dependencies etc. 

7.4. Structures that contain sets 

An extension to the relational model that has recently enjoyed some popularity 

is the study of higher-order relations [17, 1, 35, 321. In these models a value in a 

tuple can itself by a set of values, i.e. another relation. In order to obtain a class 

of higher-order relations that behave well under relational operations, [35] describes 

partition-normal-form relations. in such relations the attributes with simple (atomic) 

values functionally determine the attributes with higher-order values, which must 

also be in partition-normal form. However, because of this severe restriction, sets 

are not treated as first-class values in this model. Indeed, it is not hard to show that 

partition-normal-form relations are isomorphic to relations over record structures 

(without labeled sums) defined in the previous section. For example, the relation 

(a) in Fig. 8 is equivalent to the relation (b). 

(4 (b) 
Fig. 8. Restricted higher-order relation and equivalent relation. 

In order to obtain a data mode1 in which sets are treated as first-class values, we 

need to construct a space of sets as a domain. Since, in defining various database 

operations, we have only assumed that the underlying space is a domain, once we 

have done this then sets can be also treated as regular values. In order to construct 

a domain of sets, we need to define an ordering on sets as database values. One 

obvious possibility is to treat the space of sets as a flat domain so that two sets are 



Using powerdomains to generalize relational databases 51 

comparable iff they are equal. However, as we have seen, a flat domain has only 

two schemes, the set of all maximal elements and the trivial scheme containing only 

bottom element, and does not yield interesting structures. 

A second possibility is to regard sets as ordered by cb, which is what Bancilhon 

used in his complex object model [7]. Given a domain 9, it can be shown [42] that 

we can construct a domain C@(g) corresponding to the space of sets of elements 

in L@ ordered by & (the Hoare powerdomain of 9). Since P’(%J) is a domain, the 

results of previous sections are readily applicable. However, it is probably rather 

difficult to find semantics of a natural join since a natural join is determined by the 

ordering C’ and therefore database sets and sets which appear as values in database 

objects are treated differently. Since P’(g) is a lattice, we have the following. 

Lemma 14. For a domain 9, the schemes in P’(9) are the singleton sets {{d}} where 

d E 9. 

This means that functional dependencies in such a domain are rather trivial 

constraints. 

Another possibility is to consider sets as values ordered by c’, which is done in 

[ 12,13,29]. Smyth showed that [45] for any domain 9, a domain 9 “( 9) correspond- 

ing to the space of sets of elements in 9 ordered by c4, called Smyth powerdomain 

of 9, can be constructed. Under this approach, a natural join can be given coherent 

semantics. Again there are no nontrivial schemes in C?‘“(s). However, if we relax 

our definition of a scheme, we can make some progress. Recall that a scheme A is 

an independent set in a domain 9 satisfying 

p,(B) = A and Vx E 9. P+,[[x~~ =[pA(x)lA. 

One way to generalize this is to specify directly a subset of 9 that is not necessarily 

downward closed. We say that a subset S of 9 is a generalized scheme in 9 if (1) 

S is closed under bounded join, (2) S has a minimal element and (3) the set of 

maximal element maxset of S satisfies the second condition of schemes, i.e. 

Vx E 9. ps[xIIP = [ps(x)lls where ps(x) = LJ{ 1 s s E S, s LX}. The original definition 

of schemes is a special case of generalized schemes. We can then find interesting 

schemes in P”(9). 

Lemma 15. Zf S is a generalized scheme in a domain 9 then the set P*(S) is a 

generalized scheme in P”(9). 

This suggests that if we regard sets as values ordered by c’, then the previously 

described type systems can be extended to include a set type constructor by adding 

the following rules: 

(1) If 7 is a type then {T} is a type. 

(2) If 7’ is a scheme type of T then {T’} is a scheme-type of {T}. 



52 P. Buneman et al. 

(3) If ?J,, . . . ) ZI, are database objects of type T then minset({u, , . . . , v,}) is a 

database object of type {T}. 

In the third rule, a given set of database objects is coerced to a canonical representa- 

tive of an element in P$(LSd) by taking its minimal elements. Natural join and 

projection work properly on the extended structures. Figure 9 shows an example 

of a natural join in the domain of records extended by these rules. 

One restriction of the above approach is that we presuppose the meaning of sets 

of database objects by choosing the ordering c ‘, i.e. sets are overdescribing some 

desired set of objects. This choice may not be appropriate for some applications. 

An idea that merits further investigation is to look at partial descriptions that consist 

of pairs of sets: a complete and a consistent description of some target set. This 

may be particularly valuable in constructing a semantics for database merging [27] 

where the individual databases may not form a complete description ofthe real world. 

7.5. Recursive structures 

It is reasonable to suppose that we can also generalize database theory to work 

for recursive types, which can be used to give a type to unbounded structures such 

as lists. For example, given a domain 9 represented by a type r, we can define a 

type for T-lists as the type satisfying the following equation: 

Zist( 7) = [null : { }; nonnull : {Jirst : 7; rest : Zist( 7)}]. 

This is the type of all lists of elements in 9. Then for any scheme-type 7’ for T, 

list(T)) is a scheme-type for list(T). There are also other scheme-types for list(T) 

than in the above form. For example, the following is also a scheme-type for list(T) 

that corresponds to the set of all lists of length less than or equal to one. 

onelist = [null : { }; nonnull : {Jirst : 7; rest : unitllsrCTj}] 

where unitlisr(7) is the scheme-type Zist(unit,) for list(T). 

r1 = {{ PnameJ’Nut’; Supplier+{{Sname+‘Smith’; City+‘London’}; 

{Sname+‘Blake’; City*‘Puris’}}}; 

{PnameJ’Bolt’; Supplier+{{Sname+‘BIake’; Cityq’Puris’}; 

{Sname+‘Adams’; Cityj’Athens’}}}} 

r2 = {{PnameJ’Nut’; Supplier+{{City+‘Puris’}}; QtyJlOO}; 

{PnnmeJ’Bolt’; Supp/ier+{{City~‘Paris’}}; Qty+200}} 

r, W r2 = {{PnnmeJ’Nut’; Supplier~{{Sname=+‘B/uke’; City+‘Puris’}}; 

QtyJlOO}; 

{PnameJ’Bolt’; Supplier3{{Sname=+‘BIake’; City+‘Paris’}}; 

WY ~20011 

Fig. 9. Natural join of higher-order relations. 



Using powerdomains to generalize relational databases 53 

The domain 6B,is,(T) corresponding to list( 7) can be defined as the domain equation 

CB l~sr(7) = Nr4zl + (g x 9dri.sr(7)) 

where Null is the trivial one element domain. Let S be the scheme in 9 corresponding 

to the scheme-type T’. Then the scheme corresponding to the scheme-type l&(7’) 

is the set of maximal elements in the domain defined by the equation 

9 trr(r’) = Null+ (IS X gti.xr(r,)). 

The scheme corresponding to the scheme-type onelist can also be defined. 

The general form of schemes in recursive types such as these requires further 

investigation. 

8. Conclusion and further investigation 

We have tried to show that the application of domain theory allows us to provide 

a clean semantics for relational databases and provides a generalization of many 

of the ideas in relational database theory-especially those concerned with database 

design-into a large class of higher-order and recursive structures. 

One major limitation of our work is that our characterization of the relational 

databases is restricted to a single domain. Operations and notions such as join and 

functional dependency are defined only within a given domain. It is however 

desirable to allow databases to contain values of different domains. This becomes 

essential if we want to treat values in a database as typed data structures and to 

integrate them into a type system of a programming language. In previous sections 

we have constructed a collection of domains of records. As we suggested, each 

domain corresponds to a type in a type system of a programming language. In such 

a type system, it is natural to represent a database as a collection of relations of 

different types. Our formalism cannot be directly applied to such a database. One 

way to overcome this limitation would be to develop a theory of the relationship 

between various domains and to extend our characterization of the relational 

databases to a family of domains. [29] proposed one such theory for join and 

projection and showed that a family of database domains can be integrated in an 

ML style type system. In [31] we have also shown that ML type inference methods 

can be generalized to such an integrated type system. We further hope that the 

theory of functional dependencies and universal relations we have developed in 

this paper can also be generalized to families of domains. 

Finally we should note that in database programming languages [8, 3, 441, in 

knowledge bases [ll] and in Ait-Kaci’s [2] calculus for type subsumption the 

ordering is not completely derived from the structure of the objects themselves. 

There is also an imposed lattice or partial order of “entities”, “concepts”, or 

“head-terms”. The possibility of generalizing relational database notions into these 

systems may require these imposed orderings to have certain properties. 



54 P. Buneman et al. 

Acknowledgment 

We gratefully acknowledge the assistance of Aaron Watters and David MacQueen 

in the development of these ideas. The referees made numerous useful comments 

that helped to improve the presentation. 

References 

[l] S. Abiteboul and N. Bidoit, Non first normal form relations to represent hierarchically organized 

data, in: Proc. 3rd ACM PODS, Waterloo, Ontario, Canada (1984). 

[2] H. A’it-Kaci, An algebraic semantics approach to the effective resolution on type equations, 7’heorer. 

Compuf. Sci. 45 (1986) 293-351. 

[3] A. Albano, L. Cardelli and R. Orsini, Galileo: a strongly typed, interactive conceptual language, 

ACM Trans. Database Systems 10 (2) (1985) 230-260. 

[4] M.P. Atkinson, Programming languages and databases, in: Proc. 4th Internat. Conf: on Very Large 

Data Bases, Berlin, West Germany (1978) 408-419. 

[5] M.P. Atkinson and O.P. Buneman, Types and persistence in database programming languages, 

ACM Comput. Surveys (1987). 

[6] P. Atzeni and D.S. Parker, Assumptions in relational database theory, in: Proc. 1st ACM Symp. on 

Principles of Database Systems (1982) l-9. 

[7] F. Bancilhon and S. Khoshatin, A calculus for complex objects, in: Proc. ACM Conf: on Principles 

of Database Syslems (1986). 

, [8] P. Bernstein, J. Mylopoulos and H.K.T. Wong, A language facility for designing database intensive 
applications, ACM Trans. Database Sysrems 5 (2) (1980). 

[9] J. Biskup, A formal approach to null values in database relations, in: Advances in Data Base Theory 

Vol. I (Plenum, New York, 1981). 

[lo] A. Borgida, Thoughts on accommodating exceptions to (type) constraints in information systems, 

in: Proc. Appin Workshop on Persistence and Data Types Persistent Programming (1985) 275-280. 

[ 1 l] R.J. Brachman and J.G. Schmolze, An overview of the KL-one knowledge representation system, 

Cognitive Sci. Ser. 9 (3) (1985). 

[12] O.P. Buneman, Data types for data base programming, Computer Science Department, University 

of Glasgow, 1985. 
[13] P. Buneman and A. Ohori, A domain theoretic approach to higher-order relations, in: Proc. Inrernat. 

Conf: on Database Theory, Lecture Notes in Computer Science, Vol. 243 (Springer, Berlin 1986). 
[ 141 J. Cartmell, Formalising the network and hierarchical data models-an application of categorical 

logic, in: Category Theory and Computer Programming, Lecture Notes in Computer Science, Vol. 

240 (Springer, Berlin 1985) 466-492. 
[15] E.P.F. Chan, Optimal computation of total projections with unions of chase join expressions, in: 

Proc. ACM SIGMOD Con$ (1984) 149-163. 

[16] S.S. Cosmdakis, P.C. Kanellakis and N. Spyratos, Partition semantics for relations, Technical 

Report, Brown University, December 1985. 
[17] P.C. Fischer and S.J. Thomas, Operators for Non-first-normal-form relations, in: Proc. IEEE 

COMPSAC (1983). 

[18] N. Hammer and D. McLeod, Database description with SMD: a semantic database model, ACM 

Trans. Database Systems 6 (3) (1981) 351-386. 

[19] R. Hull and C.K. Yap, The format model: a theory of database organization, J. ACM 31 (3) (1984) 

518-537. 

[20] H. Jurgensen and D. Simovici, Towards an abstract theory of dependency constraints, Inform. 

Systems 41 (1987). 

[21] W. Kent, Consequences of assuming a universal relation, ACM Trans. Database Systems 6 (1983) 

331-347. 

[22] Y. Lien, On the equivalence of database models, J. ACM 29 (2) (1982) 333-362. 



Using powerdomains to generalize relational databases 55 

[23] W. Lipski, On semantic issues connected with incomplete information databases, ACM Trans. 

Database Systems 4 (3) (1979) 262-296. 

[24] D. Maier, 7he Theory of Relational Databases (Computer Science Press, Rockville, MD, 1983). 

[25] D. Maier, D. Rozenshtein and D.S. Warren, Window functions, in: P. Kanellakis and F.P. Preparata, 

eds., Advances in Computing Research Vol. 3, The Theory of Databases (JAI Press, London, 1986). 

[26] T.H. Merrett, Relational Information Systems (Reston, Prentice-Hall, Reston, VA, 1984). 

[27] A. Motro and P. Buneman, Constructing superviews, in: Proc. SIGMOD (1981). 

[28] A. Ohori, Denotational semantics of relational databases, Master’s thesis, Department of Computer 

and Information Science, University of Pennsylvania, 1986. 
[29] A. Ohori, Semantics of types for database objects, in: Proc. Internat. Con$ on Database Theory, 

Lecture Notes in Computer Science, Vol. 326 (Springer, Berlin, 1988) 239-251; extended version 

submitted to a special issue of Theoref. Comput. Sci. 

[30] A. Ohori, Orderings and types in databases, in: Proc. Workshop on Dafabase Programming Languages, 

Roscoff, France (1987) 149-163. 

[31] A. Ohori and P. Buneman, Type inference in a database programming language, in: Proc. ACM 

Conj on LISP and Funcfional Programming, Snowbird, Utah (1988). 

[32] Z. &soyoglu and L. Yuan, A normal form for nested relations, in: froc. ACM SIGACT-SZGMOD 

Symp. on Principles of Database Systems, Portland (1985) 251-260. 
[33] G.D. Plotkin, A powerdomain construction, SIAM J. Comput. 5 (1976). 

[34] N. Rishe, On denotational semantics of data bases, in Mathematical Foundations of Programming 

Semantics, Lecture Notes in Computer Science, Vol. 239 (Springer, Berlin, 1985) 249-274. 

[35] A.M. Roth, H.F. Korth and A. Silberschatz, Extended algebras and calculus for llNF relational 

databases, Technical Report TR-84-36, Department of computer Sciences, The University of Texas 

at Austin, 1984; revised 1985. 

[36] M.A. Roth, H.F. Korth and A. Silberschatz, Null values in llNF relational databases, Technical 

Report TR-85-32, Department of Computer Sciences, The University of Texas at Austin, December 

1985. 
[37] W.C. Rounds and R. Kasper, A complete logical calculus for record structures representing linguistic 

information, Technical Report, Electrical Engineering and Computer Department, University of 

Michigan, Ann Arbor, MI 48109, 1985. 

[38] D.A. Schmidt, DenotationalSemantics, A Merhodologyfor Language Development (Allyn and Bacon, 

Newton, MA, 1986). 

[39] J.W. Schmidt, some high level language constructs for data of type relation, ACM Trans. Database 

Sysfems 5 (2) (1977). 

[40] E. Sciore, Null values, updates, and incomplete information, Technical Report, Department of 

Electrical Engineering and Computer Science, Princeton University, 1979. 
[41] E. Sciore, The universal instance and database design, PhD thesis, Princeton University, 1980. 

[42] D. Scott, Domains for denotational semantics, in: Proc. ICALP (1982). 

[43] SM. Shieber, An introduction to unification-based approaches to grammar, in: Proc. 23rd Ann. 

Meeting Assoc. Compuf. Linguisrics (1985). 

[44] J.M. Smith, S. Fox and T. Landers, ADAPLEX: Rationale and Reference Manual (Computer 

Corporation of America, Four Cambridge Center, Cambridge, MA 02142, second edition, 1983). 

[45] M.B. Smyth, Power domains, J. Comput. System Sci. 16 (1) (1978) 23-36. 

[46] J.D. Ullman, Principle of Database Systems (Pitman, London, second edition, 1982). 

[47] J.D. Ullman, The U.R. strikes back, in: Proc. lsf ACM Symp. on Principles of Database Sysrems 
(1982) 10-22. 

[48] J.D. Ullman, Universal relation interfaces for database systems, in: Proc. IFIP (1983). 

[49] C. Zaniolo, Database relation with null values. J. Compuf. System Sci. 28 (1) (1984) 142-166. 


