Edinburgh Research Explorer

Using Powerdomains to Generalize Relational Databases

Citation for published version:
Buneman, P, Jung, A & Ohori, A 1991, 'Using Powerdomains to Generalize Relational Databases’,
Theoretical Computer Science, vol. 91, no. 1, pp. 23-55. https://doi.org/10.1016/0304-3975(91)90266-5

Digital Object Identifier (DOI):
10.1016/0304-3975(91)90266-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theoretical Computer Science

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 03. Oct. 2023

https://doi.org/10.1016/0304-3975(91)90266-5
https://doi.org/10.1016/0304-3975(91)90266-5
https://www.research.ed.ac.uk/en/publications/1bca2061-6a7b-4133-873d-9e02d97dcae6

Theoretical Computer Science 91 (1991) 23-55 23
Elsevier

Using powerdomains to generalize
relational databases™

Peter Buneman

Department of Computer and Information Science, University of Pennsylvania,
200 South 33rd Street, Philadelphia, PA 19104-6389, USA

Achim Jung

Fachbereich Mathematik, Technische Hochschule Darmstadt, W-6100 Darmstadt, Germany

Atsushi Ohori

Department of Computer and Information Science, University of Pennsylvania,
200 South 33rd Street, Philadelphia, PA 19104-6389, USA

Communicated by G. Ausiello
Received July 1987
Revised July 1989

Abstract

Buneman, P., A. Jung and A. Ohori, Using powerdomains to generalize relational databases,
Theoretical Computer Science 91 (1991) 23-55.

Much of relational algebra and the underlying principles of relational database design have a
simple representation in the theory of domains that is traditionally used in the denotational
semantics of programming languages. By investigating the possible orderings on powerdomains
that are well known in the study of nondeterminism and concurrency it is possible to show that
many of the ideas in relational databases apply to structures that are much more general than
relations. This also suggests a method of representing database objects as typed objects in
programming languages.

In this paper we show how operations such as natural join and projection—which are funda-
mental to relational database design—can be generalized, and we use this generalized framework
to give characterizations of several relational database concepts including functional dependencies
and universal relations. All of these have a simple-minded semantics in terms of the underlying
domains, which can be thought of as domains of partial descriptions of “real-world” objects. We
also discuss the applicability of relational database theory to nonrelational structures such as
records with variants, higher-order relations, recursive structures and other ordered spaces.

* This research was supported in part by grants NSF IRI86-10617, ONR NOOO-14-88-K-0634, ARO
DAAG6-29-84-k-0061. Atsushi Ohori was also supported in part by OKI Electric Industry Co.. Japan.

0304-3975/91/$03.50 © 1991—Elsevier Science Publishers B.V. All rights reserved

24 P. Buneman et al.
1. Introduction

There are two motivations for this study. The first is to draw together a number
of approaches to data maodels and to examine the extent to which they can be viewed
as generalizations of the relational data model. The second is to try to draw out the
connection between data models and data types, something that is crucial if we are
to achieve a proper integration of databases [4, 5, 39] and programming languages.

The main focus of this paper is the first of these. There are a number of attempts
to generalize the relational data model beyond first-normal-form relations [17, 36,
32]; there are also numerous formulations of other data models [1, 18, 7, 19] that
at first sight appear to have little to do with relations. We shall see that by exploiting
the basic ideas of domain theory, well-known in the study of semantics of program-
ming languages, we can obtain generalizations of many of the basic results of
relational databases in a way that has very little to do with the details of the data
structures that are used to define them; and which allows the application of relational
database principles to a much wider range of data models. Although some observa-
tions have been made [34, 14] that suggest a connection between database and
programming languages semantics, there appears to have been no attempt directly
to characterize relational databases in the appropriate semantic domains.

To the hardened first-normal-form relational database theorist this paper offers
little more than alternative, and perhaps simpler, derivations of some existing results.
However, given the recent activity in the study of “higher-order” relations, which
attempts to apply the basic results of relational databases to other structures, it is
interesting to ask how far this work can be pushed. What are the properties of the
data model that allow us to define relational operators, functional dependencies
etc.? In doing this, we shall find it useful to produce a simple denotational semantics
for relations and other structures, which is an extension to the semantics for missing
values proposed by Lipski [23]. The idea is that these structures denote sets of
values in some space which we may think of as the “real world”. One of the
advantages of our approach is that it allows us to provide a denotational semantics
for structures such as sets of attribute names, which usually receive an operational
treatment. Such a semantics will, we hope, ultimately be useful if we are ever to
achieve our second goal of achieving a healthy marriage of databases and program-
ming languages.

The organization of this paper is as follows. In Section 2 we describe the
properties of the underlying domains that we shall need. Section 3 then shows how
powerdomain orderings (orderings on sets of values) can be used to characterize
the various joins that are discussed in relational algebra. In Section 4, in trying to
characterize projection, we introduce the notion of schemes, which generalize rela-
tional schemes (sets of column names). Schemes enjoy some nice properties with
respect to powerdomain orderings and allow us to characterize functional dependen-
cies and universal relations, which is done in the following sections. Section 7
concludes by showing how these ideas can be applied to various extensions of

Using powerdomains to generalize relational databases 25

relational databases including typed relations, relations with null values and various
forms of higher-order relations; it also suggests that there may be some limitations
to what one can do with non-first-normal-form relations. The reader who is more
interested in data types and structures rather than some of the more esoteric areas
of database theory may wish to skip much of Sections 5 and 6, and turn directly to
Section 7.

2. Orderings and domains

The idea that is fundamental in denotational semantics is that expressions denote
values, and that the domain of values is partially ordered. In the same way we can
think of database structures as descriptions and that these descriptions are partially
ordered by how well they describe the real world. Without putting any particular
structure on the real world, we can define the meaning [d] of a description d as
the set of all real-world objects described by d. We can then say that a description
d, is betterthan d,, d, 2 d,, if d, describes a subset of the real-world objects described
by d,, i.e. [d\] c{d,].

An example of such an ordering is to be found in flat record structures. A flat
record is a partial function from a set £ of labels to an unordered set ¥ of values.
If r, and r, are two such functions, then r, 2, if the graph of r, contains the graph
of r,. For example,

{Name=>'J. Doe"; Dept=>'Sales'; Office=>33}
2{Name=>'J. Doe'; Dept=>'Sales’}.

Using the term “‘real world” to describe the semantics of such records is, of
course, contentious. It is better to think of these records as partial descriptions (or
approximations) to elements in some space or “universe” of total descriptions, in
this case large—possibly infinite—record structures. Suppose that this universe were
the function space ¥ — V" where ¥ = { Name, Dept, Office}, we would then have

[{ Name=>'J. Doe;, Dept=>'Sales'}]
={{Name=>'J. Doe'; Dept='Sales"; Office=>v}|ve ¥V}.

Note that this formulation of the denotation of a record with incomplete informa-
tion corresponds with that given in [23], and as it will shortly appear, this space of
flat records provides the basis for the relational model; however there are a number
of other orderings that we shall examine later in this paper. These include Bancilhon’s
complex objects [7], orderings on tree structures that give rise to higher-order
relations [17, 1, 36, 35, 32], the feature structures in unification-based grammar
formalisms (see [43] for a survey), finite state automata [37], ¢-terms [2]. In this
catalog we should also include Scott’s aptly-named “information systems”—
consistent, deductively closed sets of predicates [42]. In all of these it is possible
to describe certain generalizations of relational operations.

26 P. Buneman et al.

We shall require somewhat more structure on our space & of partial descriptions
than being partially ordered. The most important property is that it is bounded
complete:

(1) Any nonempty subsets S of & has a greatest lower bound [18.

In addition we shall also make two further assumptions that are common in

o~

denotational semantics LJOJ
(2) Any directed subset S of & has a'l ast upper bound LJS.
(3) The set K(D) of compact elements in % forms a countable basis for 4.

Partially ordered set (&, =) with these properties are widely used in the semantics
of programming languages, and are often called Scott domains [42]. Throughout
this paper we shall refer to them as domains. We shall also use the notation s,Ls,
and s, s, for LI{s(, s,} and M{s,, s,} respectively.

It is an immediate consequence of the first condition that any subset of S of @
that is bounded above has a least upper bound LIS and also that &% has a bottom
element, L. The second condition, when taken with the axiom of choice, ensures
that every member of & is bounded above by some member of 2,,,,, the set of
maximai elements of . We shalil therefore use 9,,, as the universe of compiete
descriptions; and the definition of [d] is then simply {x € Dpux |d = x}=1d A D s
A snn ot Foenann - mmarlra ot o-l-.n AmAd AF tha wmnsmnas wwia oh }1 nGt m 1 a

Apart froi some remarks at the end oi the paper, we sha Tia

the third condition; however we should note that in any practical database context
diti .

ca ~F

any usc oi

There is one extra condition which we shall need when we introduce schemes
below.

(4) A domain @ is distributive if every principal idea |x is a distributive lattice.
Note that the space of flat record structures is a distributive domain. Even more is
true of this domain: each principal idea is a complete atomic boolean algebra, that
is, a powerset. We shall not need to assume this in general, however.

We shall see that there are a number of ways to construct domains that represent
the kinds of data structures we use in databases; particularly simple are the flat
domains. Given a set of atomic values ¥, a
adding bottom element L to ¥ and ordering them as x=y if and only if x=y or

tiong: an element nc V" is either
1UICnsS, an Ciemer L4

a 7. 2P TOUI S B T
fiat UUIIldlIl Vl Ul ¥y 15 O0udlnca oy

x=1 Thig t‘]nmaln is 2 domain of atomic descri
. o211lS QUG 15 A 5101 94

a complete description (v # L) with the meaning {v} or the noninformative descrip-
tion 1 with the meaning 7. The bottom element introduced in 7", can be interpreted
as a null value representing ‘“‘unknown values”. There is a number of other
approaches to null values, some of them distinguish “inappropriate’ and “unknown”
values. Such an approach is entirely consistent with what we develop here and can
be modeled by domains that are more complicated than 7", . Later we shall comment
more on null values.

We can now describe more precisely the domain of Iabeled records that we
discussed in the introduction. Given a countable set of labels £ and a domain 9,

a domain of labeled records £ > % over & is a set of total functions from £ to &
with the ordering defined as rner if and onlv if for all I £, r (l\l: rﬂfl\ This can

vilii U1C OrQ ng daenneg as = I3 anllc Oy

Using powerdomains to generalize relational databases 27

be thought of as a domain of descriptions by attributes. This ordering represents
the fact that r, is a better description than r, if r, has better descriptions than #, in
all attributes. The minimal element 1 o, in £ - & is the constant function L and
if S is a set of functions, then S is the function r such that for all [r{l)=
M{s(I)|se S} and LIS is the function r’ such that for all I, »'(I)=LJ{s(I)|s < S}
provided that all the least upper bounds exist.

The space of flat records is a special casee of a domain of records where & is a
flat domain 77, . Indeed, the space of partial functions from ¥ to ¥ is isomorphic
to £~ 7, . To make our notation for records precise, {,=4d,;...; ,=d,} denotes
an element r in ¥~ % such that r(l;)=d; for 1<i<n otherwise r(I)= L,. For
example, in - 7, if

r={Emp# —=>12345; Name=>'J. Doe'}

and

r, ={Emp# =>12345; Sal=20000}
then

e, ={Emp#=>12345}
and

rllr,={Emp#=>12345; Name=>'J. Doe'; Sal=>20000}.

However { Emp# =12345; Name='J. Doe'}|_|{ Name=>'K. Smith'} does not exist.
An advantage of treating the space of flat records as £ - %7, is that many results
concerning flat records can be regarded as special cases of more general records
and are readily applied to £ - @ for a more complicated domain .

As an example consider a database which lists the values of physical constants
as they have been determined in particular experiments. Set up as a relational
database, a typical entry might contain the following fields (among others): author,
publication, name of constant, lower bound, upper bound, dimension. Being forced to
express every record in first-normal-form has two obvious disadvantages. First, it
does not reflect the property that the intervals [lower bound, upper bound] are
partially ordered, smaller intervals being better approximations and second, there
is no way how the obvious dependency (name of constant=[lower bound, upper
bound]) could be expressed in ordinary relational algebra. Our formalism as
developed below will allow to state such a dependency and will provide a simple
formula for checking the consistency of the database. (An inconsistency is reached
in our example if asserted intervals for the same constant do not overlap.)

3. Powerdomains and relational algebra

Databases usually contain sets of values which, from our foregoing discussion,
we would expect to describe sets of objects in the real world. If we interpret database
values as elements in a domain, then database sets, such as relations, must be
interpreted as sets of elements in that domain. Indeed, we can interpret a first-normal-
form relation r of a relational scheme (a set of attribute names) R in the relational

28 P. Buneman et al.

model as a set S of elements in the domain of flat records £ - %, such that for
any d € S, {l|d(l)# L}=R. Later in this section, we shall see that this interpretation
is faithful to various relational operations and that the domain of flat records,
therefore, serves as a domain of the relational model. This is how relations are
described in languages such as Pascal/R [39] and extensions of this representation
are to be found in Taxis {8] and Galiieo {3]. Figure 1 shows a very simple relation
and its representation as a set of flat records.

If we consider these sets of elements in a domain as sets of descri

would like to order the sets themselves by how well they describe sets of real-world
objects, but how? The study of the semantics of nondeterminism, which attempts
to describe the behavior of sets of processes, provides us with some answers.
However, we must first decide whether we are prepared to work with arbitrary sets,
or whether some restrictions are needed.

Given a domain (2, =), a set S @ is a co-chain if no member of S is greater
than any other member of S, i.e. Vx,ye S.x2y implies x=y. If S % has the
property that any two members of S are inconsistent, i.e. they do not have a defined
join, then we shalii cail S independent. Note that an independent set is necessarily

-t
=
o
]
-
-
D

Q
IS IV WO

a co-chain.
) oy\..,..nl Frsimn vnlotimme orntimdnimanm damt cnte T b nssrnvan o ndmeis s
LB L-HONIAI=-IULIL TCIALIUILLS dlTC HIUCPDUIIUCIIL 3TLY, 11, 1 wevel, wo auuut llull Valqu
in relations by relaxing the condition {/|d(l)# L} =R of first-normal-relation to
ether structures such as (i) or (ii) of Fig. 2

{]!d(l) # _L}g R, we have to decide whe
are valid relations. (i) fails to be a co-chain because {A=a}={A=a; B=>b}, and
(ii) fails to be independent because {A=a; B=b}l J{A=a; C=c} is defined.
In what follows we shall assume that database sets are finite co-chains and we
shall use the words finite co-chain and relation interchangeably. Using our simple

Name [Dept ‘ Sal | Office
'K. Smith’ | 'Mktg’ | 30,000 | 275
‘J. Doe’ 'Sales’ | 20,000 | 147

{{Name=>'J. Doe'; Dept="Sales’; Sal=20,000; Office=>14T},
{Name='K. Smith’;Dept=>'Mktg'; Sal=30,000 Office=-275}} .

Fig. 1. A relation and its representation as a set of records.

JRN
&
hN

| &
Q

= o~

Q &

Using powerdomains to generalize relational databases 29

notion of database semantics, we might justify this assumption by saying that if d,
and d, are descriptions with d, a better description than d, then d, is redundant
and can be eliminated from the database. This is equivalent to saying that for all
pairs d,, d, in S neither [d,] = {d.] nor [d,] < [d,]. Whether or not this justification
is reasonable depends on the intended semantics of the operations on co-chains
which, in turn, depends on the circumstances in which they are used. See [28] for
a more detailed examination of the semantics of relational operations. Independence
means that no two descriptions in S can describe the same real-world object, i.e.
[d\] n[d.]=0. We shall need to discuss independent sets when we generalize the
notion of schemes. We shall use 6., to refer to the set of finite co-chains in &% and
F4 for the set of finite independent sets.

To return to the problem of finding orderings on sets the study of the semantics
of nondeterminism provides us with three orderings’.

AcC’B if Yac A3bc B. ach
AC*B if Vbe Blac A. ach
AcC®B if Ac"Band AcC* B

respectively called the Hoare, Smyth and Egli-Milner ordering. Figure 3 shows
examples of these orderings in first-normal-form relations.

For arbitrary sets, these are not orderings; they are pre-orderings and orderings
are derived by taking equivalence classes. However, in each case there are canonical
representatives for each equivalence class.

Dept I Office Name | Dept | Office
R, 'Mktg' | 275 R, 'K. Smith' | 'Mktg' | 275
‘Sales’ | 147 ‘L. Jones' | 'Mktg' | 275

Name | Dept |Ofﬁce

‘K. Smith’ | 'Mktg' | 275

Rs ‘L. Jones' | 'Mktg' | 275
J. Doe' | 'Sales’ | 147

'M. Blake' | 'Sales’ | 147

RiC'R, RyC"Ry R, C'R,

Fig. 3. Examples of the three orderings.

Lemma 1. Let P be a partial order. Then the following is true for all subsets A and B
of P:
(i) A="]A.

' This melodious notation was suggested to us by Carl Gunter.

30 P. Buneman et al.

(i) A= B&|Ac B
(iii) A =*1A.

(ivy A" B&1B< 1A
(v) A =b‘TAm‘I,A.

So in reasoning about these orderings it is heipful to think in terms of lower sets,
upper sets, and order-convex sets, respectively. We said before that we want to
model database sets (or relations) as finite co-chains in our domains. Since databases

model database sets (G22I 4™

tend to get bigger and bigger during their existence one might think that the Hoare
ordering is the most natural for them. However, viewed as approximations of sets
of real-world objects it is the Smyth ordering which corresponds to this semantics.
We regard it as a strength of our approach that it allows to formalize different
intuitions about databases. The mathematics is nice in each case.

Lemma 2. If @ is a domain then (€6,,=") and (€., =") are distributive lattices with
bottom element. (C,, =) also has a top element, namely, the empty co-chain.

Fmrrind Fae an~le
10uUida 101 ¢acii

® S, LIS, =the maximal elements of 1S, u | S, =the maximal elements of S,uU S,.
® S, 1"S,=the maximal elements of |S,n|S,< S,[1S,={s;[s:]s,€ S, s,€ S,}.
] Sl ¥ 8, =the minimal elements of 15, 1S,< S,LS,.
® S, " S, =the minimal elements of 1S,U1S,<= S,U S,.
Distributivity follows because we can embed € in the distributive lattice of all

lower (upper) sets in 9. [

Proof. Given two finite co- chams S, and §,, it is clear how the sup and inf are
+L
1

"")
ﬂ)
cS
©
-t

O

We wish to remark that these lattices are not complete. Neither (%, =") nor
(%5, =") contains sups for directed subsets. If we want completeness then we have
to take certain computability considerations into account which translate into

[OpOlOgl(.«dl I'CS[I'I(.«[IOIIS on IHHHIIC bquClb OI a uomdm we l'ldVC no IICCU to pursue
this theme further but note that sup and inf in both ordermgs are defined for any

domain. They mav not
agmain. 1<y may not

o
ry
(4]

or maximal elements, however.

In the space of finite co-chains with the three orderings we represent various
operations on database sets, some of which will emerge as generalizations of
relational operations. We also mention that these ordered spaces are not the same
as powerdomains in the programming language literature [33, 45], where the ordered
spaces of sets are constructed in such a way that they are themselves domains. True
powerdomain constructions are not needed until we discuss higher-order relations,
where a tuple can itself contain a set as an attribute value. We shall discuss how
our presentation of database sets can also contain these higher-order values in
Section 7, but for the time being we shall exploit the representation of database

SCL5 11

Using powerdomains to generalize relational databases 31

There is an immediate connection with relational algebra that indicates the
importance of these orderings.

Theorem 1. Interpreting relations as finite co-chains A, B in £~V ,, ALI* B is the
natural join of A and B. If a least upper bound for A, B exists in =" then it is a lossless
Jjoin.

Proof. This statement is actually more of a definition than a result. We can only
prove it in the case of first-normal-form relations, for it is only then that we have
accepted definitions for the various joins. Given relation schemes (sets of attribute
names) R,, R, < £ and relation instances r, r,, let r{, r3 and r} be the interpretations
of ri,rp,and ri X r, in £ - %, . Suppose i€ r}, then by the conventionai definition
of natural join, there are f, € r| such that ¢(I)=1,(I) for all /€ R, and t,€ r} such
that ((D=¢(for all lc Rv the definition of the internretation {1 =% | iff

that +(1)=16,{1) for le R,. By the definition of the interpretation, (1) # L iff
le Ry, t,(I)# L iff I€ R,. This implies t;=t and t,=¢ and clearly ¢ is minimal with
respect to this property. Therefore t € r{ LI* r}. Conversely suppose t € r; |[* r;. There
must exist t, €r, t,€r, such that t,=¢ and f,=t. Since 7", is flat this implies that
t(1;)=t,(I,) when [, € R, and ¢(l,) = t,(I,}) when L, € R,. By the minimality of ¢ with
respect to =, t(I)=_1 iff /2 R, U R,. Hence 1 rj. See [28] for a discussion of the
semantics of lossless join and the proof of the second part of this result. O

The importance of this result is that it provides a generalization of natural join
to sets of values in arbitrary domains. Figure 4 shows an example of natural join
in nested records.

ry = { {Name='J. Doe’ ;Status={ Student-status='Graduate’}}
{Name=> 'M. Blake'; Status={ Student-status='Undergraduate’}}}
) = { {Name='J. Doe’; Status={ Employee-status=>'TA’}}

{Name='L. Jones'; Status={ Employee-status='Faculty'}}}
r1 U ro= { {Name="J. Doc¢’;
Status=>{ Student-status='Graduate’; Employee-status='TA'}} }

Fig. 4. Natural join in “nested” records.

A more intuitive way of thinking of these results is to view the natural join as
the appropriate operation when two sets of database descriptions “over-approxi-
mate” some desired set in the real world. Suppose, for example, that we want to
find the set of TEACHING FELLOWS, but we only have available database sets
describing EMPLOYEES and STUDENTS. Both of these over-approximate our
desired set (any teaching fellow is both an employee and a student) and so the
appropriate operation to achieve a better approximation to TEACHING FELLOWS

e 1 iain AF ERMADI NAVELQ

tn taka tha natiira and
8 tird: join o1 CVIrL U Y it anda

CTTTMENTCQ
take DL ULJLLIN 1D,

[%
-
<

32 P. Buneman et al.

The partial ordering =" does not give rise to least upper bounds when applied to
co-chains. However, if two database sets have a least upper bound in c" then any
real world set that is “exactly” described by (i.e. above in =7) the two database sets
is also “exactly” described by the least upper bound. Since a least upper bound in
=" is also a least upper bound in =, if L% exists then the natural join is the lossless
join. Traditionally the lossless join condition is stated operationally, in terms of
projections; from this we see that it has a simple denotational interpretation.

We might also ask whether " corresponds to anything in the relational algebra.
S, L’ S, is simply the set of maximal elements in S, S, and is awkward to deal
with in relational algebra as it generally requires the introduction of null values.
However, we shall make some use of this operator later. If we are prepared to
introduce null values, then | is what [35] calls the “null union”, and
S,LP (S, LI S,) LI S,is what is sometimes called the outer join. Merret [26] describes
this operation and also the “left-wing” and *‘right-wing” operations, which are
S, LI (S,U*S,) and (S, LI* S,) LI" S, respectively.

In some cases these operations preserve independence.

Lemma 3. If S, and S, are independent, so are S,LI° S,, S, L (S, L*S,) LIS,
S, L (S, LFS,) and (S,LFF S;) L) S,.

However, the other operators ([", 1" and L") do not, in general, carry independent
sets into independent sets.

We should also note that the co-chain S, 7 S, is the set of minimal elements of
S,uS,. When S,u S, is a co-chain, S, M*S,=S,L"S,. The operator 1 is, as we
shall see in the next section, a general form of projection.

In order to conform to traditional notation, we shall generally replace the symbol
LJ* by what is conventionally used in databases, X.

