

Edinburgh Research Explorer

The enriched effect calculus: syntax and semantics

Citation for published version:
Egger, J, Møgelberg, RE & Simpson, A 2014, 'The enriched effect calculus: syntax and semantics', Journal
of Logic and Computation, vol. 24, no. 3, pp. 615-654. https://doi.org/10.1093/logcom/exs025

Digital Object Identifier (DOI):
10.1093/logcom/exs025

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Logic and Computation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 29. Apr. 2024

https://doi.org/10.1093/logcom/exs025
https://doi.org/10.1093/logcom/exs025
https://www.research.ed.ac.uk/en/publications/820bf4a5-bc61-45b6-bc7f-7348ba7338ab

The Enriched Effect Calculus:

Syntax and Semantics

Jeff Egger∗

Department of Physics and Atmospheric Science
Dalhousie University, Halifax, N.S., Canada

Rasmus Ejlers Møgelberg†

IT University of Copenhagen
Copenhagen, Denmark.

Alex Simpson∗

LFCS, School of Informatics,
University of Edinburgh, Scotland, UK.

February 9, 2012

Abstract

This paper introduces the enriched effect calculus, which extends established type theo-
ries for computational effects with primitives from linear logic. The new calculus provides
a formalism for expressing linear aspects of computational effects; for example, the linear
usage of imperative features such as state and/or continuations.

The enriched effect calculus is implemented as an extension of a basic effect calculus
without linear primitives, which is closely related to Moggi’s computational metalanguage,
Filinski’s effect PCF and Levy’s call-by-push-value. We present syntactic results showing:
the fidelity of the behaviour of the linear connectives of the enriched effect calculus; the
conservativity of the enriched effect calculus over its non-linear core (the effect calculus);
and the non-conservativity of intuitionistic linear logic when considered as an extension of
the enriched effect calculus.

The second half of the paper investigates models for the enriched effect calculus, based on
enriched category theory. We give several examples of such models, relating them to models
of standard effect calculi (such as those based on monads), and to models of intuitionistic
linear logic. We also prove soundness and completeness.

1 Introduction

The computational metalanguage was proposed by Moggi [30] as a general metalanguage for
ascribing semantics to programming languages with effects, building on his own idea that com-
putational effects can be encapsulated by the mathematical structure of a strong monad [29].
The metalanguage extends the simply-typed λ-calculus with a new type constructor T , where
TA represents a type for computations that produce values of type A. Semantically, T is
interpreted as a strong monad that captures the effects that computations may exhibit.

In [3], Benton and Wadler identify a close connection between Moggi’s computational met-
alanguage and Girard’s intuitionistic linear logic (ILL) [11]. They show that every model of
ILL can be reconstrued as a model of the computational metalanguage, and this determines
an interpretation of the computational metalanguage within ILL. However, the models of the
∗Research supported by EPSRC research grant EP/F042043/1, which employed Egger as postdoctoral research

fellow at the School of Informatics, University of Edinburgh, 2008–11.
†Research supported by the Danish Agency for Science, Technology and Innovation.

1

v1lfass
Typewritten Text

v1lfass
Typewritten Text
Egger, J., Møgelberg, R., & Simpson, A. (2012). The enriched effect calculus: syntax and semantics. Journal of Logic and Computation, doi: 10.1093/logcom/exs025

computational metalanguage that arise from models of ILL are very special ones. Their mon-
ads are commutative. This means that the interpretation of the computational metalanguage
in ILL validates an equation that is not always true for effects: the equation that asserts the
insensitivity of computational effects to their order of execution.

Many computational effects are not commutative, for example: exceptions, state, input/output,
and continuations. In [3, §8], Benton and Wadler write:

“We do not know if it is possible to define a non-commutative linear calculus which
corresponds to a wider class of monad models.”

In this paper, we present such a calculus, the enriched effect calculus.
The enriched effect calculus can be viewed as an extension of Moggi’s metalanguage with

a judicious selection of type constructors from linear logic. We envisage that this calculus will
be applicable to computational scenarios in which the manipulation of computational effects
adheres to a discipline of linearity. For example, the usual state monad S → ((−)× S) (where
S is an object of states) has a linear counterpart S ((!(−) ⊗ S), which accounts for the
fact that state (unlike values) can neither be duplicated nor discarded, cf. [31]. Similarly,
the continuations monad ((−) → R) → R (where R is a result type) has a linear version
((−)→ R)(R, which enforces the linear usage of continuations, a discipline that is ubiquitous
amongst structured forms of control [4].

While examples such as the above can be formulated in ILL itself, we believe our enriched
effect calculus to be the natural home for them. Indeed, the enriched effect calculus has two
main advantages over ILL. First, it is weaker than ILL, and hence applicable more widely
(models of ILL are a strict subset of models of the enriched effect calculus). Second, the
tight connection between the enriched effect calculus and the standard monad-based calculi for
effects, which we describe in this paper, makes the former a natural vehicle for formalising the
general phenomenon of interactions between linearity and effects, including the linear usage of
effects [14]. We shall outline several potential applications of the enriched effect calculus to
such examples in this paper (see Examples 3.1–3.5 in Section 3). Detailed treatment of some of
these examples appears in companion papers [7, 9, 28].

In this paper, our enriched effect calculus is defined as an extension of a basic effect calculus,
which is presented in Section 2. The effect calculus is a simple extension of Moggi’s compu-
tational metalanguage with a notion of computation type, as used in Filinski’s effect PCF [10]
and in Levy’s call-by-push-value (CBPV) [21]. (Indeed, as we show in Appendix A, the version
of our effect calculus with sums is equivalent to CBPV.)

The enriched effect calculus is defined, in Section 3, by extending the basic effect calculus
with a selection of constructs from linear logic. In the enriched effect calculus, in contrast to
linear logic, these constructs can only be used in certain restricted combinations (for example,
the linear function space constructor (cannot be iterated). Nevertheless, the enriched effect
calculus is expressive enough to formulate several computational situations in which linearity
and effects interact; see Examples 3.1–3.5.

Section 4 surveys syntactic properties of the enriched effect calculus. First, it is shown that
its various linear primitives enjoy the same interrelationships as in linear logic (Proposition 4.1).
This, in part, justifies our choice of using notation and terminology from linear logic to describe
these primitives. Second, we state two main syntactic theorems comparing the enriched effect
calculus (EEC) with the basic (unenriched) effect calculus (EC). The enriched calculus EEC
is a conservative extension of EC in two senses. Theorem 4.3 states that EEC is syntactically
conservative over EC, meaning that every EEC term of EC type is equal (in EEC) to an EC
term (more concisely, the embedding of EC in EEC is full). Theorem 4.4 states that EEC
is equationally conservative over EC, meaning that any equation between EC terms that is

2

provable in EEC is already provable in EC (more concisely, the embedding is faithful). These
two theorems give partial justification to our claim that EEC is an extension of effect calculi
compatible with arbitrary computational effects. This brings us back to the quote from Benton
and Wadler [3] above, which resulted from the general incompatibility of ILL with arbitrary
effects. In our setting, this incompatibility of ILL manifests itself as the failure of conservativity
of ILL over EEC (syntactic and equational conservativity both fail), as is shown at the end of
Section 4.

The second half of the paper, Sections 5–7, is devoted to category-theoretic models of the
calculi EC and EEC. As models of the basic effect calculus, we take (an appropriate version of)
Levy’s adjunction models [22], which are the natural models for calculi based on computation
types. As models of the enriched effect calculus, we take adjunction models with the extra
structure needed to model the linear connectives. In this paper, both notions of model are
formulated in terms of enriched category theory [17], and Section 5 reviews the required back-
ground from this area. Section 6 defines the various notions of model we need, and provides
several examples of models. In particular, it is shown how many models of computational effects
based on monads give rise to models of EEC. This further addresses the Benton and Wadler [3]
quote above. Finally, in Section 7, soundness and completeness are proved with respect to the
models considered.

Two appendices are included. As already mentioned, Appendix A formulates the equiv-
alence between our basic effect calculus with sums and Levy’s CBPV. Appendix B provides
the machinery (a confluent and normalizing rewrite relation) needed to prove our syntactic
conservativity result, Theorem 4.3.

In the present paper, the equational conservativity result (Theorem 4.4) is stated without
proof. Our proof of this works by showing that every model of EC has a (full) structure-
preserving embedding into a model of EEC. In order to give a precise formulation of this
result, it is necessary to develop the appropriate notion of morphism of models. As it turns
out, a proper development of this notion requires significant extra category-theoretic machinery.
Hence, in order both to keep the present paper to reasonable length, and not to swamp the
presentation with technical category theory, we defer this result to a paper devoted entirely
to the category-theoretic model theory of EC and EEC [8]. (The reader who is interested
in an outline of this proof is referred to the conference version of the present paper [6].) We
remark, that it is this semantic embedding theorem that answers Benton and Wadler’s (implicit)
question quoted above: the enriched effect calculus is compatible with any monad model, since
any such can first be presented as an EC model and then fully embedded into an EEC model.

PART I: SYNTAX

2 A basic effect calculus

Moggi’s computational metalanguage, [30], extends the simply-typed λ-calculus with new types
TA, which type computations (possibly with effects) that produce values of type A. The new
type has an associated “let” operator, which performs the Kleisli extension of a map A→ TB
to a map TA → TB. This can be seen as a restricted form of elimination rule for the type
TA. Filinski [10] generalises this elimination rule to apply to a wider class of “target” types
than those of the form TB, and develops a calculus for this based on classifying such types
as special computation types within a broader class of value types. Such a generalisation is
useful for interpreting call-by-name languages. Its importance has been thoroughly established
by Levy, whose call-by-push-value (CBPV) paradigm [21] is based on the distinction between
computation and value types.

3

We define our effect calculus as a canonical calculus incorporating the above ideas. Following
Moggi, we include a type constructor for computations. Following Filinski and Levy we classify
types as value types and computation types. Because we have two classes of types, we assume
two classes of type constants. We use α, β, . . . to range over a set of value type constants, and
α, β, . . . to range over a disjoint set of computation type constants. We then use A,B, . . . to
range over value types, and A,B, . . . to range over computation types, which are specified by the
grammar below:

A ::= α | α | 1 | A× B | A→ B | !A
[
| 0 | A + B

]
A ::= α | 1 | A× B | A→ B | !A

Here, the parenthesised component of the grammar for value types represents the optional
inclusion of finite-sum types (including the empty type 0) into the calculus. Note that the
inclusion of value type sums also enlarges the collection of computation types. We refer to the
calculus without sums as the plain effect calculus (EC). Otherwise, we explicitly say the effect
calculus with sums (EC+). Observe that both calculi enjoy the property that every computation
type is also a value type.

Our notation for type constructors is standard, except that we use the linear exponential
notation !A for Moggi’s monadic type TA. (The reasons for this nonstandard choice will tran-
spire later.) We follow Filinski in making computation types a subclass of value types. Levy,
in contrast, keeps computation types and value types separate. He has an operator F that
turns a value type A into a computation type FA, and conversely an operator U that maps
a computation type A to a value type UA. Levy’s type FA corresponds to !A in our syntax,
and his type UA is simply A itself. Two reasons for our choice of omitting U and subsuming
computation types as value types are: the streamlined syntax leads to a very economical type
system (see below) with no loss of information, since one can establish an equivalence between
the two systems (see Appendix A); and the term syntax is not cluttered with (inferable) con-
versions between values and computations. A further point that deserves comment is that, as
in Levy’s CBPV, function types are restricted to those with computation-type codomain (i.e.,
those of the form A → B). This choice differs from the conference version of the paper [6], in
which a full function space between value types was included in EC. The restriction on function
types in the present version has been imposed in order to obtain the results of Appendix A,
where it is shown that the calculus EC+ is equivalent to Levy’s CBPV. This provides technical
substantiation for the remarks about our streamlined syntax above.

A third benefit of our syntactic formulation of EC, which is specifically relevant to the
goals of the present paper: our choice of syntax provides a transparent foundation for the
extension with linear logic connectives in Section 3. In order to ease the transition to this
linear calculus, we build a notion of linearity directly into the typing judgements of the basic
effect calculus. This notion has an intuitive motivation. Following Levy [21], we view value
types as typing values, which are static entities, and we view computation types as typing
computations, which are dynamic entities. If a term t has computation type, and contains a
parameter z of computation type then there is a natural notion of t depending linearly on z:
the execution of the computation t contains within it exactly one execution of the computation
z. Since computations may perform arbitrary effects including nontermination, such a linear
dependency can only hold in general if the execution of z is the first subcomputation performed
in the execution of t. (If, for example, a computation that diverges were due to be performed
before z then z might never be executed.) Thus we may rephrase: t depends linearly on z if the
execution of the computation t begins with the execution of the computation z. Accordingly,
we have arrived at a notion of t depending linearly on z that is similar in spirit to saying that
t[z] is an evaluation context. The situation for value types is fundamentally different. Since

4

values are static, they are reasonably considered as pervasive entities that might be used any
number of times. Accordingly, we do not build in any notion of a term t depending linearly on
a parameter x of value type.

The above discussion is intended to give informal motivation for considering typing rules for
the effect calculus based on two judgement forms:

(i) Γ |− ` t : A

(ii) Γ |z : A ` t : B ,

where Γ is a context of value-type assignments to variables, i.e., a finite-domain partial function
from variables to value types. On the right of Γ is a stoup (following the terminology of [13]),
which may either be empty, as in the case of judgement (i), or may consist of a unique type
assignment z : A, in which case the type on the right of the turnstyle is also required to be
a computation type, as in (ii). The purpose of judgement (i) is merely to assert that the
term t has value type A in (value) context Γ. Judgement (ii) asserts that t is a computation
of type B (in context Γ) which depends linearly on the computation z of type A. Note how
these two judgement forms correspond to the informal discussion of linearity given above. This
discussion also provides some intuitive motivation for the restriction of the linear context to a
stoup containing at most one variable of computation type. Since a linearly-used parameter z
(necessarily of computation type) must be executed first in the execution of t, it is natural that
just one variable can enjoy this property.

The typing rules are presented in Figures 1–3. Figure 1 gives the rules for the pure effect
calculus. Figure 2 allows terms built from a specified signature Σ of operations. Two kinds of
operation may be declared in Σ. A non-linear operation f is given a type specification of the
form (A1, . . . ,Ak)→B, where k ≥ 0 and A1, . . . ,Ak,B are value types. The case k = 0 allows
operations to include constants. A linear operation g is given a type specification of the form
(A1, . . . ,Ak | B)→C, where B and C are computation types. Such an operation is declared linear
in its last argument. A signature Σ is then a function from a given set of operation symbols to
non-linear and linear type specifications. Finally, Figure 3 presents the additional typing rules
needed to add sums to the effect calculus.

In the rules of Figures 1–3, Σ is a signature of operations, Γ ranges over contexts, and ∆
ranges over an arbitrary (possibly empty) stoup. We use standard notation for the manipulation
of signature and contexts. The rules are only considered applicable in the case of typing judge-
ments that conform to (i) or (ii) above. Observe that the syntax of terms has been decorated
with certain type annotations. These are included in order to obtain Proposition 2.1 below:
uniqueness of types. Nevertheless, to save clutter, we shall normally omit type annotations from
terms, writing, e.g., ?(t) instead of ?A(t), unless their presence is particularly helpful.

The positioning of the stoups ∆ in the rules can be understood in terms of the intuitive
definition of linearity given above. For example, the evaluation behaviour of the terms associated
with !A types can be understood following Moggi [29, 30]. In the introduction rule, the term
!t represents the trivial computation that immediately returns the value t of type A. There
is no possibility in this of any linear dependency on a subcomputation z. In the elimination
rule, the term let !x be t in u first evaluates the computation t, binds the result (if obtained)
to x and then proceeds to evaluate the computation u. Clearly if z is evaluated first within t
then it is also evaluated first within let !x be t in u, and this justifies the positioning of ∆ in
the rule. Observe, however, that the following variation on the rule is not legitimised by our
interpretation of linearity, and hence is not included in the calculus.

Γ |− ` t : !A Γ, x : A |∆ ` u : B

Γ |∆ ` let !x be t in u : B
(1)

5

Γ, x : A |− ` x : A Γ |z : A ` z : A Γ |∆ ` ∗ : 1

Γ |∆ ` t : A Γ |∆ ` u : B

Γ |∆ ` 〈t, u〉 : A× B

Γ |∆ ` t : A× B

Γ |∆ ` fst(t) : A

Γ |∆ ` t : A× B

Γ |∆ ` snd(t) : B

Γ, x : A |∆ ` t : B

Γ |∆ ` λx : A. t : A→ B

Γ |∆ ` s : A→ B Γ |− ` t : A

Γ |∆ ` s(t) : B

Γ |− ` t : A

Γ |− ` !t : ! A

Γ |∆ ` t : !A Γ, x : A |− ` u : B

Γ |∆ ` let !x be t in u : B

Figure 1: Typing rules for the effect calculus, EC

Γ |− ` t1 : A1 . . . Γ |− ` tk : Ak
f : (A1, . . . ,Ak)→B ∈ Σ

Γ |− ` f(t1, . . . , tk) : B

Γ |− ` t1 : A1 . . . Γ |− ` tk : Ak Γ |∆ ` u : B
g : (A1, . . . ,Ak | B)→C ∈ Σ

Γ |∆ ` g(t1, . . . , tk | u) : C

Figure 2: Typing rules for a signature of operations

Γ |− ` t : 0

Γ |∆ ` ?A(t) : A

Γ |− ` t : A

Γ |− ` inlA,B(t) : A + B

Γ |− ` t : B

Γ |− ` inrA,B(t) : A + B

Γ |− ` s : A + B Γ, x : A |∆ ` t : C Γ, y : B |∆ ` u : C

Γ |∆ ` case s of (inl(x). t; inr(y). u) : C

Figure 3: Additional typing rules for the effect calculus with sums, EC+

The issue here is that any z in ∆ is evaluated as part of u, and this occurs only after t has been
evaluated first. Similar explanations can be given to the other rules. They rely on giving the
products a lazy interpretation: components are only evaluated once projected out. (So, e.g.,
the linearity in the rule for 1 is correct because 1 is the empty product and ∗ can never be
projected.)

As explained in detail in Appendix A, the typing rules for the effect calculus with sums
are a concise reformulation of those for CBPV with complex stacks, as found in [21, 22]. Once
again, our formulation has been chosen both for its economy and to make the extension with
linear connectives transparent. Indeed, we have stayed close to linear logic notation (the main
exception is the use of × for product rather than the usual linear &), and our typing rules are
simply restrictions, from an arbitrary linear context to a stoup, of the rules for ILL in [1]. This,
in part, motivates the nonstandard use of !A instead of TA. The one mismatch here is the
missing rule (1) above, which is valid in the context of ILL. In spite of this mismatch, it is our
belief that the extension of the effect calculus with linear primitives presented below will make
it clear that the overlap with linear logic is so strong that the linear notation is helpful more

6

Γ |∆ ` t = ∗ : 1 if Γ |∆ ` t : 1
Γ |∆ ` fst(〈t, u〉) = t : A if Γ |∆ ` t : A and Γ |∆ ` u : B

Γ |∆ ` snd(〈t, u〉) = u : B if Γ |∆ ` t : A and Γ |∆ ` u : B

Γ |∆ ` 〈fst(t), snd(t)〉 = t : A× B if Γ |∆ ` t : A× B

Γ |∆ ` (λx : A. t)(u) = t[u/x] : B if Γ, x : A |∆ ` t : B and Γ |− ` u : A

Γ |∆ ` λx : A. (t(x)) = t : A→ B if Γ |∆ ` t : A→ B and x 6∈ Γ,∆
Γ |− ` let !x be !t in u = u[t/x] : B if Γ |− ` t : A and Γ, x : A |− ` u : B

Γ |∆ ` let !x be t in u[!x/y] = u[t / y] : B if Γ |∆ ` t : !A and Γ |y : !A ` u : B

Figure 4: Equality axioms for the effect calculus

Γ |∆ ` ?(t) = u[t/x] : A if Γ |− ` t : 0 and Γ, x : 0 |∆ ` u : A

Γ |∆ ` case inl(t) of (inl(x). u; inr(y). u′) if Γ, x : A |∆ ` u : C and Γ, y : B |∆ ` u′ : C

= u[t/x] : C and Γ |− ` t : A

Γ |∆ ` case inr(t) of (inl(x). u; inr(y). u′) if Γ, x : A |∆ ` u : C and Γ, y : B |∆ ` u′ : C

= u′[t/x] : C and Γ |− ` t : B

Γ | ∆ ` case t of (inl(x). u[inl(x)/z]; inr(y). u[inr(y)/z])
= u[t/z] : C if Γ |∆ ` t : A + B and Γ, z : A + B |∆ ` u : C

Figure 5: Additional equality axioms for sums.

than it is misleading.
The next results state basic properties of the type systems. The straightforward proofs, by

induction on derivations, are omitted. The results are stated once only, but apply, as written,
to both EC and EC+ in the presence of an arbitrary signature Σ.

Proposition 2.1 (Uniqueness of types). If Γ |∆ ` t : A and Γ |∆ ` t : B then A = B.

Proposition 2.2 (Weakening). If Γ |∆ ` t : A and variable x does not appear in Γ,∆ then
Γ, x : B |∆ ` t : A.

Proposition 2.3 (Substitution).

1. If Γ, x : A |∆ ` s : B and Γ |− ` t : A then Γ |∆ ` s[t/x] : B.

2. If Γ |x : A ` s : B and Γ |∆ ` t : A then Γ |∆ ` s[t/x] : B.

Proposition 2.4 (Shift). If Γ |x : A ` t : B then Γ, x : A |− ` t : B.

Equational theories for the effect calculus are presented as sets of equations between well-
typed terms in context. Each equation thus has the general form Γ |∆ ` t = u : A where both
t and u must be well typed, i.e., Γ |∆ ` t : A and Γ |∆ ` u : A. The basic equalities, for the
effect calculus EC, are presented in Figure 4. Additional equalities, for the calculus EC+ with
sums, are given in Figure 5. In general, we consider either calculus over a given signature Σ
of operations and an assumed set E of equations in context. The resulting equational theory

7

is then the smallest set of equations that contains E , includes the axioms of Figures 4 and 5
(the latter in the case of EC+ only), and is closed under the expected (typed) congruence,
α-equivalence and substitution rules. We write Γ |∆ `E t = u : A for the resulting equational
theory (leaving the signature Σ implicit). Although we do not distinguish notationally between
equational derivability in EC and in EC+, we will always make it clear from the context which
is meant.

3 The enriched effect calculus

The enriched effect calculus is obtained by adding a selection of type constructors from linear
logic to the effect calculus. As befits the setting, this needs to be done respecting both the
distinction between value and computation types, and the interpretation of linearity as a concept
related to the latter.

We start with linear function types. In our setting, we have a notion of linearity between
computation types only. Thus we add a type A (B, internalising the linear dependency of
judgements Γ | z : A ` t : B. In order to have a calculus with a sufficiently wide collection
of models (all monad models) it seems essential not to assume that A (B is a computation
type in general. (Examples of models in which A (B cannot be a computation type will be
discussed in Section 6.) We thus consider A(B as a value type only. This restriction fits in
with the stoup-based typing judgements, since allowing a linear function to depend linearly on
another parameter would naturally lead to typing rules involving multivariable linear contexts.

In linear logic, linear function space lies in an adjoint relationship with tensor product
⊗, which normally internalises the comma separating types in the linear context of a typing
judgement. In our stoup-based system, there is at most one type in the linear context (the
stoup), and so it seems awkward to implement the usual symmetric ⊗. Similarly, it is also
difficult to find an appropriate ⊗ operation in a sufficiently general class of models. What does
work, both syntactically and semantically, is an asymmetric version: for any value type A and
computation type B, we include a new computation (and hence value) type !A⊗B. Note that
this is the application of a single primitive binary constructor.1 The hybrid notation is chosen
to maintain consistency with linear logic.

Finally, we include: linear coproducts of computation types, A⊕ B and 0, which are them-
selves computation types; and a full function space A→ B between value types, which is itself
a value type.

The resulting enriched effect calculus has types defined by extending the grammar for value
and computation types of the effect calculus with the following additional type constructors.

A ::= . . . | A(B | !A⊗B | 0 | A⊕ B | A→ B

A ::= . . . | !A⊗B | 0 | A⊕ B .

Here the ellipses mean that we include all the type constructs from the effect calculus. Once
again, we are simultaneously defining two calculi: the enriched effect calculus EEC, and the
enriched effect calculus with sums EEC+, where only the latter has the type constructs 0 and
A + B. Notice that the new value-type constructor A → B of the enriched effect calculus
subsumes the effect-calculus function space A → B, which can therefore be omitted from the
full grammar for value types (but not from the grammar for computation types since A→ B is
a computation type only when B is too).

1We comment that a similar notion of asymmetric tensor has been introduced, in the context of game seman-
tics, as a sequoidal product, by Laird and Churchill [19, 5].

8

Γ |z : A ` t : B

Γ |− ` λ◦z : A. t : A(B

Γ |− ` s : A(B Γ |∆ ` t : A

Γ |∆ ` s[t] : B

Γ |− ` t : A Γ |∆ ` u : B

Γ |∆ ` !t⊗ u : !A⊗B

Γ |∆ ` s : !A⊗B Γ, x : A |z : B ` t : C

Γ |∆ ` let !x⊗ z be s in t : C

Γ |∆ ` t : 0

Γ |∆ ` ?(t) : A

Γ |∆ ` t : A

Γ |∆ ` inl(t) : A⊕ B

Γ |∆ ` t : B

Γ |∆ ` inr(t) : A⊕ B

Γ |∆ ` s : A⊕ B Γ |x : A ` t : C Γ |y : B ` u : C

Γ |∆ ` case s of (inl(x). t; inr(y). u) : C

Γ, x : A |∆ ` t : B

Γ |∆ ` λx : A. t : A→ B

Γ |∆ ` s : A→ B Γ |− ` t : A

Γ |∆ ` s(t) : B

Figure 6: Additional typing rules for the enriched effect calculus.

Γ |∆ ` (λ◦x : A. t)[u] = t[u/x] : B if Γ |x : A ` t : B and Γ |∆ ` u : A

Γ |− ` λ◦x : A. (t[x]) = t : A(B if Γ |− ` t : A(B and x /∈ Γ
Γ |∆ ` let !x⊗y be !t⊗s in u = u[t,s/x,y] : C if Γ |− ` t : A and Γ |∆ ` s : B

and Γ, x : A |y : B ` u : C

Γ |∆ ` let !x⊗y be t in u[!x⊗y/z] = u[t/z] : C if Γ |∆ ` t : !A⊗B and Γ |z : !A⊗B ` u : C

Γ |∆ ` ?(t) = u[t/x] : A if Γ |∆ ` t : 0 and Γ |x : 0 ` u : A

Γ |∆ ` case inl(t) of (inl(x). u; inr(y). u′) if Γ |x : A ` u : C and Γ |y : B ` u′ : C

= u[t/x] : C and Γ |∆ ` t : A

Γ |∆ ` case inr(t) of (inl(x). u; inr(y). u′) if Γ |x : A ` u : C and Γ |y : B ` u′ : C

= u′[t/y] : C and Γ |∆ ` t : B

Γ |∆ ` case t of (inl(x). u[inl(x)/z]; inr(y). u[inr(y)/z])
= u[t/z] : C if Γ |∆ ` t : A⊕ B and Γ |z : A⊕ B ` u : C

Γ |∆ ` (λx : A. t)(u) = t[u/x] : B if Γ, x : A |∆ ` t : B and Γ |− ` u : A

Γ |∆ ` λx : A. (t(x)) = t : A→ B if Γ |∆ ` t : A→ B and x 6∈ Γ,∆

Figure 7: Additional equality rules for the enriched effect calculus.

The judgement forms for the enriched calculi are exactly as for the effect calculus (now using
the extended range of types). The additional typing rules are presented in Figure 6. Again, they
can be seen to be restrictions of standard intuitionistic linear logic rules, as in [1]. The basic
syntactic properties of the typing relation, stated in Propositions 2.1–2.4, carry over to EEC
and EEC+ verbatim. (There is thus no need to restate them.) The equality theory on terms
is extended by the rules in Figure 7. As before, we write Γ |∆ `E t = u : A for derivability in
equational theory E , and we shall make it clear from the context the system (EC, EC+, EEC,
EEC+) in which derivability is intended.

9

The restriction that A (B is a value type, and the lack of a symmetric tensor have
consequences on expressivity that may, at first, seem drastic. An obvious limitation is that
linear function space does not iterate: neither A ((B (C) nor (A (B) (C are allowed.
However, it is possible to interleave linear function space with full function space. For example,
A ((B → C) is a value type, and (A (B) → C is a computation (and hence value) type.
We end this section with a sequence of examples showing that the enriched effect calculus
is expressive enough to capture several computationally relevant situations in which linearity
combines with computational effects.

Example 3.1 (Linearly-used state). For any computation type S of “states”, the linearly-used-
state monad, S ((!(−) ⊗ S), is implementable as a monad on value types. (Note that the
use of the asymmetric tensor makes it essential that S is a computation type.) This monad
plays a fundamental role because, perhaps surprisingly, every monad can be construed as a
linearly-used-state monad, see Example 4.2. This phenomenon is studied in more detail in [28].

Example 3.2 (Linearly-used continuations). For any computation type R of “results”, the
linearly-used-continuations monad, ((−) → R) (R) is implementable as a monad on value
types. (Again, it is essential for R to be a computation type.) This monad, in fact, underpins
a linear-use-CPS translation from EEC to itself, which has been studied in detail in [7, 9].

Example 3.3 (First-class control). For every computation type A, there is a canonical linear
function in EEC

αA := λ◦x : A. λk : A(0. k(x) : A ((A(0)→ 0 .

By adding to EEC a signature of operations α′A : (| (A(0) → 0) → A (that is, each α′A has
a single linear argument), together with equations asserting that each induced function (where
we overload the meaning of α′)

α′A : ((A(0)→ 0) (A

is inverse to αA, one obtains an extension of EEC with control operators, equivalent to that
obtained by adding the CBPV control primitives of Levy [21]. Here, 0, is to be viewed as a
generic result type, and the α′ constants implement an explicit control operator, called “letstk”
in [21]. In particular, the linear arrow in the type A (0 implements the property that the
continuation supplied to “letstk” is a stack, that is, an evaluation context. This simple and
intuitive linear typing for control operators was first studied in [25], within the context of a
polymorphic version of EEC. An interesting feature of this application of EEC is that the
analogous extension of ILL is equationally inconsistent. Thus, ILL does not allow a similar
modelling of first-class control operators using (to model stacks.

Example 3.4. (Single-threaded nondeterminism) Plotkin and Power have argued that finite
nondeterminism should be modelled by a free-binary-semilatice monad P [32, Example 2.4].
However, if construed as binary semilattices over a category with an object Bool of booleans,
then the free algebra property induces maps ♦ : P (Bool) - Bool and� : P (Bool) - Bool,
via the boolean semilattice structures (Bool,∨) and (Bool,∧) respectively. These maps com-
pute existential and universal quantifications over all nondeterministic branches — operations
that are not computable under the usual “single-threaded” interpretation of nondeterminism,
under which computation proceeds along just one nondeterministic branch. A possible ap-
proach to modelling such single-threadedness is to use the linear function space of EEC, asking
for nondeterministic choice to be given as binary semilattice structures

A× A (A ,

10

over computation types. The idea here is that the linearity of the choice operation, coupled with
the fact that booleans Bool typically form a value type not a computation type, means that
there are no analogues of the � and ♦ operations. Intuitively, single-threadedness is ensured
because a linear function acting on a product A×A has to first choose which component of the
product to work on, as in Girard’s intuitive explanation of how the linear product, “ &”, works
[11]. To properly substantiate this idea for modelling single-threaded nondeterminism, it would
be good to have a fully abstract model in which nondeterminism is modelled in the above way.
This is an interesting direction for future research.

Example 3.5. (Polymorphism) It is possible to combine polymorphic types of the form ∀X.A
and ∀X.A with EEC+, where the quantifiers quantify over value type and computation types
respectively. The resulting calculus supports a theory of relational parametricity for languages
with computational effects. This is developed in [25, 26, 27], where it is shown (in effect) how
full EEC+ arises from a basic type theory containing only universal quantifiers and (linear and
non-linear) function types.

4 Properties of the Enriched Effect Calculus

Many of the familiar laws of linear logic transfer to the enriched effect calculus, insofar as they
can be expressed. The proposition below states the most prominent of these, and also asserts
laws of EEC+ specifically associated to value-type sums, which have no counterpart in linear
logic. In the statement, we introduce the notation ∼=◦ to denote a linear isomorphism between
computation types.

Proposition 4.1. The following isomorphisms hold in EEC:

A→ B ∼= !A(B (2)
(!A⊗B)(C ∼= A→ (B(C) ∼= B((A→ C) (3)

A(1 ∼= 1 (4)
A((B× C) ∼= (A(B)× (A(C) (5)

0(A ∼= 1 (6)
(A⊕ B)(C ∼= (A(C)× (B(C) (7)

!A⊗ !B ∼=◦ !(A× B) (8)
!A⊗ 0 ∼=◦ 0 (9)

!A⊗ (B⊕ C) ∼=◦ (!A⊗B)⊕ (!A⊗C) (10)
!1⊗A ∼=◦ A (11)

!(A× B)⊗C ∼=◦ !A⊗ !B⊗C (12)

The following isomorphisms hold in EEC+:

!0 ∼=◦ 0 (13)
!(A + B) ∼=◦ !A ⊕ !B (14)

!0⊗A ∼=◦ 0 (15)
!(A + B)⊗C ∼=◦ (!A⊗C)⊕ (!B⊗C) (16)

Proof. We provide the terms giving the isomorphisms for two cases: (8) and (12). The other
cases are left to the reader, as is the verification of the mutual inverse property for each of the
pairs of terms given below.

11

For (8), the terms giving the isomorphism are:

λ◦w : !A⊗ !B. let !x⊗z be w in let !y be z in !〈x, y〉 : !A⊗ !B(!(A× B)
λ◦w : !(A× B). let !z be w in !fst(z)⊗ !snd(z) : !(A× B)(!A⊗ !B

For (12), the terms giving the isomorphism are:

λ◦v : !(A× B)⊗C. let !w⊗z be v in !fst(w)⊗ !snd(w)⊗ z : !(A× B)⊗C(!A⊗ !B⊗C

λ◦v : !A⊗ !B⊗C. let !x⊗w be v in let !y⊗z be w in !〈x, y〉 ⊗ z : !A⊗ !B⊗C(!(A× B)⊗C

We make one comment on the above proposition. Due to our choice of notation, it may appear
that law (12) is a special case of law (8). But this is not the case. Law (8) states properties of the
!A⊗C operator specialised to computation types C of the form !B, whereas law (12) applies to
arbitrary C, but to value types A of the form A1×A2. While one might consider such notational
quirks as misleading, we in fact take the opposite view. The notation encourages one to transfer
intuitions from linear logic to the connectives of EEC, and the proposition above underlines the
broad sense in which such a transfer of intuitions is possible. Specifically, isomorphisms (2)–(12)
above demonstrate that our linear connectives behave in the way that linear logic leads us to
expect they should. Indeed, all the type isomorphisms of linear logic, of which we are aware,
that can be formulated in our fragment, are valid as laws of EEC. (At the end of this section,
we formulate a precise question based on this observation.) We take this as one justification for
our decision to adopt linear logic notation, including the choice of replacing TA with !A.

Example 4.2. An interesting example of an isomorphism derived from Proposition 4.1 is:

!A ∼= 1→ !A ∼= !1(!A ∼= !1(!(A× 1) ∼= !1(!A⊗ !1 .

Here, the second isomorphism is by (2), the fourth is by (8), and the other two are standard
from typed λ-calculus. By defining S = !1, we thus obtain:

!A ∼= S (!A⊗S .

Furthermore, the strong monad structure (unit, multiplication and strength) over the operation
A 7→ !A on computation types, transports along the isomorphism to the canonical linearly-
used-state-monad structure on A 7→ S (!A⊗S, cf. [31, 28]. This is the sense in which the
claim that every monad is a linearly-used-state monad (see Example 3.1) is true.

We next state two main syntactic theorems about the enriched effect calculus. Taken to-
gether, these assert that the addition of the new linear type constructions is conservative over
the basic effect calculus. In fact, more generally, for the four calculi, EC, EC+, EEC, EEC+, un-
der consideration each larger calculus is conservative over each smaller one. Thus we let (X,Y)
range over the following pairs of calculi, (EC,EC+), (EC,EEC), (EC,EEC+), (EC+,EEC+),
(EEC,EEC+), and, in each case, we show that calculus Y is conservative over calculus X.

Theorem 4.3 (Syntactic conservativity). Let (X,Y) be as above. Suppose the signature Σ
contains only types from the calculus X. If Γ | ∆ ` u : A in calculus Y , where Γ,∆ and A
contain only types from calculus X, then there exists a term Γ |∆ ` t : A typable in the calculus
X such that Γ |∆ ` t = u : A holds in calculus Y .

This theorem is proved by a standard normalization argument. Every term u of EEC+ reduces
to one t in a suitable normal form. If u is a system-Y term of system-X type, then its normal
form t is a system-X term that is equal to u in the system-Y equational theory. The details,
which are standard, can be found in Appendix B.

12

Theorem 4.4 (Equational conservativity). Let (X,Y) be as above. Suppose the signature Σ
and equational theory E contain only types and terms from calculus X. If Γ |∆ ` s : A and
Γ | ∆ ` t : A are typable in calculus X, and Γ | ∆ `E s = t : A holds in calculus Y , then
Γ |∆ `E s = t : A holds in the equational theory of calculus X.

A syntactic proof of Theorem 4.4 would have to show that all detours through non-system-X
terms in a system-Y -derivation of Γ | ∆ `E s = t : A are removable. We have been unable
to obtain such a syntactic proof. Instead, the only proof we have of Theorem 4.4 is semantic.
It works by relating category-theoretic models of the various calculi. In Part II of the paper
below, we develop the basic notions of model used in the proof. The proof itself then works
by showing that every model of system X fully embeds in a model of system Y . However, the
notion of embedding here is somewhat subtle, and requires careful development of the correct
notion of morphism between models. Because this is technically involved, we defer it to a
companion paper devoted to the model theory of the various effect calculi [8]. Thus, in the
present paper, we state Theorem 4.4 without proof. Nevertheless, a reasonably detailed outline
of the argument can be found in the conference version of the present paper [6].

To end this section, we compare EEC with ILL. In contrast to the above results, we shall
see that the embedding of EEC in ILL is neither syntactically nor equationally conservative.
The first issue is how precisely to include EEC in ILL. Although we have been motivating
EEC as a “fragment” of the latter, there is the discrepancy that ILL just has one kind of type,
whereas EEC distinguishes between value and computation types. Accordingly, we start with
a “crude” embedding of EEC in ILL, under which both value and computation type constants
are interpreted as plain type constants in ILL, and all type constructors are interpreted by their
evident (normally synonymous) linear counterparts. For this embedding, the counterexamples
to equational and syntactic conservativity are essentially the same as those discussed in the
paragraph preceding Remark 1 of [14]. Specifically, equational conservativity fails because ILL
validates the “commutativity” equations

let !x be s in let !y be t in u = let !y be t in let !x be s in u , (17)

where x, y are not free in s, t. Syntactic conservativity does not hold because, in ILL one has
closed terms

λx : !A. let !y be x in y : !A→ A ,

for all types A, whereas, for EEC, such terms are only available for computation types. (Of
course, in ILL, one has similar terms of type !A(A, but these do not violate syntactic conser-
vativity since, in EEC, the linear function type exists only in the case that A is a computation
type.)

The above immersion of EEC in ILL was called crude because a better comparison is to
embed EEC in a version of ILL that makes a type distinction analogous to the EEC distinction
between value and computation type. Such a version of ILL was proposed by Benton [2],
whose linear types are analogous to our computation types, and whose conventional types are
analogous to our value types. It is then natural to embed EEC in the resulting linear non-linear
logic, by mapping value types to conventional types and computational types to linear types.
Under such an embedding, the commutativity equation (17) above again demonstrates the
failure of equational conservativity. Also, syntactic conservativity fails, but a different example
is needed to show this. Consider the EEC term:

λf : A→ B. λx : !A. let !y be x in f(y) : (A→ B)→ (!A→ B) . (18)

In EEC, it is not possible to strengthen this to a term

λ◦f : A→ B. λx : !A. let !y be x in f(y) : (A→ B)((!A→ B) ,

13

because of the invalidity of rule (1) (see Section 2).2 However, in linear non-linear logic, such
a strengthened term does exist. It is worth noting, perhaps, that the counterexamples to both
equational and syntactic conservativity share the same property that they arise because of the
inability of linear logic to distinguish between the order of execution of computations.3

We end this section by formulating the question adumbrated in the paragraph following
Proposition 4.1. Is it the case that, whenever a closed EEC term t : A (B or t : A → B
is a (linear or non-linear respectively) isomorphism in ILL, it is also a (linear or non-linear)
isomorphism in EEC?4 A positive answer to this question would provide a systematic result
that includes isomorphisms (2)–(12) of Proposition 4.1 as instances.

PART II: SEMANTICS

5 Preliminaries from enriched category theory

The name enriched effect calculus is partly an allusion to the central role that enriched category
theory will play in its denotational models. In this section, we review some of the elements
of enriched category theory, which will be needed in our treatment of models of all the calculi
introduced so far (Section 6). The purpose of the present section is to collect definitions together
with associated basic lemmata all in one place. The reader, who would prefer to follow the main
narrative of the paper, may thus prefer to skip to Section 6 and to refer back to the present
section as and when needed.

The central idea of enriched category theory is to replace the notion of hom-set with that
of hom-object. In order for this to make sense, one must first choose a category, the enriching
category V, from which the hom-objects will be taken. The definitions require the enriching
category V to be monoidal, that is, to have a specified monoidal product structure (⊗, I). (See
[20] for a full definition of monoidal category.) Then a (V,⊗, I)-category (or, V-category, if ⊗
and I are understood), C, is given by a class of objects together with, for every pair of objects
A,B, an associated V-object C(A,B), as well as V-arrows

compA,B,C : C(B,C)⊗C(A,B) - C(A,C) (19)

pidAq : I - C(A,A) (20)

providing composition and identities for C. These are required to satisfy associativity and
unitality axioms, which are rendered as commutative diagrams in V. Similarly, a (V,⊗, I)-
functor (or, V-functor) C - D consists of an assignment F of C-objects to D-objects together
with a family of V-morphisms

FA,B : C(A,B) - D(FA,FB)

satisfying the usual functoriality axioms—now rendered as commutative diagrams in V. A V-
functor F is called fully faithful if all of the FA,B are isomorphisms. A V-natural transformation
from F to G consists of a family of V-morphisms

αA : I - D(FA,GA)
2For a semantic counterpart of this observation, let T be a monad on Set and consider the EEC model

F T a UT : SetT - Set of Proposition 6.8. Then, (18) denotes a function UT (BA) → UT (B (UT F T A)). But,
when the monad is non-commutative, this function is not in general the image under UT of any homomorphism.

3Of course, linear logic was not designed for this purpose. What is surprising, perhaps, is that the linear
primitives adapt so well to the context of EEC, in which such distinctions are significant.

4This can be reformulated semantically in terms of category-theoretic models of EEC and ILL, see Sections 6
and 7. Does the canonical morphism of models (as described in [8]) from the syntactic EEC model to the syntactic
ILL model, which the foregoing discussion shows to be neither full nor faithful, nonetheless reflect isomorphisms?

14

whose naturality is, once again, rendered by a commutative diagram in V. A V-adjunction
F a U between (V,⊗, I)-functors F : D - C and U : C - D can be equivalently defined
either in terms of a pair of V-natural transformations η : IdD

- UF , ε : FU - IdC satisfying
the usual triangle identities, or in terms of V-isomorphisms

ρA,B : C(FA,B) - D(A,UB) (21)

satisfying appropriate coherence diagrams in V.5 We refer readers to Kelly’s book [17] for full
definitions.

Enriched category theory generalises ordinary category theory in the sense that a (Set,×, 1)-
category (-functor, -natural transformation, -adjunction) is just an ordinary locally small cate-
gory (resp., functor, natural transformation, adjunction). Moreover, if C is a V-category, one
can form an ordinary category called the underlying category of C; this has the same class of
objects as C but its arrows are given by V-morphisms of the form f : I - C(A,B). Simi-
larly, every V-functor (-natural transformation, -adjunction) has an underlying functor (resp.,
natural transformation, adjunction).

This procedure of extracting a Set-category from a V-category is merely one case of a
general result which will be useful in the sequel. Let us recall that a monoidal functor (or, lax
monoidal functor, according to some authors) from (V,⊗, I) to (V′,⊗′, I ′) consists of a functor
M : V - V′ together with an arrow η : I ′ - M(I) and a natural transformation

µA,B : MA⊗′MB - M(A⊗B)

satisfying appropriate associativity and unitality axioms. It is said to be strong if η and µA,B are
isomorphisms. There is a natural notion of monoidal natural transformation between monoidal
functors [20].

Lemma 5.1 ([17, p.3]). Let (M,µ, η) : (V,⊗, I) - (V′,⊗′, I ′) be a monoidal functor. Ap-
plication of M to hom-objects defines a 2-functor M(·) from the 2-category of V-categories
to that of V′-categories; that is, MC has the same objects as C but hom-objects defined by
MC(A,B) = M(C(A,B)).

Example 5.2. For any locally small monoidal category (V,⊗, I), let U : V - Set denote the
functor U = V(I,−). Then U , together with the arrow pid Iq : 1 - V(I, I) = UI, and the
natural transformation

UA× UB = V(I, A)×V(I,B)
⊗
- V(I ⊗ I, A⊗B)

∼
- V(I, A⊗B) = U(A⊗B),

form a monoidal functor (V,⊗, I) - (Set,×, 1). Moreover, the corresponding 2-functor C 7→
UC maps a V-category to its underlying category.

Henceforth, we shall find it convenient to restrict our attention to enriching categories whose
monoidal structure is both symmetric and closed. We write [A → (·)] for the right adjoint to
(·)⊗A. The assumption of closedness, means that V admits a canonical self-enrichment, Vself ,
with hom-objects as follows.6

Vself(A,B) = [A→ B] .

In practice, it is often convenient to elide the distinction between V and Vself , as this rarely
causes confusion. For instance, if we speak of a V-functor C - V, this can only make sense if
C and V are V-categories; so, in this case, we really mean Vself .

5In the case where V is symmetric and closed (see below), these diagrams are equivalent to the V-naturality
in A and B of (21).

6More generally, self-enrichedness applies to arbitrary monoidal (V,⊗, I) for which every functor (·)⊗A has
a right adjoint, irrespective of symmetry.

15

Lemma 5.3. Let (V,⊗, I) and (W,⊗, I) be closed symmetric monoidal categories and let
(M,µ, η) : (W,⊗, I) - (V,⊗, I) be a monoidal functor. Then M admits a canonical enrich-
ment as a V-functor Mcan : MW→ V.

Proof. The Curry of

M [A→ B]⊗MA
µ[A→B],A- M([A→ B]⊗A)

M(ev)
- MB

defines the requisite arrow

MW(A,B) = M [A→ B] - [MA→MB] = V(MA,MB)

Given a V-object A, we say that a V-category C has A-fold copowers (Kelly writes tensors
indexed by A) if, for each object B in C, there exists an object A · B of C together with
V-isomorphisms

ψA,B,C : C(A ·B,C) - [A→ C(B,C)] (22)

which are V-natural in C. The dual property is that of having A-fold powers (Kelly writes
cotensors indexed by A): for each object B of C, there must exist an object BA of C and
V-isomorphisms

ξA,B,C : C(C,BA) - [A→ C(C,B)] (23)

again V-natural in C. The category V automatically has all A-fold powers and copowers, under
its self-enrichment Vself . These are given by A · B = A ⊗ B and BA = [A → B] (and we shall
henceforth often write BA for [A→ B]).

Lemma 5.4. Let (V,⊗, I) and (W,⊗, I) be closed symmetric monoidal categories, and let
(M,µ, η) : (W,⊗, I) - (V,⊗, I) be a monoidal functor such that Mcan : MW - V has a left
V-adjoint, L : V -

MW. For every W-category D, and every object A of V, if D has LA-fold
(co)powers then MD has A-fold (co)powers.

Proof. Under the given hypotheses, for every object B of D, we have isomorphisms

[A→ MD(C,B)] = V(A,MD(C,B))
= V(A,McanD(C,B))
∼= MW(LA,D(C,B))
= M [LA→ D(C,B)]
∼= MD(C,BLA)
= MD(C,BLA)

V-natural in C. Hence BLA, as computed in D, enjoys the correct universal property (23) to
be BA, as computed in MD. By essentially the same argument, LA · B, as computed in D,
enjoys the correct universal property (22) to be A ·B, as computed in MD.

Now suppose that our enriching category, V, also has finite products. Then C is said to
have finite V-coproducts if it has an object 0 and, for each pair of objects A,B an object A+B,
together with isomorphisms

[·]C : 1 ∼= C(0, C)
[−,−]A,B,C : C(A,C)×C(B,C) ∼= C(A+B,C)

16

V-natural in C. Dually, C is said to have finite V-products if it has an object 1 and, for each
pair of objects A,B an object A×B, together with isomorphisms

〈·〉C : 1 ∼= C(C, 1)
〈−,−〉A,B,C : C(C,A)×C(C,B) ∼= C(C,A×B)

V-natural in C.
It follows from naturality that the inverses of [−,−] and 〈−,−〉 must be given by V-

morphisms

pinlq : I - C(A,A+B) pπ1q : I - C(A×B,A)
pinrq : I - C(B,A+B) pπ2q : I - C(A×B,B)

corresponding to arrows inl : A - A + B, inr : B - A + B, π1 : A × B - A and π2 : A ×
B - B in the underlying category of C. These satisfy the usual universal properties. Simi-
larly, there are unique V-arrows p?q : I - C(0, C), p !q : I - C(C, 1) corresponding to unique
arrows ? : 0 - C, ! : C - 1 in the underlying category of C. Hence, if C has finite V-
(co)products, then its underlying category, UC, has ordinary finite (co)products. Once again,
this is part of a more general pattern.

Lemma 5.5. If C has finite V-(co)products and (M,µ, η) : (V,⊗, I) - (V′,⊗′, I ′) is a monoidal
functor such that M also preserves finite products, then MC has finite V′-(co)products.

Another useful lemma is the following.

Lemma 5.6 ([17, p. 50]). If C has A-fold powers for every V-object A, and UC has (ordinary)
finite coproducts, then C has finite V-coproducts. Dually, if C has A-fold copowers for every
V-object A, and UC has (ordinary) finite products, then C has finite V-products..

Finally, note that, for any small category V, the presheaf category V̂ = SetV
op

is cartesian
closed, and therefore self-enriched. Since the Yoneda functor y fully embeds V into V̂, the
category V inherits a V̂-enriched structure with hom-objects [yA → yB]. If V has products,
then y preserves them, and one can use this to derive an alternative (isomorphic) description
of this V̂-category structure:

Vpsh(A,B)(C) ∼= V(A× C,B). (24)

Again, we elide the distinction between V and Vpsh whenever convenient.

6 Models of EC and EEC

Our basic effect calculus EC is closely related to Levy’s CBPV with stacks. Accordingly, the
natural models are given by Levy’s adjunction models [22]. While these are most simply pre-
sented as locally-indexed categories, see op. cit., we instead use a definition, also discussed in op.
cit., based on enriched category theory, since this connects more easily with the models of the
enriched effect calculus introduced below. This definition requires a category V of value types,
together with a category C of computation types enriched over the presheaf category V̂. We
first give the formal definition, and then follow with an intuitive explanation of the structure.

Definition 6.1. An EC model comprises: a category with finite products, V; a V̂-category
C with finite V̂-products and yA-fold powers for every V-object A; and, a V̂-adjunction F a
U : C - V.

17

While the definition of EC model requires all the requested structure to be specified; for con-
venience, we shall normally refer to such a model as simply F a U : C - V. The reason for
singling out the enriched adjunction for specific mention, is that it is the one parameter that can
be varied in the choice of EC model over a given V and C. All the remainder of the structure
is determined up to isomorphism.

The intuition behind the structure of an EC model is as follows. The category V models
value types, and C models linear maps between computation types. The reason for requiring
C to be enriched over V̂ is to model judgements Γ | z : A ` t : B in non-empty contexts Γ, as
elements of the set C(A,B)(Γ) or equivalently (by the Yoneda lemma) as morphisms

y(Γ) - C(A,B)

in V̂ cf. [22]. The yA-fold power of an object B of C models the computation type A→ B. The
left adjoint F maps a value type A to the computation type !A. The right adjoint U interprets
the coercion from computation types to value types. The other structure (finite products) is
self explanatory.

A minor inconvenience with the definition of EC model, as we have given it, is that one
needs to assume that the category V is small, in order to work freely with the presheaf category
V̂. As is standard, to escape this limitation, one can, when necessary, move to a larger universe
of sets in order to accommodate large categories V as small.

Note that all of the structure required in the definition of EC model is assumed to be
V̂-enriched. Thus the definition implicitly refers to V as the V̂-category Vpsh, as defined in
Section 5. Since U is an enriched right adjoint, it preserves all V̂-enriched limits which exist in
C, including powers; hence the following lemma holds.

Lemma 6.2. Let F a U : C - V be an EC model. Then V has powers of the form (UC)yA,
with these being given as U(C yA). Equivalently, it has internal homs of the form [A→ UC].

Note, however, that we do not assume that V itself have arbitrary yA-fold powers. That
hypothesis would entail V being cartesian closed, an assumption we do not make, since the
value types of EC do not have arbitrary function types.

Definition 6.3. An EC+ model is an EC model in which V has finite V̂-coproducts, and
for which every hom-presheaf C(A,B) : Vop → Set preserves finite products (that is, finite
coproduct diagrams in V are mapped to finite product diagrams in Set).

In this definition, the requirement that V (by which, strictly, we mean Vpsh) have finite V̂-
coproducts is equivalent to the assertion that the underlying category V have (ordinary) finite
coproducts, and that they are distributive (with respect to ×). The distributivity property is,
in turn, equivalent to requiring that every hom-presheaf V(A,B) : Vop → Set in V preserves
finite products. The second part of Definition 6.3 requires that the same property hold for hom-
presheaves in C. Thus, a final reformulation of the definition is to require that the underlying
category V have finite coproducts and that both V and C are enriched in the category of finite-
product-preserving (henceforth fpp) presheaves. This implies, in particular, that the Yoneda
functor y maps objects of V to fpp presheaves. Furthermore, when considered as a functor
into the category of fpp presheaves, y preserves finite coproducts. It is this latter fact, which
does not hold when y is considered as a functor into arbitrary presheaves, which necesitates the
restriction of hom-objects to fpp presheaves in Definition 6.3.

In the sequel, we shall use the fpp-presheaf structure in the following form. For an fpp-
presheaf H in V, there is a unique presheaf map

?̂ : y0 - H , (25)

18

and there is a one-to-one correspondence between pairs of presheaf maps

f : yA - H g : yB - H

and maps
[̂f, ĝ] : y(A+B) - H . (26)

(These facts are direct consequences of the one-to-one correpondence between maps yA - H
and elements of H(A) asserted by the Yoneda lemma.)

As mentioned above, EC and EC+ models provide enriched-category formulations of Levy’s
adjunction models for CBPV [22]. We refer to [22] for further discussion of such structure and
of alternative ways to formulate it. Following [22] we can show a close relation between EC
models and Moggi’s monad-based metalanguage models [30]. As is standard, we say that a
category V with finite products, carrying a strong monad T , has Kleisli exponentials if it has
internal homs of the form [A→ TB].

Proposition 6.4 (cf. Examples 4.9 and 5.7 of [22]). Let F a U : C - V be an EC model.
The composite UF carries the structure of a strong monad on V, with respect to which V has
Kleisli exponentials.

Conversely, let T be a strong monad on a category V with finite products such that V has
Kleisli exponentials. Let C be the full subcategory of the Eilenberg-Moore category VT on finite
products of powers of free algebras (powers of free algebras exist by the assumption of Kleisli
exponentials). Then the adjunction F a U : C - V (obtained by cutting down the canonical
adjunction F a U : VT - V) enriches to an EC model.

Proof. By the general theory of enriched categories, the enriched adjunction induces a V̂-
enriched monad structure on V. Applying the techniques of [18] to the current setting, and
using elementary properties of the Yoneda functor, one sees that such enrichments are equiva-
lent to strengths. More explicitly, the components of the strength can be described as the result
of applying the map

V(A×B,A×B) = Vpsh(A,A×B)(B)
TA,A×B(B)

- Vpsh(TA, T (A×B))(B) = V(TA×B, T (A×B))

to idA×B.
The second statement of the proposition is [22, Examples 4.9 and 5.7].

Remark 6.5. In the case that V is cartesian closed, the canonical adjunction F a U : VT - V
itself enriches to an EC model. This also happens if V has Kleisli exponentials and all idempo-
tents in V split.

Next, we turn to models of the enriched effect calculus, EEC. In this calculus, the presence
of the linear function space A(B as a value type means that the hom-set C(A,B) needs to
live as an object of the category V of value types itself. Similarly, the presence of arbitrary
function types A → B makes it necessary for V to be closed. Thus it is natural to require all
the structure to be enriched over V itself, rather than V̂. This helps to make the definition of
an EEC model simpler and more natural than the notion of EC model.

Definition 6.6. An EEC model comprises: a cartesian closed category V; a V-enriched
category C with powers and copowers, finite products and coproducts; and, a V-adjunction
F a U : C - V. An EEC+ model is an EEC model in which V has finite coproducts.

19

As in the case of EC models, we shall typically refer to an EEC model as F a U : C - V,
since all other structure, though strictly part of the specification of the model, is determined
up to isomorphism.

In the above definition, all the structure is intended to be read as being V-enriched. Thus
C has finite V-products and V-coproducts, and, in the case of an EEC+ model, V has finite
V-coproducts. However, in all three cases, it suffices to merely assume ordinary (co)products
on the underlying category and V-enrichment follows. For the finite products and coproducts
of C, this is a consequence of Lemma 5.6. For the case of coproducts on V, enrichment holds
because V is cartesian closed, so coproducts are distributive, hence V-enriched.

Every EEC model can be reconstrued as an EC model. Since the Yoneda embedding
y : V - V̂ preserves products, it defines a monoidal functor (V,×, 1) - (V̂,×, 1). Hence, we
can apply Lemma 5.1 to transport the V-enriched adjunction F a U : C - V to a V̂-enriched
one. Since y also preserves exponentials, it holds that yVself

∼= Vpsh. The V-powers of C define
the required powers of yC. In the case that one starts with an EEC+ model, V is distribu-
tive, hence the Yoneda embedding y defines a product-preserving (so monoidal) functor from
V to fpp presheaves, allowing the V-enriched adjunction to be transported to one enriched
in fpp presheaves; cf. the discussion following Definition 6.3. This way, any EEC+ model is
reconstrued as an EC+ model.

Unsurprisingly, the converse statement that EC (respectively EC+) models can be construed
as EEC (respectively EEC+) models does not hold, since the latter models have structure that
the former need not possess. Nevertheless, every EC (respectively EC+) model can be fully
embedded in an EEC (respectively EEC+) model. This important fact will be proved in the
companion paper on the model theory of EEC [8]. We end this section by describing some of
the many naturally occurring examples of EEC models.

A rich source of EEC models is provided by models of ILL. Amongst the various formula-
tions of such models, the most natural for our purposes is that of linear/nonlinear model [2],
which consists of a cartesian closed category V (the intuitionistic category), a symmetric
monoidal closed category C (the linear category), and a symmetric monoidal adjunction F a
G : (C,⊗, I) - (V,×, 1). We say that a linear/nonlinear model has additives if its linear
category has finite products and coproducts.

Proposition 6.7. Every linear/nonlinear model with additives determines an EEC model.

Proof. Since C and V are closed monoidal categories and G is a monoidal functor, Lemma 5.3
is applicable—that is, G canonically enriches to a V-functor Gcan : GC - V. Similarly, F
enriches to a V-functor Fenr : V -

GC.7 That there are V-isomorphisms GC(FA,C) ∼=
V(A,GC) manifesting a V-adjunction Fenr a Gcan : GC - V, follows from the strongness
of F as a monoidal functor (V,×, 1) - (C,⊗, I).

It remains to show that GC has powers, copowers and (enriched) finite products and co-
products. The existence of powers and copowers follows from Lemma 5.4. (To reiterate in
conventional notation, A · C = FA ⊗ C and CA = FA (C.) Given that all powers and
copowers exist, Lemma 5.6 applies: the existence of finite V-products and -coproducts in GC
reduces to the existence of finite products and coproducts in the underlying category of GC;
and, as it happens, UGC = U(GC) is isomorphic to C. (The last assertion is not entirely trivial,
as it requires a further invocation of the strongness of F .)

For any EEC model the composite UF is a V-enriched monad on V, which means exactly
that it is strong [18], see also [30, Remark 3.3]. The next two propositions investigate situations

7 The monoidal adjunction F a G induces a 2-adjunction between F(·) and G(·), and Fenr is simply the
V-functor corresponding across this 2-adjunction to the C-functor Fcan : FV - C.

20

in which, conversely, strong monads give rise to EEC models via the Eilenberg-Moore adjunc-
tion. When V is the category Set this happens automatically (and all monads are strong).

Proposition 6.8. For any monad T on Set, the Eilenberg-Moore adjunction

F T a UT : SetT - Set

is an EEC+ model.

Proof. The adjunction trivially enriches, and we just show that SetT has the required structure.
Products and powers are defined by the usual pointwise constructions. For example, if (Y, θ)
is an algebra and X is a set, then the power is the exponent Y X equipped with the algebra
structure defined as the transpose of the composite

X × T (Y X)
st
- T (X × Y X)

T (ev)
- T (Y)

θ
- Y

where st is the strength of T (recalling that any monad on Set is strong).
Since SetT is cocomplete [24], it has coproducts. Copowers X · (Y, θ) are X-fold coproducts

of (Y, θ) by itself.

To generalise the previous result to categories different from Set, it is necessary to make suffi-
cient cocompleteness assumptions about the Eilenberg-Moore category.8

Proposition 6.9. If V is cartesian closed with finite coproducts and finite limits, and T is
a strong monad such that the Eilenberg-Moore category VT has reflexive coequalisers, then
F T a UT : VT - V is an EEC+ model.

Details of the proof, which is based on ideas from [24], are deferred to [8].
Proposition 6.9 should be compared with [3, Proposition 2.5], which shows that, under

similar assumptions, the Eilenberg-Moore adjunction of a commutative monad T forms a lin-
ear/nonlinear model. Thus, for commutative monads, Proposition 6.9 follows from a combina-
tion of [3, Proposition 2.5] and Proposition 6.7. Importantly, however, Proposition 6.9 applies
also to non-commutative monads, such as those needed to model computational effects that are
sensitive to their order of invocation.

In the general case of a non-commutative monad, while Proposition 6.9 produces an EEC+
model, it is not the case that the Eilenberg-Moore adjunction is a linear/nonlinear model.
Such examples thus illustrate the added generality of EEC+, beyond intuitionistic linear logic.
They also serve to explain some of the design decisions of EEC+. For example, even in the
case in which V is Set, for a non-commutative monad T , the set of homomorphisms between
two Eilenberg-Moore algebras need not itself carry an algebra structure. In such models, it
is therefore not possible to make sense of A (B as a computation type, since such a type
would have to be interpreted as an algebra on the set of homomorphisms. However, the type
makes perfect sense as a value type, for which the set of homomorphisms itself provides the
interpretation.

We end the section with further examples of families of EEC models, in which the compu-
tation category need not be the Eilenberg-Moore category.

Proposition 6.10. Let V be cartesian closed, and let C be V-enriched with powers, copowers,
finite products and finite coproducts. Let S be an object of C. Then the adjunction (−) · S a
C(S,−) : C→ V is an EEC model. It is an EEC+ model if V has finite coproducts.

8As noted in the proof of Proposition 6.8, every Set-monad T is strong, and its Eilenberg-Moore category
SetT has all colimits.

21

In fact, it is a routine exercise of enriched category theory that every EEC model is equivalent
to one in the above form with S given by F1. This semantic analogue of Example 4.2, is further
elaborated upon in [8, 28]. The above formulation often allows an easy description of an EEC
model. For example, if C is any complete and cocomplete ordinary (locally small) category
then, any choice of object S describes an EEC model over Set. One case of particular interest,
due to its canonical status, is to choose C to be the free complete and cocomplete category
(over the empty set of generators), as determined by Joyal’s theory of free bicompletions [16].
We raise the question of whether the equational theory of EEC is complete with respect to the
family of semantic interpretations in this free-bicomplete model, obtained by varying the choice
of object S.

The last example is based on the natural adjunction that decomposes the continuations
monad RR(·)

. The observation is that Levy’s adjunction model for control effects [21, 22] is
automatically a model of full EEC+.

Example 6.11. Let V be any cartesian-closed category with finite coproducts. Let R be
an object of V. The adjunction R(·) a R(·) : Vop - V determines an EEC+ model. The
enrichment is given by defining Vop(X,Y) to be [Y → X] in V. The power Y X in Vop is the
object X × Y , and the copower X · Y is the object [X → Y].

We illustrate our syntactic choice of including A(B as a value type only, by showing that
such continuations models, in general, provide no interpretation of A (B as a computation
type. For a counterexample, let V be Set, and let R be the two element set 2. (More generally,
we write n for the n-element set {0, . . . , n− 1}.) For any sets A, B, considered as computation
types, the interpretation of A (B as a value type is the homset Setop(A,B) = AB. (See
Section 7 below for the general interpretation of EEC syntax in a model.) Were A(B to have
interpretation as a computation type, its interpretation would have to be a set C for which the
right adjoint R(·) : Vop - V enjoys the property RC ∼= AB (because the right adjoint is required
to map the interpretation of a computation type to an object isomorphic to its interpretation
as a value type, again see Section 7). Now setting A = 3 and B = 1, the interpretation of
A(B as a computation type would have to be a set C for which 2C ∼= 31 ∼= 3, which is clearly
impossible.

7 Soundness and completeness

In this section we show how to interpret our calculi in their models, and we prove the soundness
and completeness of the equational theories relative to such interpretations. Due to the use of
V-enrichment rather than V̂-enrichment, the interpretation of the enriched calculi EEC and
EEC+ in their models is somewhat more straightforward than that of the basic caluli EC and
EC+. So we begin by considering the enriched case.

We thus consider one of the calculi EEC and EEC+. Let F a U : C - V be a model of the
relevant kind (Definition 6.6). In either case, a value type A is interpreted as an object V[[A]]
of V, and a computation type A is interpreted as a pair (C[[A]], sA) where: C[[A]] is an object
of C, and sA : U(C[[A]]) → V[[A]] is an isomorphism in V. The interpretation is determined
by specifying objects V[[α]] ∈ V and C[[α]] ∈ C, which we assume given. The remainder of
the interpretation of types is defined in Figure 8. (In the case of EEC, the clauses involving
value-type sums should be ignored.) The non-trivial cases in the inductive definition of the
isomorphism sA are the cases for unit type, product and function space. These can easily be
constructed from the fact that U preserves products and powers, because it is an enriched right
adjoint [17].

Terms are interpreted differently depending on whether they are typed with empty stoup or

22

V[[α]] = U(C[[α]])
V[[1]] = 1 C[[1]] = 1

V[[A× B]] = V[[A]]×V[[B]] C[[A× B]] = C[[A]]×C[[B]]

V[[A→ B]] = V[[A]]→ V[[B]] C[[A→ B]] = C[[B]]V[[A]]

V[[!A]] = U(C[[!A]]) C[[!A]] = F (V[[A]])
V[[A + B]] = V[[A]] + V[[B]]

V[[0]] = 0
V[[A(B]] = C(C[[A]],C[[B]])
V[[!A⊗B]] = U(C[[!A⊗B]]) C[[!A⊗B]] = V[[A]] ·C[[B]]

V[[0]] = U(C[[0]]) C[[0]] = 0
V[[A⊕ B]] = U(C[[A⊕ B]]) C[[A⊕ B]] = C[[A]] + C[[B]]

Figure 8: Interpretation of EEC+ types.

not. For Γ |− ` t : A, the interpretation is a map in V

V[[t]] : V[[Γ]]→ V[[A]] (27)

where V[[Γ]] is the product of the interpretations of the types in Γ. A typing judgement Γ |
z : A ` t : B is interpreted as a morphism:

C[[t]] : V[[Γ]]→ C(C[[A]],C[[B]]) .

The interpretation of terms is defined by induction on the typing judgement, and the definition
is given in Figure 9. (As before, the clauses involving value-type sums should be ignored in the
case of EEC.)

Figure 9 directly follows the structure of Figures 1–3 and 6, from which the types of all
subterms can be read off. It also uses the notation, introduced in Section 5, for the (co)pairing
and (co)projections within the enriched finite (co)product structures. We also use ! (respectively
?) to denote the unique morphisms into (respectively out of) terminal (respectively initial)
objects, and write πx for the projection from the product V[[Γ]] to V[[A]] determined by an entry
x : A in Γ. Several clauses refer to the names for morphisms defined in (19)–(23). In addition,
we use η to denote the unit of the monad U ◦ F on V, and Λ[−] and ev to respectively denote
Currying and evaluation in the cartesian closed structure of V. For notational simplicity we
write UA,B for the composite below.

C(C[[A]],C[[B]])
U
- U(C[[B]])U(C[[A]])

[s−1
A → sB]

- V[[B]]V[[A]]

In the interpretation of !t⊗ u we have used

χA,B : A→ C(B,A ·B)

to denote the uncurried version of ψA,B,A·B ◦ pidA·Bq. Finally, we use

d : C × (A+B)→ (C ×A) + (C ×B)

to denote the distributivity isomorphism.

23

V[[x]] = πx C[[z]] = pidq◦ !
V[[∗]] = ! C[[∗]] = p !q ◦ !

V[[〈t, u〉]] = 〈V[[t]],V[[u]]〉 C[[〈t, u〉]] = 〈−,−〉 ◦ 〈C[[t]],C[[u]]〉
V[[fst(t)]] = π1 ◦V[[t]] C[[fst(t)]] = comp ◦ 〈pπ1q◦ !,C[[t]]〉

V[[snd(t)]] = π2 ◦V[[t]] C[[snd(t)]] = comp ◦ 〈pπ2q◦ !,C[[t]]〉
V[[λx : A. t]] = Λ[V[[t]]] C[[λx : A. t]] = ξ−1 ◦ Λ[C[[t]]]

V[[s(t)]] = ev ◦ 〈V[[s]],V[[t]]〉 C[[s(t)]] = ev ◦ 〈ξ ◦C[[s]],V[[t]]〉
V[[!t]] = η ◦V[[t]]

V[[let !x be t in u]] = sB ◦ ev ◦ 〈U ◦ ρ−1 ◦ Λ[s−1
B ◦V[[u]]],V[[t]]〉

C[[let !x be t in u]] = comp ◦ 〈ρ−1 ◦ Λ[s−1
B ◦V[[u]]],C[[t]]〉

V[[?A(t)]] = ? ◦V[[t]]
C[[?A(t)]] = ? ◦V[[t]]

V[[inlA,B(t)]] = inl ◦V[[t]]
V[[inrA,B(t)]] = inr ◦V[[t]]

V[[case s of (inl(x). t; inr(y). u)]] = [V[[t]],V[[u]]] ◦ d ◦ 〈id ,V[[s]]〉
C[[case s of (inl(x). t; inr(y). u)]] = [C[[t]],C[[u]]] ◦ d ◦ 〈id ,V[[s]]〉

V[[λ◦x : A. t]] = C[[t]]

V[[s[t]]] = ev ◦ 〈U ◦V[[s]],V[[t]]〉 C[[s[t]]] = comp ◦ 〈V[[s]],C[[t]]〉
V[[!t⊗ u]] = ev ◦ 〈U ◦ χ ◦V[[t]],V[[u]]〉 C[[!t⊗ u]] = comp ◦ 〈χ ◦V[[t]],C[[u]]〉

V[[?(t)]] = ev ◦ 〈U ◦ p?q◦ !,V[[t]]〉 C[[?(t)]] = comp ◦ 〈p?q◦ !,C[[t]]〉
V[[inl(t)]] = ev ◦ 〈U ◦ pinlq◦ !,V[[t]]〉 C[[inl(t)]] = comp ◦ 〈pinlq◦ !,C[[t]]〉
V[[inr(t)]] = ev ◦ 〈U ◦ pinrq◦ !,V[[t]]〉 C[[inr(t)]] = comp ◦ 〈pinrq◦ !,C[[t]]〉

V[[let !x⊗ y be s in t]] = ev ◦ 〈U ◦ ψ−1 ◦ Λ[C[[t]]],V[[s]]〉
C[[let !x⊗ y be s in t]] = comp ◦ 〈ψ−1 ◦ Λ[C[[t]]],C[[s]]〉

V[[case s of (inl(x). t; inr(y). u)]] = ev ◦ 〈U ◦ [−,−] ◦ 〈C[[t]],C[[u]]〉,V[[s]]〉
C[[case s of (inl(x). t; inr(y). u)]] = comp ◦ 〈[−,−] ◦ 〈C[[t]],C[[u]]〉,C[[s]]〉

V[[f(t1, . . . , tk)]] = V[[f]] ◦ 〈V[[t1]], . . . ,V[[tk]]〉
V[[g(t1, . . . , tk | u)]] = ev ◦ 〈U ◦C[[g]] ◦ 〈V[[t1]], . . . ,V[[tk]]〉,V[[u]]〉
C[[g(t1, . . . , tk | u)]] = comp ◦ 〈C[[g]] ◦ 〈V[[t1]], . . . ,V[[tk]]〉,C[[u]]〉

Figure 9: Interpretation of EEC+ terms.

24

The last two equations of Figure 9 incorporate terms from a signature Σ into the interpre-
tation. This requires each operation f : (A1, . . . ,Ak)→B and g : (A1, . . . ,Ak | B)→C in Σ to be
assigned a specified morphism in V, as below.

V[[f]] : V[[A1]]× · · · ×V[[Ak]]→ V[[B]] (28)
C[[g]] : V[[A1]]× · · · ×V[[Ak]]→ C(C[[B]],C[[C]]) (29)

We now turn to the case of the basic calculi EC and EC+. Accordingly, let F a U : C - V
be the relevant kind of model (Definitions 6.1 and 6.3). As before, value types A are interpreted
as objects V[[A]] of V, and computation types A are interpreted as pairs (C[[A]], sA) where:
C[[A]] is an object of C, and sA : U(C[[A]]) → V[[A]] is an isomorphism in V. Once again, the
interpretation is determined by specifying objects V[[α]] ∈ V and C[[α]] ∈ C. The remaining
types are interpreted as in Figure 8, with the exception of function types, A → B, which we
interpret as below. (Of course, the clauses in Figure 8 involving primitives not in the calculus
under consideration should be ignored.)

V[[A→ B]] = V[[A]]→ UC[[B]] C[[A→ B]] = C[[B]]y(V[[A]])

Here, in the definition of C[[A→ B]], the exponent of the power is now y(V[[A]]), due to the
change of enriching category to V̂. Also, the function space [V[[A]] → UC[[B]]] in V, assumed
in the definition of V[[A→ B]], is given by Lemma 6.2. Using the isomorphism sB, this also
provides an internal hom [V[[A]] → V[[B]]], and so agrees with Figure 8, up to isomorphism.
Once again, the isomorphisms sA are easily constructed inductively using the preservation of
enriched products (this time, the use of Lemma 6.2 in the construction of V[[A→ B]] means
that the sA→B components are identities).

Terms with empty stoup are again interpreted as maps in V, as in (27). Due to the change
of enriching category, typing judgements with stoup, Γ | z : A ` t : B, are now interpreted as
morphisms in V̂,

C[[t]] : y(V[[Γ]])→ C(C[[A]],C[[B]]) .

(By the Yoneda lemma, one could equivalently specify C[[t]] as an element of C(C[[A]],C[[B]])(Γ).)
The inductive definition of the interpretation of terms is is given in Figure 10. (Again, the clauses
involving sums should be ignored in the case of EC.)

Figure 10 makes use of the following additional notation. We write Ξ for the product-
preservation isomorphism y(V[[Γ]]) × y(V[[A]]) - y(V[[Γ]] × V[[A]]) for the Yoneda functor.
We use y−1 to denote the inverse image of the Yoneda functor, which exists since the latter is
fully faithful. Finally the elimination terms for finite sum types make use of the assumed fpp
structure on hom-presheaves in C, in the form of (25) and (26), introduced in the discussion
after Definition 6.3.

Operations from a signature Σ are included in Figure 10 by interpreting non-linear operations
f : (A1, . . . ,Ak)→B as before (28), and specifying, for each operation g : (A1, . . . ,Ak | B)→C, a
V̂ morphism:

C[[g]] : y(V[[A1]]× · · · ×V[[Ak]])→ C(C[[B]],C[[C]])

Theorem 7.1 (Soundness and completeness). Let Σ and E be a signature and set of equations
for one of the calculi EC, EC+, EEC, EEC+, henceforth called X. The following statements
are equivalent, for two terms Γ |∆ ` s, t : A.

1. Γ |∆ `E s = t : A holds in calculus X.

2. For every X-model for the signature Σ and equations E, it holds that V[[s]] = V[[t]], if ∆
is empty, and C[[s]] = C[[t]], if ∆ is non-empty.

25

V[[x]] = πx C[[z]] = pidq◦ !
V[[∗]] = ! C[[∗]] = p !q ◦ !

V[[〈t, u〉]] = 〈V[[t]],V[[u]]〉 C[[〈t, u〉]] = 〈−,−〉 ◦ 〈C[[t]],C[[u]]〉
V[[fst(t)]] = π1 ◦V[[t]] C[[fst(t)]] = comp ◦ 〈pπ1q◦ !,C[[t]]〉

V[[snd(t)]] = π2 ◦V[[t]] C[[snd(t)]] = comp ◦ 〈pπ2q◦ !,C[[t]]〉
V[[λx : A. t]] = Λ[s−1

B ◦V[[t]]] C[[λx : A. t]] = ξ−1 ◦ Λ[C[[t]] ◦ Ξ]

V[[s(t)]] = sB ◦ ev ◦ 〈V[[s]],V[[t]]〉 C[[s(t)]] = ev ◦ 〈ξ ◦C[[s]],yV[[t]]〉
V[[!t]] = η ◦V[[t]]

V[[let !x be t in u]] = sB ◦ y−1(ev ◦ 〈U ◦ ρ−1 ◦ Λ[y(s−1
B ◦V[[u]]) ◦ Ξ],yV[[t]]〉)

C[[let !x be t in u]] = comp ◦ 〈ρ−1 ◦ Λ[y(s−1
B ◦V[[u]]) ◦ Ξ],C[[t]]〉

V[[?A(t)]] = ? ◦V[[t]]

C[[?A(t)]] = ?̂ ◦ yV[[t]]
V[[inlA,B(t)]] = inl ◦V[[t]]
V[[inrA,B(t)]] = inr ◦V[[t]]

V[[case s of (inl(x). t; inr(y). u)]] = [V[[t]],V[[u]]] ◦ d ◦ 〈id ,V[[s]]〉

C[[case s of (inl(x). t; inr(y). u)]] = [̂C[[t]],C[[u]]̂] ◦ y(d ◦ 〈id ,V[[s]]〉)

V[[f(t1, . . . , tk)]] = V[[f]] ◦ 〈V[[t1]], . . . ,V[[tk]]〉
V[[g(t1, . . . , tk | u)]] = sC ◦ y−1(ev ◦ 〈C[[g]] ◦ y〈V[[t1]], . . . ,V[[tk]]〉,y(s−1

B ◦V[[u]])〉)

C[[g(t1, . . . , tk | u)]] = comp ◦ 〈C[[g]] ◦ y〈V[[t1]], . . . ,V[[tk]]〉,C[[u]]〉

Figure 10: Interpretation of EC+ terms.

Soundness (1 =⇒ 2) is proved by the usual induction on derivations of Γ |∆ `E s = t : A.
We omit the routine argument entirely. As is standard, the completeness implication (2 =⇒
1) is proved via the construction of syntactic models, whose construction we now outline.

We start with the case that the calculus X is EC, which is slightly more involved due to
enrichment over a presheaf category. The syntactic category VSyn has as objects value types and
as morphisms from A to B terms of the form x : A |− ` t : B identified up to the equality theory
of EC over the equations E . Composition is by substitution. The V̂Syn-enriched structure of
VSyn is given via (24):

VSynpsh(A,B)(C) ∼= VSyn(A× C,B)

= {t | x : A× C |− ` t : B}/ ∼
∼= {t | x : A, y : C |− ` t : B}/ ∼ ,

where ∼ is provable equality over E . For convenience, we henceforth elide the “psh” subscript

26

and take the enrichment as being defined by:

VSyn(A,B)(C) = {t | x : A, y : C |− ` t : B}/ ∼ .

The V̂Syn-enriched category CSyn has computation types as objects and as object of morphisms
the presheaf CSyn(A,B) where

CSyn(A,B)(C) = {t | y : C |z : A ` t : B}/ ∼ .

Products in VSyn and CSyn are simply product types and the y(A) power of B is the
computation type A→ B. The right adjoint USyn is the inclusion of computation types in value
types. Its action on hom-presheaves maps an equivalence class [t] ∈ CSyn(A,B)(C) (given by
y : C | z : A ` t : B) to [t[x/z]] ∈ VSyn(A,B)(C) (given by x : A, y : C | − ` t[x/z] : B), which
works because the “shift” property of terms (Proposition 2.4) preserves equalities. Conversely,
the left adjoint FSyn maps a value type A to !A. That this forms an enriched adjunction follows
from observing that the maps

[t] 7→ [let !x be z in t] : VSyn(A,B)(C)→ CSyn(!A,B)(C)

are isomorphisms. In the case of EC+, one notes further that sum of value types defines a
distributive coproduct in VSyn. Also, the hom-objects for CSyn are fpp presheaves because of
the isomorphisms

CSyn(A,B)(C1 + C2) = {t | y : C1 + C2 |z : A ` t : B}/ ∼
∼= ({t | y : C1 |z : A ` t : B}/∼) × ({t | y : C2 |z : A ` t : B}/∼)
= CSyn(A,B)(C1)×CSyn(A,B)(C2) ,

for the example of the binary case. Verifying the correctness of the remainder of the structure
is routine.

For the enriched calculi EEC and EEC+, the syntactic model FSyn a USyn : CSyn → VSyn

is constructed in a similar, but not identical way. (Note that we use the same notation FSyn a
USyn : CSyn → VSyn for this model, even though the enrichment is now over VSyn rather than
V̂Syn. The notational ambiguity will always be resolved by the context.) The syntactic category
VSyn is constructed just as above. However, VSyn now carries a cartesian closed structure
given by products and function types. The VSyn-enriched category CSyn has as objects all
computation types, with the VSyn-object of morphisms from A to B given by the value type
A (B. The functors FSyn and USyn are defined as in the case of EC but in this case the
adjunction becomes VSyn-enriched by the isomorphism (2). Powers and copowers are defined as
A→ B and !A⊗B respectively, and the required isomorphisms for these (23) and (22) are both
expressed in (3). Finally products and sums of computation types give products and coproducts
in CSyn; and, in the case of EEC+, the coproducts in VSyn are given by sums of value types.

To interpret terms, we need to specify interpretations of the basic operations in the signature
Σ. Essentially, these are interpreted as themselves. More precisely, in the case of EC (and EC+)
a non-linear operation f : (A1, . . . ,Ak)→B ∈ Σ is interpreted as the equivalence class of

x : A1 × · · · × Ak |− ` f(π1(x), . . . , πk(x)) : B ,

where we have written πi for the i’th projection out of the product. To interpret a linear
operation g : (A1, . . . ,Ak | B)→C ∈ Σ, we need to pick a morphism

y(A1 × · · · × Ak)→ CSyn(B,C) .

27

By the Yoneda lemma, these correspond to elements of CSyn(B,C)(A1×· · ·×Ak), and we select
the equivalence class of x : A1×· · ·×Ak |z : B ` g(π1(x), . . . , πk(x) | z) : C. In the case of EEC,
the interpretation of non-linear operations is the same as for EC. Linear operations such as g,
with signature as above, are interpreted as the equivalence class of

x : A1 × · · · × Ak |− ` λ◦z : B. g(π1(x), . . . , πk(x) | z) : B(C .

The main lemma needed to prove completeness is that, for any term t, in one of the calculi
EC, EC+, EEC, EEC+, the semantic interpretation of t in FSyn a USyn : CSyn → VSyn is
(essentially) given by the equivalence class generated by the term t itself. Because of the
different constructions of syntactic models, the formulation for EC and EC+ is slightly different
from that for EEC and EEC+. We formally state the lemma in the latter case only, and leave
it to the reader to make the adjustment for EC and EC+.

Lemma 7.2. In the syntactic model FSyn a USyn : CSyn → VSyn of EEC (or EEC+), the
interpretation of VSyn[[t]] of a term x1 : A1, . . . , xk : Ak |− ` t : B is the equivalence class of

x : A1 × · · · × Ak |− ` t[π1(x), . . . , πk(x)/x1, . . . , xk] : B ,

and the interpretation CSyn[[u]] of a term x1 : A1, . . . , xk : Ak | z : B ` u : C is the equivalence
class of

x : A1 × · · · × Ak |− ` λ◦z : B. u[π1(x), . . . , πk(x)/x1, . . . , xk] : B(C .

The lemma is proved by a straightforward induction on the typing derivation for terms. We
omit the details. To derive completeness, suppose V[[s]] = V[[t]] or C[[s]] = C[[t]] (as appropriate)
in all models. Then, in particular, this semantic equality holds in the syntactic model FSyn a
USyn : CSyn → VSyn. Thus, the terms s, t themselves (modulo the transformation in the above
lemma) inhabit the same equivalence class in VSyn or CSyn. That is, they are provably equal
over E .

We remark that, in the case of the non-enriched calculi EC and EC+ we could have also
proved completeness by showing a correspondence between EC+ models and Levy’s adjunction
models [22] based on locally-indexed categories, since Appendix A shows that the calculus EC+
is equivalent to Levy’s CBPV.

Acknowledgements

We thank Masahito Hasegawa, Matija Pretnar, Sam Staton, the anonymous referees and, es-
pecially, Paul Levy for helpful comments. We are also grateful to the special-issue editor, Ian
Mackie, for his encouragement and patience.

APPENDICES

A Equivalence of EC+ and Levy’s CBPV

In this appendix, we outline the equivalence between the calculus EC+, presented in Section 2,
and Levy’s Call-By-Push-Value (CBPV) [21]. The appendix is not self contained. We describe
the main aspects of the equivalence, in terms that a reader who is familiar with Levy’s work
will understand. In particular, we shall not recall Levy’s calculus in detail. Nor shall we give a
detailed proof of the equivalence. The verification merely involves lengthy but routine inductions
on derivations. Our purpose is rather to formulate the equivalence (whose statement is not

28

entirely obvious) in enough detail that the interested reader can, if they wish, straightforwardly
fill in the details for themselves.

For simplicity, we work with the pure version of EC+, i.e., with empty signature Σ and set
of equations E . The equivalence could be extended to include Σ and E by adding corresponding
features to CBPV.

Regarding CBPV, we work with the finitary version from [21],9 making minor (but obvious)
modifications to the syntax (so the notation for CBPV types is closer to our type notation for
EC+). As in Section 2, we assume two classes of type constants. We use α, β, . . . to range
over value type constants, and α, β, . . . to range over computation type constants. We then use
A,B, . . . to range over value types, and A,B, . . . to range over computation types, which are
specified by the grammar below:

A ::= α | UA | 0 | A+B | 1 | A×B
A ::= α | FA | 1 | A×B | A→ B

Note that value and computation types are disjoint.
The version of CBPV that is relevant to us is CBPV with complex values and stacks, as

presented in Chapter 3 of [21]. We shall not review the syntax of terms at all. Instead, we merely
recall that this version of CBPV comes with three associated forms of typing judgement:

Γ `v V : A Γ `c M : A Γ | A `k K : B . (30)

The `v judgement types values V , the `c judgement types computations M , and the `k judge-
ment types stacks K. In all three cases, Γ is a context assigning value types to variables.

To translate from CBPV to EC+, we first define type translations. A CBPV value type A
translates to an EC+ value type A∗v, and a CBPV computation type A translates to an EC+
computation type A∗c, as follows.

α∗v = α α∗c = α

(UA)∗v = A∗c (FA)∗c = !(A∗v)
0∗v = 0 1∗c = 1

(A+B)∗v = A∗v +B∗v (A×B)∗c = A∗c ×B∗c

1∗v = 1 (A→ B)∗c = A∗v → B∗c

(A×B)∗v = A∗v ×B∗v

On terms, each of the three CBPV judgement-forms (30) translates into a corresponding judge-
ment in EC+:

Γ∗v |− ` V ∗v : A∗v Γ∗v |− ` M∗c : A∗c Γ∗v |z :A∗c ` K∗k : B∗c ,

defined by a routine induction on CBPV derivations. (Here, Γ∗v just applies (·)∗v to every type
in Γ.)

For the converse translation, an EC+ value type A is translated to a CBPV value type A†v,
9A similar equivalence can be established between Levy’s infinitary CBPV and a corresponding infinitary

version of EC+.

29

and an EC+ computation type A is translated to a CBPV computation type A†c, as follows.

α†v = α

α†v = U(α†c) α†c = α

1†v = 1 1†c = 1

(A× B)†v = A†v × B†v (A× B)†c = A†c×B†c

(A→ B)†v = U(A†v → B†c) (A→ B)†c = A†v → B†c

(!A)†v = U(F (A†v)) (!A)†c = F (A†v)

0†v = 0

(A + B)†v = A†v + B†v

In addition, for every EC+ computation type A, mutually inverse CBPV terms,

y :U(A†c) `v IA : A†v x : A†v `v I−1
A : U(A†c) ,

are defined by induction on A, witnessing an isomorphism between A†v and U(A†c). (The
isomorphisms are needed because the types are not, in general, identical. For example, we have
(α× β)†v = Uα× Uβ, and U((α× β)†c) = U(α×β).)

The isomorphism IA and its inverse are used in the translation of terms. Specifically, each
of the three judgement possibilities for EC+,

Γ |− ` s : A Γ |− ` t : A Γ |z : A ` u : B

is respectively translated to a CBPV judgement

Γ†v `v s†v : A†v Γ†v `c t†c : A†c Γ†v | A†c `k u†k : B†c .

(Note that the second EC+ judgement is a special case of the first, and hence obtains two
different translations into CBPV.)

To formulate the equivalence between the two systems, we note first that, for every EC+
value type A, it holds that A†v ∗v = A, and, for every EC+ computation type A, it holds
that A†c ∗c = A. (The two equalities are easily proved simultaneously by induction on types.)
In the other direction, for every CBPV value type A and computation type A, there exist
isomorphisms:

x :A∗v †v `v JA : A x :A `v J−1
A : A∗v †v

| A∗c †c `k LA : A | A `k L−1
A : A∗c †c ,

defined using the isomorphisms IA mentioned above. (The critical case that shows the need for
the isomorphisms is (UA)∗v †v = A∗c †v ∼= U(A∗c †c), where the isomorphism is given by I−1

A∗c .)

Proposition A.1 (Equivalence of EC+ and CBPV). Given CBPV equalities

Γ `v V1 = V2 : A Γ `c M1 = M2 : A Γ | A `k K1 = K2 : B ,

there are corresponding EC+ equalities

Γ∗v |− ` V ∗v1 = V ∗v2 : A∗v Γ∗v |− ` M∗c1 = M∗c2 : A∗c Γ∗v |z :A∗c ` K∗k1 = K∗k2 : B∗c .

Conversely, given EC+ equalities

Γ |− ` s1 = s2 : A Γ |− ` t1 = t2 : A Γ |z : A ` u1 = u2 : B ,

30

there are corresponding CBPV equalities

Γ†v `v s†v1 = s†v2 : A†v Γ†v `c t†c1 = t†c2 : A†c Γ†v | A†c `k u†k1 = u†k2 : B†c .

Furthermore, for CBPV terms,

Γ `v V : A Γ `c M : A Γ | A `k K : B ,

there are corresponding CBPV equalities,

Γ `v V = JA[V ∗v †v/x] : A Γ `c M = M∗c †c•LB : A Γ | A `k K = L−1
A ++K∗k †k++LB : B ,

where • and ++ are the dismantling and concatenation operations on CBPV stacks, see [21,
§2.3.5]. Conversely, given EC+ terms

Γ |− ` s : A Γ |− ` t : A Γ |z : A ` u : B ,

there are corresponding EC+ equalities

Γ |− ` s = s†v ∗v : A Γ |− ` t = t†c ∗c : A Γ |z : A ` u = u†k ∗k : B .

We end this appendix with some remarks on the equivalence established by Proposition A.1.
We believe that the very fact that CBPV with complex stacks is equivalent to a calculus
with a presentation as compact as that of EC+ is interesting, given the weighty nature of its
original formulation in [21]. One way of interpreting the equivalence is that the additional
notational bureaucracy of CBPV (the type constructor U , the associated “thunk” and “force”
operations, the syntactic distinction between computation-type and value-type products, the
different notation for terms and stacks) can be automatically reconstructed from the streamlined
version offered by EC+, up to isomorphism.

In spite of its conciseness, our approach to formulating the calculi in this paper is not a
panacea. For some purposes, it is helpful to restore some of the syntactic distinctions of CBPV
into effect calculi. For example, results in both [9, 8] are simplified by using a formulation of
EEC in which value-type products and function spaces are distinguished from computation-
type products and function spaces. We mention briefly why this is the case in [8]. There, two
kinds of morphism of model are considered: morphisms that preserve structure strictly (on the
nose); and morphisms that preserve structure up to isomorphism. The latter are mathematically
more natural, and the syntactic model we constructed in the completeness proof of Section 7
enjoys an appropriate (2-categorical) initiality property with respect to such morphisms, which
characterises it up to equivalence. However, in order to study properties of initial models, it
proves mathematically convenient to have a model that is initial (in the usual 1-categorical
sense) with respect to strict morphisms. Such a model is most easily constructed as a syntactic
model for a variant of EEC in which notational distinctions are made between computation-
type and value-type products and function spaces. Related to this discussion, we remark that
Proposition A.1 above is a syntactic formulation of the semantic statement: there is a non-strict
equivalence of models between the strictly-initial EC+ model (which is given by the syntax of
CBPV) and the syntactic EC+ model constructed in Section 7.

B Normalization and syntactic conservativity

In this appendix, we provide the main details of the proof of Theorem 4.3, the syntactic con-
servativity of each larger system amongst EEC+, EEC, EC+ and EC over each smaller one.

31

fst(〈t, u〉)→ t

snd(〈t, u〉)→ u

(λx : A. t)u→ t[u/x]
let !x be !u in t→ t[u/x]

case inl(s) of (inl(x). t; inr(x). t′)→ t[s/x]
case inr(s) of (inl(x). t; inr(x). t′)→ t′[s/x]

(λ◦x : A. t)[u]→ t[u/x]
let !x⊗ y be !s⊗ u in t→ t[s,u/x,y]

case inl(s) of (inl(x). t; inr(x). t′)→ t[s/x]
case inr(s) of (inl(x). t; inr(x). t′)→ t′[s/x]

E[let !x be u in t]→ let !x be u in E[t]
E[?(t)]→ ?(t)

E[case s of (inl(x). t; inr(x). t′)]→ case s of (inl(x). E[t]; inr(x). E[t′])
E[let !x⊗ y be u in t]→ let !x⊗ y be u in E[t]

E[?(t)]→ ?(t)
E[case s of (inl(x). t; inr(x). t′)]→ case s of (inl(x). E[t]; inr(x). E[t′])

t→ u

C[t]→ C[u]

Figure 11: Rewrite relation on terms of EEC+. Here E[−] range over elimination frames, and
C[−] ranges over all one-hole contexts.

This is achieved by providing a normalizing rewrite relation between terms of full EEC+, which
restricts to a rewrite relation on EEC, EC and EC+. Since every term is equal to its normal
form, syntactic conservativity can be obtained by establishing conservativity for normal forms,
which follows directly from the structure of normal forms (essentially, because the typing deriva-
tions for normal-form terms enjoy a “subtype property” analogous to the subformula property
in proof theory), see Lemma B.7 below.

The rewrite relation is defined in Figure 11. The figure uses the concept of elimination frame
E[−] which is defined by the grammar

E[−] ::= fst([−]) | snd([−]) | [−] (t) | let !x be [−] in t | ?([−]) | case [−] of (inl(x). t; inr(x). t′) |
[−][t] | let !x⊗ y be [−] in t | ?([−]) | case [−] of (inl(x). t; inr(x). t′) .

A term t is a redex if it matches the left-hand side of one of the 16 axioms of Figure 11. The
first ten axioms are beta reductions, and the last six are permutative reductions.

Although not explicitly visible in Figure 11, terms in a signature Σ are included within
the scope of the rewrite relation. They do appear implicitly in the figure, since meta-variables
for terms (t, u, . . .) and one-hole contexts C[−] both range over such terms that may contain
operations from Σ. In this appendix, in order to be clear about the role of the signature,
we annotate typing and equational judgements with Σ. This is appropriate for equational
judgements, since equations will always be provable from an empty set E of equational axioms.

A basic lemma about the rewrite relation says that it is both type- and equationally sound.

32

Lemma B.1. Let X be any of the systems EEC+, EEC, EC and EC+. If Γ |∆ `Σ t : A in X
and t→ u then both Γ |∆ `Σ u : A and Γ |∆ `Σ t = u : A hold in X.

We omit the proof, which is a straightforward case analysis.

B.1 Strong normalization

In this subsection, we prove that the rewrite relation is strongly normalizing. For brevity, we do
this by reducing strong normalization for EEC+ to strong normalization for the simply-typed
λ-calculus with finite products and finite sums, and with beta and permutative reductions,
which is a standard result. To avoid the need for introducing yet another calculus formally, we
consider the the latter system as the subsystem of EC+ obtained by restricting the types to the
simple types, which are those given by the grammar:

σ ::= α | α | 1 | σ × σ | σ → σ | 0 | σ + σ ,

and the terms to those constructed using the typing rules associated with the above type
constructors. We write λ+ for the resulting subsystem of EC+, and we say that Γ ` t : σ
in λ+ to mean that the typing judgment Γ | − ` t : σ is derivable in this subsystem. The
rewrite relation →, restricted to terms of λ+, is exactly the standard rewrite relation of beta
and permutative (also called commuting) reductions for the simply-typed λ-calculus with sum
and product types, as presented, for example, in [12, Chapter 10]. As stated in op. cit., this
rewrite relation on λ+ is strongly normalizing, as can be shown using the techniques of [34, 15]
(a full proof for exactly the rewrite relation considered here appears in Appendix A of [35]).

To reduce strong normalization for EEC+ to the simply-typed case, we give a translation
from EEC+ into λ+. The translation maps any EEC+ value type A to a simple type A∗, as
specified below.

α∗ = α 0∗ = 0
α∗ = α (A + B)∗ = A∗ + B∗

1∗ = 1 (A(B)∗ = A∗ → B∗

(A× B)∗ = A∗ × B∗ (!A⊗B)∗ = (A∗ × B∗) + 0
(A→ B)∗ = A∗ → B∗ 0∗ = 0

(!A)∗ = A∗ + 0 (A⊕ B)∗ = A∗ ⊕ B∗

Computation types are translated as value types.
The translation from an EEC+ term t to a λ+ term t∗ is defined in Figure 12. In this,

operations f : (A1, . . . ,Ak)→B and g : (A1, . . . ,Ak | B)→C from a signature Σ are translated
relative to an induced set Σ∗ of simply-typed constants

f∗ : A∗1 × · · · × A∗k → B∗

g∗ : A∗1 × · · · × A∗k × B∗ → C∗ ,

using an encoding of k-ary products using binary products and the terminal type 1.

Lemma B.2. (t[u/x])∗ = t∗[u∗/x].

Lemma B.3. If Γ |∆ `Σ t : A in EEC+ then Γ∗,∆∗ `Σ∗ t
∗ : A∗ in λ+.

We omit the proofs, which are straightforward inductions on the structure of t.
As is standard, we write →+ for the transitive closure of →, and →∗ for the reflexive-

transitive closure.

33

x∗ = x

∗∗ = ∗
〈t, u〉∗ = 〈t∗, u∗〉

(fst(t))∗ = fst(t∗)
(snd(t))∗ = snd(t∗)

(λx : A. t)∗ = λx : A∗. t∗

(s(t))∗ = s∗(t∗)
(!t)∗ = inl(t∗)

(let !x be t in u)∗ = case t∗ of (inl(x). u∗; inr(y). ?(y))
(?(t))∗ = ?(t∗)

(inl(t))∗ = inl(t∗)
(inr(t))∗ = inr(t∗)

(case s of (inl(x). t; inr(y). u))∗ = case s∗ of (inl(x). t∗; inr(y). u∗)
(λ◦z : A. t)∗ = λz : A∗. t∗

(s[t])∗ = s∗(t∗)
(!t⊗ u)∗ = inl(〈t∗, u∗〉)

(let !x⊗ y be s in t)∗ = case s∗ of (inl(z). t∗[fst(z), snd(z)/x, y]; inr(w). ?(w))
(?(t))∗ = ?(t∗)

(inl(t))∗ = inl(t∗)
(inr(t))∗ = inr(t∗)

(case s of (inl(x). t; inr(y). u))∗ = case s∗ of (inl(x). t∗; inr(y). u∗)
f(t1, . . . , tk)∗ = f∗〈t∗1, . . . , t∗k〉

g(t1, . . . , tk | u)∗ = g∗〈t∗1, . . . , t∗k, u∗〉

Figure 12: Translation of EEC+ terms to simply-typed terms

Lemma B.4. If Γ |∆ `Σ t : A in EEC+ and t→ u then t∗ →+ u∗.

Proof. For the ten beta reductions, the property is easily checked on a case-by-case basis. We
consider one case.

(let !x⊗ y be !s⊗ u in t)∗ = case inl(〈s∗, u∗〉) of (inl(z). t∗[fst(z), snd(z)/x, y]; inr(w). ?(w))
→ t∗[fst(〈s∗, u∗〉), snd(〈s∗, u∗〉)/x, y]
→∗ t∗[s∗, u∗/ x, y]
= (t[s,u/x,y])∗ ,

where the last step is by Lemma B.2.
We similarly consider just one case of a permutative reduction, and show that

(E[let !x⊗ y be u in t])∗ →+ (let !x⊗ y be u in E[t])∗ . (31)

The strategy, which is also employed for the other permutative reductions, is to split this into
two subcases, one for the case in which the elimination frame E[−] is let !x0 ⊗ y0 be [−] in t0,

34

and one for all other possible elimination frames. We deal with the latter subcase first. For
such elimination frames, E[−], we note that there exists an elimination frame E∗[−] such that
(E[s])∗ = E∗[s∗], for all terms s. For example,

(let !x be [−] in t)∗ = case [−] of (inl(x). t∗; inr(y). ?(y)) .

Thus, (31) has a uniform justification:

(E[let !x⊗ y be u in t])∗ = E∗[caseu∗ of (inl(z). t∗[fst(z), snd(z)/x, y]; inr(w). ?(w))]
→ caseu∗ of (inl(z). E∗[t∗[fst(z), snd(z)/x, y]]; inr(w). E∗[?(w)])
→ caseu∗ of (inl(z). E∗[t∗[fst(z), snd(z)/x, y]]; inr(w). ?(w))
= caseu∗ of (inl(z). E∗[t∗][fst(z), snd(z)/x, y]; inr(w). ?(w))
= caseu∗ of (inl(z). (E[t])∗[fst(z), snd(z)/x, y]; inr(w). ?(w))
= (let !x⊗ y be u in E[t])∗ .

The subcase in which E[−] is let !x0 ⊗ y0 be [−] in t0 is calculated separately by:

(let !x0 ⊗ y0 be (let !x⊗ y be u in t) in t0)∗

= case (caseu∗ of (inl(z). t∗[fst(z), snd(z)/x, y]; inr(w). ?(w))) of

(inl(z0). t∗0[fst(z0), snd(z0)/x0, y0]; inr(w0). ?(w0))
→ caseu∗ of

(inl(z). case (t∗[fst(z), snd(z)/x, y]) of (inl(z0). t∗0[fst(z0), snd(z0)/x0, y0]; inr(w0). ?(w0));
inr(w). case (?(w)) of (inl(z0). t∗0[fst(z0), snd(z0)/x0, y0]; inr(w0). ?(w0)))

→ caseu∗ of

(inl(z). case (t∗[fst(z), snd(z)/x, y]) of (inl(z0). t∗0[fst(z0), snd(z0)/x0, y0]; inr(w0). ?(w0));
inr(w). ?(w))

= caseu∗ of

(inl(z). (case t∗ of (inl(z0). t∗0[fst(z0), snd(z0)/x0, y0]; inr(w0). ?(w0)))[fst(z), snd(z)/x, y];
inr(w). ?(w))

= (let !x⊗ y be u in let !x0 ⊗ y0 be t in t0)∗ .

Proposition B.5 (Strong normalization for EEC+). If Γ | ∆ `Σ t : A in EEC+ then t is
strongly normalizing under →.

Proof. Suppose there is an infinite reduction sequence from t. By Lemmas B.3 and B.4 re-
spectively, Γ∗,∆∗ `Σ∗ t

∗ : A∗ in λ+ and t∗ has an infinite reduction sequence. This contradicts
strong normalization for λ+.

We make two remarks about alternative proof techniques. Instead of proving strong nor-
malization for EEC+ via a reduction to λ+, it is not difficult to give a direct proof for EEC+.
We have carried out such a proof using the method of [23]. Also, for the application in Sec-
tion B.2 below, weak normalization suffices, which can be proved by the usual simple inductive
argument [33]. Nevertheless, it seems worthwhile to establish the stronger result, since true,
and the approach followed in this section, of reducing strong normalization to a known result,
has the benefit of conciseness.

35

B.2 Proof of syntactic conservativity

We now prove Theorem 4.3. As in the statement of that theorem, we let (X,Y) be one of the
following pairs of calculi, (EC,EC+), (EC,EEC), (EC,EEC+), (EC+,EEC+), (EEC,EEC+).
Also, we assume the signature Σ contains only types from the calculus X.

The strategy for the establishing the syntactic conservativity of Y over X is to show that
any normal form term in system Y whose type is in X is also a system X term. Since every
system Y term is normalizable and equal to its normal form, the theorem follows.

To do this, it is useful to characterise the normal forms, relative to the rewrite relation →,
using a grammar.

v ::= a | ? | 〈v, v〉 | λx : A. v | !v | let !x be a in v | ?(a) | inl(v) | inr(v) | case a of (inl(x). v; inr(y). v) |
λ◦x : A. v | !v ⊗ v | let !x⊗ y be a in v | ?(a) | inl(v) | inr(v) | case a of (inl(x). v; inr(y). v)

a ::= x | fst(a) | snd(a) | a (v) | a[v] | f(v, . . . , v) | g(v, . . . , v | v)

Lemma B.6. If Γ |∆ `Σ t : A in EEC+ and t is in normal form then t satisfies the grammar
for terms v.

The converse holds too, but we will not prove this since we have no need for the result.

Proof. We prove that for any term t, if t is a normal form, then t is a v-term. The proof is a
straightforward induction over the structure of t, and we give just one illustrative case.

If t is a normal form of the form case s of (inl(x). u1; inr(y). u2) then s, u1, u2 must be normal
forms and so, by induction hypothesis, must be v-terms. The v-term s has type A + B, and so,
for type reasons, must be one of inl(v), inr(v), ?(a), case a of (inl(x). v; inr(y). v), or a. (Note that
s cannot be a term of the form let !x be a in v, let !x⊗ y be a in v, case a of (inl(x). v; inr(y). v) or
?(a) because their types are required to be computation types.) However, if s were one of inl(v),
inr(v), ?(a), case a of (inl(x). v; inr(y). v) then t would be a redex, contradicting its normality.
Thus s must be of the form a. Whence t is indeed a v-term.

The arguments for the other cases are similar.

Lemma B.7. Let (X,Y) be as specified above, and let Γ | ∆ be a context whose types are all
in system X. Then

1. If Γ |∆ `Σ a : B in system Y then B is a system X type and Γ |∆ `Σ a : B in system X.

2. If Γ |∆ `Σ v : B in system Y and B is a system X type then Γ |∆ `Σ v : B in system X.

(Here a and v range over terms specified by the grammar above.)

Proof. We assume, without loss of generality, that system Y is EEC+. The two statements of
the lemma are proved by simultaneous induction over the structure of a and v. For statement
1, we consider two cases.

Suppose that Γ |∆ `Σ a[v] : B in EEC+. Then Γ | − ` a : A (BΣ and Γ |∆ ` v : AΣ
in EEC+, for some computation type A. By induction hypothesis 1, we have that A(B is a
system X type (hence X is EEC), and Γ |− ` a : A(BΣ in X. Hence A is a system X type,
and, by induction hypothesis 2, also Γ |∆ `Σ v : A in X. Thus indeed Γ |∆ `Σ a[v] : B in X.

Suppose that Γ | ∆ `Σ f(v1, . . . , vk | vk+1) : C in EEC+. Since we have assumed that
the signature Σ contains only types from X, we have g : (A1, . . . ,Ak | B)→C ∈ Σ where each
of A1, . . . ,Ak, B, C are system X types. Since Γ | − ` v1 : A1Σ, . . . , Γ | − ` vk : AkΣ and
Γ |∆ `Σ vk+1 : B in EEC+, by induction hypothesis 2, the same typing judgments are derivable
in system X. Thus indeed Γ |∆ `Σ f(v1, . . . , vk | vk+1) : C in X.

36

For statement 2, the case that v = a is already covered by statement 1. We consider just
one of the sixteen remaining cases.

Suppose that Γ |∆ `Σ let !x⊗ y be a in v : C in EEC+, where C is a system X type. Then
Γ |∆ `Σ a : !A⊗B and Γ, x : A | y : B `Σ v : C in EEC+. By induction hypothesis 1, we have
that !A⊗B is a system X type (hence X is EEC) and Γ |∆ `Σ a : !A⊗B in system X. By
induction hypothesis 2, we have Γ, x : A |y : B `Σ v : C in X. Thus Γ |∆ `Σ let !x⊗ ybea inv : C
in X as required.

Finally we complete the proof of Theorem 4.3.

Proof of Theorem 4.3. Suppose Γ |∆ `Σ u : A in system Y and suppose all the types occurring
in Γ,∆ and A are in system X. By Proposition B.5, u reduces to some normal form t in finitely
many steps. By Lemma B.1, Γ |∆ `Σ u = t : A in system Y . Moreover, by Lemma B.6.2, t is
a v-term, and so by Lemma B.7, Γ |∆ `Σ t : A in system X.

References

[1] A. Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Department
of Computer Science, 1997.

[2] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Proc.
Computer Science Logic (CSL) 1994, volume 933 of LNCS. Springer, 1995.

[3] P. N. Benton and P. Wadler. Linear logic, monads, and the lambda calculus. In Proc. 11th
Annual Symposium on Logic in Computer Science (LICS), 1996.

[4] J. Berdine, P. W. O’Hearn, U. Reddy, and H. Thielecke. Linear continuation-passing.
Higher Order and Symbolic Computation, 15:181–208, 2002.

[5] M. Churchill and J. Laird. A logic of sequentiality. In Proc. Computer Science Logic,
volume 6247 of Lecture Notes in Computer Science, pages 215–229. Springer Verlag, 2010.

[6] J. Egger, R. E. Møgelberg, and A. Simpson. Enriching an effect calculus with linear types.
In Proc. Computer Science Logic (CSL), volume 5771 of LNCS. Springer, 2009.

[7] J. Egger, R. E. Møgelberg, and A. Simpson. Linearly-used continuations in the enriched
effect calculus. In Proc. Foundations of Software Science and Computation Structures
(FoSSaCS), volume 6014 of LNCS. Springer, 2010.

[8] J. Egger, R. E. Møgelberg, and A. Simpson. Categorical models for the enriched effect
calculus, 2012. In preparation.

[9] J. Egger, R. E. Møgelberg, and A. Simpson. Linear-use CPS translations in the enriched
effect calculus. Logical Methods in Computer Science, to appear, 2012.

[10] A. Filinski. Controlling Effects. PhD thesis, Carnegie Mellon University, 1996.

[11] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[12] J.-Y. Girard. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1989.

[13] J.-Y. Girard. A new constructive logic: classical logic. Mathematical Structures in Com-
puter Science, 1:255–296, 1991.

37

[14] M. Hasegawa. Linearly used effects: Monadic and CPS transformations into the linear
lambda calculus. In Proc. 6th International Symposium on Functional and Logic Program-
ming (FLOPS), volume 2441 of LNCS, pages 167–182. Springer, 2002.

[15] F. Joachimski and R. Matthes. Short proofs of normalization for the simply-typed lambda-
calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic, 42:59–87,
2003.

[16] A. Joyal. Free bicomplete categories. C. R. Math. Rep. Acad. Sci. Canada, 17:219–224,
1995.

[17] G. M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of LMS Lecture
Notes. Cambridge University Press, 1982.

[18] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 21:1–10, 1970.

[19] J. Laird. A categorical semantics of higher-order store. In Proceedings of CTCS ’02,
number 69 in ENTCS. Elsevier, 2002.

[20] S. Mac Lane. Categories for the Working Mathematician. Springer, 1998. Second edition.

[21] P. B. Levy. Call-by-push-value. A functional/imperative synthesis. Semantic Structures in
Computation. Springer, 2004.

[22] P. B. Levy. Adjunction models for call-by-push-value with stacks. Theory and Applications
of Categories, 14:75–110, 2005.

[23] S. Lindley and I. Stark. Reducibility and TT-lifting for computation types. In Proceedings
of TLCA 2005, number 3461 in LNCS, 2005.

[24] F. E. J. Linton. Coequalizers in categories of algebras. In Seminar on Triples and Categor-
ical Homology Theory, volume 80 of Lecture Notes in. Math, pages 75–90. Springer-Verlag,
1969.

[25] R. E. Møgelberg and A. Simpson. Relational parametricity for control considered as a com-
putational effect. In Proc. Twenty-third Annual Conference on Mathematical Foundations
of Programming Semantics (MFPS XXIII), volume 173, pages 295–312, 2007.

[26] R. E. Møgelberg and A. Simpson. A logic for parametric polymorphism with effects. In
Post-conference proceedings for selected papers from TYPES 2007, volume 4941 of LNCS,
pages 142–156. Springer, 2008.

[27] R. E. Møgelberg and A. Simpson. Relational parametricity for computational effects.
Logical Methods in Computer Science, 5(3:7), 2009.

[28] R. E. Møgelberg and S. Staton. Linearly-used state in models of call-by-value. In Proc.
4th Conference on Algebra and Coalgebra in Computer Science (CALCO), volume 6859 of
LNCS, pages 293–313. Springer, 2011.

[29] E. Moggi. Computational lambda-calculus and monads. In Proc. 4th Annual Symposium
on Logic in Computer Science (LICS), pages 14–23, 1989.

[30] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92,
1991.

38

[31] P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-calculus.
Journal of the ACM, 47:167–223, 2000.

[32] G. Plotkin and A. J. Power. Computational effects and operations: An overview. Electr.
Notes Theor. Comput. Sci., 73:149–163, 2004.

[33] D. Prawitz. Natural Deduction — A proof theoretical study. Almquist and Wiksell, Stock-
holm, 1965.

[34] D. Prawitz. Ideas and results in proof theory. In Proceedings of the second Scandinavian
logic symposium, pages 237–309. North-Holland, 1971.

[35] A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis,
University of Edinburgh, 1994.

39

