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Abstract. The functionality of classically-instructed remotely prepared
random secret qubits was introduced in (Cojocaru et al 2018) as a way
to enable classical parties to participate in secure quantum computation
and communications protocols. The idea is that a classical party (client)
instructs a quantum party (server) to generate a qubit to the server’s side
that is random, unknown to the server but known to the client. Such task
is only possible under computational assumptions. In this contribution
we define a simpler (basic) primitive consisting of only BB84 states, and
give a protocol that realizes this primitive and that is secure against the
strongest possible adversary (an arbitrarily deviating malicious server).
The specific functions used, were constructed based on known trapdoor
one-way functions, resulting to the security of our basic primitive being
reduced to the hardness of the Learning With Errors problem. We then
give a number of extensions, building on this basic module: extension to
larger set of states (that includes non-Clifford states); proper considera-
tion of the abort case; and verifiablity on the module level. The latter is
based on “blind self-testing”, a notion we introduced, proved in a limited
setting and conjectured its validity for the most general case.

Keywords: Classical delegated quantum computation · Learning With
Errors · Provable security

1 Introduction

In the coming decades, advances in quantum technologies may cause major shifts
in the mainstream computing landscape. In the meantime, we can expect to see
quantum devices with high variability in terms of architectures and capacities,
the so-called noisy, intermediate-scale quantum (NISQ) devices [46] (such as
those being developed by IBM, Rigetti, Google, IonQ) that are currently avail-
able to users via classical cloud platforms. In order to be able to proceed to
the next milestone for the utility of these devices in a wider industrial base, the
issues of privacy and integrity of the data manipulation must be addressed.

Early proposals for secure and verifiable delegated quantum computing based
on simple obfuscation of data already exist [5, 14, 2, 10, 20, 41, 34, 24, 40, 22].



However, these schemes require a reliable long-distance quantum communication
network, connecting all the interested parties, which remains a challenging task.

For these reasons, there has recently been extensive research focusing on the
practicality aspect of secure and verifiable delegated quantum computation. One
direction is to reduce the required communications by exploiting classical fully-
homomorphic-encryption schemes [11, 18, 3], or by defining their direct quantum
analogues [30, 44, 50, 29]. Different encodings, on the client side, could also re-
duce the quantum communication [34, 24]. However, in all these approaches,
the client still requires some quantum capabilities. While no-go results indicate
restrictions on which of the above properties are jointly achievable for classical
clients [4, 54, 1, 42], recent breakthroughs based on post-quantum secure trap-
door one-way functions, paved the way for developing entirely new approaches
towards fully-classical client protocols for emerging quantum servers. The first
such procedures were proposed in [32] allowing a classical client to securely del-
egate a universal quantum computation to a remote untrusted server. The key
technical idea was the ability to perform a CNOT quantum gate that is con-
trolled by an encrypted classical bit. To achieve this a classical primitive of
trapdoor claw-free functions pair was used. It was later followed by the work
of [7], where the construction achieved stronger security guarantee and based
on more standard cryptographic assumptions. Building on this, a single device
certifiable randomness was achieved in [8], where the randomness is informa-
tion theoretical, but the certification is based on the computational limitations
of quantum devices. Finally, using post-hoc verification of quantum computa-
tions [21], and the above ideas to generate a single qubit “blind measurement
device”, [33] gave the first protocol achieving classical client verification of uni-
versal quantum computation.

All these constructions, while they used similar techniques, proved the desired
properties in a monolithic way. An alternative approach was taken in [15] where
the idea was to replace the quantum channel (that is used in many different pro-
tocol implementing blind and/or verifiable quantum computation) with a module
running between a classical client and a quantum server. It was shown then how a
classical client could use this module (referred to as QFactory) to achieve secure
delegated universal quantum computing, but potentially also, other function-
alities such as multi-party quantum computation. However, the security proof
was made in a weak “honest-but-curious” model, and the full proof of security
was left as an open question. In this paper, we extend the security proof to a
fully malicious adversary. All our proofs are made using reductions to hardness
assumptions (namely LWE), and the simplicity of the main protocol suggests
that an extention to a composable model such as Universal Composability [12] or
Abstract Cryptography (AC) [35] should be possible (but left as a future work).

Concurrently with our work, [23] also took this modular approach. Techni-
cally they followed closely the ideas from [32, 33, 8], but the basic primitive
they derive (in a verifiable version) is the one we introduced in [15]. They gave
protocols for a verifiable version of the secret single qubit generation, while they
also gave a proof in the AC model. Their AC proof relies on a strong hypothesis
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that they call “measurement buffer” that forces the adversary to give the state
that he is supposed to measure to the simulator, enforcing (essentially) a trusted
measurement. They also state that the stand-alone proof does not require this
assumption. To our view, this assumption is very high price for moving to the
AC framework, which is why in our current work we do not focus on compos-
ability while we work towards resolving this issue as part of the future work
we mentioned. Moreover, in [23] they do not investigate a crucial “abort” case
of the protocol, which is related to the properties of the functions required for
the protocol implementation. Specifically, properties such as two-regularity can
only be achieved probabilistically, causing the security of the protocol to fail
whenever the function property is not satisfied. This means that they need to
use a family of functions that is secure only under the assumption that SIVPγ
is hard for a superpolynomial γ, while the standard assumption is that SIVPγ
is secure only for a polynomial γ ([7]).

Following the modularity of [15], we present a universal yet minimal func-
tionality module that is fully secure and verifiable at the module level and could
be used as a black box in other client-server applications to replace the need for
a reliable long-distance quantum communication network. The price one has to
pay is a reduction from information-theoretic security (achievable using quan-
tum communication) to post-quantum computational security via our modules.
The ultimate vision would be to develop a hybrid network of classical and quan-
tum communication channels, depending on the desired security level and the
technology development of NISQ devices allowing classical or quantum links [53].

1.1 Our Contributions

In [15] was defined a classical client - quantum server functionality of delegated
pseudo-secret random qubit generator (PSRQG) that can replace the need for
quantum channel between parties in certain quantum communication protocols,
with the only trade-off being that the protocols would become computationally
secure (against quantum adversaries). However, the proof of security was done
in a weak model called “honest-but-curious”. In this paper (full version at [16]):

1. We present a new protocol called Malicious 4-states QFactory in Section 3
that achieves the functionality of classically instructed remote secret gener-
ation of the states {|0〉 , |1〉 , |+〉 , |−〉} (known as the BB84 states), given 2
cryptographic functions: 1) a trapdoor one-way function that is quantum-
safe, two-regular and collision resistant and 2) a homomorphic, hardcore
predicate. The novelty of this new protocol reflects in both simplicity of
construction and proof, as well as enhanced security, namely the protocol is
secure against any arbitrarily deviating adversary. The target output qubit
set is one of the four BB84 states, states that form the core requirement of
any quantum communication protocol.
Then, in Subsection 3.3, we present the security of the Malicious 4-states
QFactory against any fully malicious server, by proving that the basis of
the generated qubits are completely hidden from any adversary, using the
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properties of the two functions, the security being based on the hardness of
the Learning with Errors problem.

2. While the above-mentioned results do not depend on the specific function
used, the existence of such functions (with all desired properties) makes the
functionality a practical primitive that can be employed as described in this
paper. In Section 4, we describe how to construct the two-regular, collision
resistant, trapdoor one-way family of functions and the homomorphic, hard-
core predicate. Furthermore, we prove using reductions in Subsection 4.2
that the resulting functions maintain all the required properties.

3. In order to demonstrate the modular construction of the basic Malicious 4-
states QFactory, we also present in Section 5, a secure and efficient extension
to the functionality of generating 8 states, called the Malicious 8-states QFac-
tory protocol (where the security refers to the fact that the basis of the new
state is completely hidden). The set of output states

{
|+θ〉 | θ ∈ {0, π4 , ...,

7π
4 }
}

(no longer within the Clifford group) are used in various protocols, including
protocols for verifiable blind quantum computation.

4. While the protocol introduced in Section 3 requires (for the security proof) a
family of functions having 2 preimages with probability super-polynomially
close to 1, we also define in Section 7 a protocol named Malicious-Abort 4-
states QFactory, that is secure when the functions have 2 preimages with only
a constant (greater than 1/2) probability. Indeed, even if the parameters used
for the first category of functions are implicitly used in some protocols [32],
the second category of functions is strictly more secure and more standard
in the cryptographic literature [7]. The Malicious-Abort 4-states QFactory
protocol is proven secure also for this second category of functions, assuming
that the classical Yao’s XOR lemma also applies for one-round protocols
(with classical messages) with quantum adversaries.

5. With a simple construction in Section 6, we extend our basic module, in a
“blind-measurement” device, where the server performs a single qubit mea-
surement in either the Z or X basis, but he is ignorant of the measurement
basis (while the client knows). This type of blind measurement was the basis
for the paper of [33], where a classical-client verification of quantum compu-
tation protocol was first given. Here we see how our module can also offer
this type of functionality.

6. The Malicious 8-states QFactory can be further extended in order to offer
a notion of verification for QFactory in Section 8, the new protocol being
called Verifiable QFactory. We demonstrate that this notion of verifiability
of QFactory is suitable, by showing that it is sufficient to obtain verifiable
blind quantum computation. Such protocol would be the first classical client,
verifiable and blind quantum computation protocol.
We introduce in Subsection 8.2 a novel framework called blind self-testing,
which differs from the standard self-testing by replacing the non-locality
assumptions for such tests with blindness conditions. We describe how this
technique can be used to prove the verifiability of QFactory. Note however,
that the security of the Verifiable QFactory Protocol 8.2 is conjectured, while
we expect that the full proof would follow using the most general case of the
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novel notion of blind self-testing that we introduced. Finally, we prove how
a (much simpler) i.i.d. blind self-testing is achievable.

1.2 Overview of the protocols and proofs

The Protocol. The general idea is that a classical client communicates with a
quantum server instructing him to perform certain actions. By the end of the
interaction, the client obtains a random value B = B1B2 ∈ {00, 01, 10, 11}, while
the server (if he followed the protocol) ends up with the state HB1XB2 |0〉, i.e.
with one of the BB84 states. Moreover, the server, irrespective of whether he
followed the protocol or how he deviated, cannot guess the value of the (basis)
bit B1 any better than making a random guess (more details in Subsection 3.3).

This module is sufficient to perform (either directly or with simple extensions)
multiple secure computation protocols including blind quantum computation.

To achieve such a task, we require three central elements. Firstly, the quan-
tum operations performed by the server should not be repeatable, in order to
avoid letting the (adversarial) server run multiple times these operations and
obtain multiple copies of the same output state. That would (obviously) com-
promise the security since direct tomography of a single qubit is straightforward.
This can be achieved if the protocol includes a measurement of many qubits,
where the probability of getting twice the same outcome would be exponentially
small. The second element is that the server should not be able to efficiently
classically simulate the quantum computation that he needs to perform. This is
to stop the server from running everything classically and obtaining the explicit
classical description of the output state. This is achieved using techniques from
post-quantum cryptography and specifically the Learning-With-Errors problem.
Lastly, the computation has to be easy to perform for the client, since she needs
to know the output state. This asymmetry (easy for client/ hard for server)
can be achieved only in the computational setting, where the client has some
extra trapdoor information. The protocol requires the following cryptographic
primities defined formally in Definition 8:

– F : a family of 2-regular, collision resistant, trapdoor one-way functions (that
can be constructed from a family of injective, homomorphic, trapdoor one-
way functions G);

– d0(tk): a hardcore predicate of the index of the functions in F . More precisely,
every function fk ∈ F has an associated hardcore bit d0 that is hard to guess
given only k, but easy to compute given the trapdoor tk;

– h: a predicate such that h(x)⊕ h(x′) = d0 for any x, x′ with fk(x) = fk(x′)

Given these functions, the protocol steps are: The client sends the descriptions of
the functions fk (from the family F) and h. The server’s actions are described by
the circuit given in Figure 1 (see Section 3), classically instructed by the client:
prepares one register at ⊗nH |0〉 and second register at |0〉m; then applies Ufk
using the first register as control and the second as target; measures the second
register in the computational basis, obtains the outcome y. Through these steps
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server produces a superposition of the 2 preimages x and x′ of y for the function
fk, i.e. |x〉+ |x′〉. Next, server is instructed to apply the unitary corresponding to
function h (targeting a new qubit |0〉) and to measure all but this new qubit in
the Hadamard basis (the measurement outcomes will be denoted as b), which will
be the output of the protocol. This last step intuitively magnifies the randomness
of all the qubits to this final output qubit.

Then, it can be proven that, in an honest run, this output state is:

|out〉 = HB1XB2 |0〉 , where

B1 = h(x)⊕ h(x′) = d0(tk) =: d0

B2 = (d0 × (b · (x⊕ x′)))⊕ h(x)h(x′)

Therefore, the client can efficiently obtain the description of the output state,
namely B1 and B2 by inverting y, to obtain the 2 preimages x and x′ using his
secret trapdoor information tk.
Security. Informally speaking the desired security property of the module is to
prove that the server cannot guess better than randomly the basis bit B1 of what
the client has, no matter how the server deviates or what answers he returns.
In other words, we prove that given that the client chooses k randomly, then no
matter which messages y and b the server returns, he cannot determine B1.

Specifically, using the properties of the 2 cryptographic functions, we show
that the basis of the output state is independent of the messages sent by server
and essentially, the basis is fixed by the client at the beginning of the protocol.

Here it is important to emphasize that the simplicity of our modular con-
struction allow us to make a direct reduction from the above security property to
the cryptographic assumptions of our primitives functions F , d0 and h. Indeed,
from the expression above, we can see that at the end of the interaction the
client has recorded as the basis bit the expression B1 = h(x) ⊕ h(x′) = d0(tk),
which is a hardcore bit and is therefore hard to guess given only k.
The Primitive Construction. In order to use this module in practise, it is
crucial to have functions that satisfy our cryptographic requirements, and ex-
plore the choices of parameters that ensure that all these properties are jointly
satisfied. Building on the function construction of [15] we gave specific choices
that achieve these properties. The starting point is the injective, trapdoor one-
way family of functions Ḡ from [39], where the hardness of the function is derived
from the Learning With Errors problem.

More precisely, to sample a function fk, we first sample a matrix K ∈ Zm×nq

using the construction of [39] (that provides an injective and trapdoor function),
a uniform vector s0 ∈ Znq , an error e0 ∈ Zmq according to a small Gaussian3 and
a random bit d0, and we compute

y0 = Ks0 + e0 + d0 ×
(
q
2 0 . . . 0

)T
(1.1)

The hardcore property of d0 will directly come from the fact that under LWE
assumption, no adversary can distinguish a LWE instance Ks0 + e0 from a

3 but big enough to make sure the function is secure
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random vector, so it is not possible to know if we added or not a constant
vector. The function fK,y0 will then be defined as follow:

fK,y0(s, e, c, d) = Ks+ e+ c× y0 + d×
(
q
2 0 . . . 0

)T
(1.2)

Note that c and d are bits, and the error e is chosen in a bigger space4 than
e0 to ensure that the function fK,y0 has two preimages with good probability.
Moreover, if we define h(s, e, c, d) = d, it is easy to see that for all preimages
x, x′ with f(x) = f(x′), we have:

h(x)⊕ h(x′) = d0

The Extended Protocol. In order to use the above protocol for applications
such as blind quantum computing [10], we need to be able to produce states taken
from the (extended) set of eight states {|+θ〉 , θ ∈ {0, π4 , ...,

7π
4 }}. Importantly,

we still need to ensure that the bits corresponding to the basis of each qubits
produced, remain hidden. Here we prove how given two states produced by the
basic protocol described previously, which we denote as |in1〉 and |in2〉, we
can obtain a single state from the 8-states set, denoted |out〉, ensuring that no
information about the bits of the basis of |out〉 is leaked5.

To achieve this, we need to find an operation (see Figure 2 in Section 5.1),
that in the honest case maps the indices of the inputs to those of the output using
a map that satisfies certain conditions. This relation (inputs/output) should be
such that learning anything about the basis of the output state implies learning
non-negligible information for the basis of (one) input. This directly means, that
any computationally bounded adversary that can break the basis blindness of
the output, can use this to construct an attack that would also break the basis
blindness of at least one of the inputs, i.e. he would break the security guarantees
of the basic module that was proven earlier.
Other Properties. To further demonstrate the utility of our core module, as
a building block for other client-server protocols, one might wish to expand fur-
ther the desired properties of the basic functionality. First we give a direct use of
our gadget, to construct a “blind-measurement” device. Such device is essential
for (non-blind) verification schemes based on post-hoc verification method [21]
and directly relates our work with that of [33]. Next, to obtain the verifiability
of the module (i.e. imposing an honest behaviour on the server) we propose a
generalization of the self-testing, where the non-locality condition is replaced by
the blindness property and the analysis is done in the computational setting.
Finally, to further improve the practicality of the black box call of the QFactory
we also present the security against abort scenario that could be achieved based
on a quantum version of Yao’s XOR Lemma. However, these additional proper-
ties require stronger basic assumptions that we leave as an open question to be
removed or proven correct separately.

4 but small enough to make sure the partial functions f(·, ·, c, ·) are still injective
5 Note that one of the input states is exactly the output of the basic module, while the

second comes from a slightly modified version (essentially rotated in the XY-plane
of the Bloch sphere).
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2 Preliminaries

We assume basic familiarity with quantum notions, a good reference is [43].
For a state |+θ〉 = 1√

2
(|0〉+eiθ |1〉), where θ ∈ {0, π4 , ...,

7π
4 }, we use the notation:

θ =
π

4
L

Additionally, as L is a 3-bit string, we write it as L = L1L2L3, where L1, L2, L3

represent the bits of L.
As a result when we refer to the basis of the |+θ〉 state, it is equivalent to referring
to the last 2 bits of L, thus saying that nothing is leaked about the basis of this
state, is equivalent to saying nothing is leaked about the bits L2 and L3.
For a set of 4 quantum states {|0〉 , |1〉 , |+〉 , |−〉}, we denote the index of each
state using 2 bits: B1, B2, with B1 = 0 if and only if the state is |0〉 or |1〉,
and B2 = 0 if and only if the state is |0〉 or |+〉, i.e. HB1XB2 |0〉. We will use
interchangeably the Dirac notation and the basis/value notation.

In the following sections, we will consider polynomially bounded malicious
adversaries, usually denoted by A. The honest clients will be denoted with the
π letter, and both honest parties and adversaries can output some values, that
could eventually be used in other protocols. To denote that two parties πA and A
interact in a protocol, and that πA outputs a while A outputs b, we write (a, b)←
(πA‖πB) (we may forget the left hand side, or replace variables with underscores
“ ” if it is not relevant). We can also refer to the values of the classical messages
send between the two parties using something like Pr [a = accept | (πA‖A)],
and this probability is implicitly over the internal randomness of πA and A.
To specify a two-party protocol, it is enough to specify the two honest parties
(πA, πB). Moreover, if the protocol is just made of one round of communication,
we can just write y ← A(x) with x the first message sent to A, and y the
messages sent from A. Finally, a value with a tilde, such as d̃, represents a guess
from an adversary.

We are considering protocols secure against quantum adversaries, so we as-
sume that all the properties of our functions hold for a general Quantum Poly-
nomial Time (QPT) adversary, rather than the usual Probabilistic Polynomial
Time (PPT) one. We will denote D the domain of the functions, while D(n) is
the subset of strings of length n. The following definitions are for PPT adver-
saries, however in this paper we will generally use quantum-safe versions of those
definitions and thus security is guaranteed against QPT adversaries.

Definition 1 (One-way). A function family {fk : D → R}k∈K is one-way if:

– There exists a PPT algorithm that can compute fk(x) for any index k, out-
come of the PPT parameter-generation algorithm Gen and any input x ∈ D;

– Any QPT algorithm A can invert fk with at most negligible probability over
the choice of k:

Pr
k←Gen(1n)

x←D
rc←{0,1}∗

[f(A(k, fk(x)) = f(x)] ≤ negl(n)

where rc represents the randomness used by A
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Definition 2 (Collision resistant). A family of functions {fk : D → R}k∈K
is collision resistant if:

– There exists a PPT algorithm that can compute fk(x) for any index k, out-
come of the PPT parameter-generation algorithm Gen and any input x ∈ D;

– Any QPT algorithm A can find two inputs x 6= x′ such that fk(x) = fk(x′)
with at most negligible probability over the choice of k:

Pr
k←Gen(1n)
rc←{0,1}∗

[A(k) = (x, x′)such that x 6= x′ and fk(x) = fk(x′)] ≤ negl(n)

where rc is the randomness of A (rc will be omitted from now).

Definition 3 (k-regular). A deterministic function f : D → R is k-regular if
∀y ∈ Im f , we have |f−1(y)| = k.

Definition 4 (Trapdoor Function). A family of functions {fk : D → R} is
a trapdoor function if:

– There exists a PPT algorithm Gen which on input 1n outputs (k, tk), where
k represents the index of the function. We also suppose that it is possible to
derive the index k from the trapdoor tk using a function Pub, i.e. k = Pub(tk)

– {fk : D → R}k∈K is a family of one-way functions;
– There exists a PPT algorithm Inv, which on input tk (which is called the

trapdoor information) output by Gen(1n) and y = fk(x) can invert y (by
returning all preimages of y6) with non-negligible probability over the choice
of (k, tk) and uniform choice of x.

Definition 5 (Hardcore Predicate). A function hc : D → {0, 1} is a hard-
core predicate for a function f if:

– There exists a PPT algorithm that, for any input x, can compute hc(x);
– Any QPT algorithm A when given f(x), can compute hc(x) with negligible

better than 1/2 probability:
Pr

x←D(n)
rc←{0,1}∗

[A(f(x), 1n) = hc(x)] ≤ 1
2 + negl(n), where rc is the randomness

used by A;

The Learning with Errors problem (LWE) is described in the following way:

Definition 6 (LWE problem (informal)). Given s, an n dimensional vector
with elements in Zq, for some modulus q, the task is to distinguish between a
set of polynomially many noisy random linear combinations of the elements of s
and a set of polynomially many random numbers from Zq.

6 While in the standard definition of trapdoor functions it suffices for the inversion
algorithm Inv to return one of the preimages of any output of the function, in
our case we require a two-regular tradpdoor function where the inversion procedure
returns both preimages for any function output.
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Regev [47] and Peikert [45] have given quantum and classical reductions from
the average case of LWE to problems such as approximating the length of the
shortest vector or the shortest independent vectors problem in the worst case,
which are conjectured to be hard even for quantum computers.

Theorem 1 (Reduction LWE, [47, Theorem 1.1]). Let n, q be integers and
α ∈ (0, 1) be such that αq > 2

√
n. If there exists an efficient algorithm that solves

LWEq,Ψ̄α , then there exists an efficient quantum algorithm that approximates
the decision version of the shortest vector problem GapSVP and the shortest
independent vectors problem SIVP to within Õ(n/α) in the worst case.

Definition 7 (Function Unitary). For any function f : A → B that can
be described by a polynomially-sized classical circuit, we define the controlled-
unitary Uf , as acting in the following way:

Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 ∀x ∈ A ∀y ∈ B, (2.1)

where we name the first register |x〉 control and the second register |y〉 target.
Given the classical description of this function f , we can always define a QPT
algorithm that efficiently implements Uf .

3 The Malicious 4-states QFactory Protocol

3.1 Requirements and protocol

The Malicious 4-states QFactory Protocol described Protocol 3.1 uses a family
of cryptographic functions F and a function h having the following properties
(see Section 4 to see how this family of functions can be constructed from a
family of injective, trapdoor and (pseudo) homomorphic functions):

Definition 8 (2-regular homomorphic-hardcore family). A family F =
{fk : D′ → R}k∈K is said to be a 2-regular homomorphic-hardcore family with
respect to hk : D′ → {0, 1} and d0 : T → {0, 1} (T is the set of trapdoors tk) if:

– it is 2-regular, collision resistant and trapdoor
– for all k, hk can be described by a polynomial classical circuit
– d0 is a hardcore predicate for Pub, i.e. given a random index k = PubF (tk),

it should be impossible to get d0 := d0(tk) with probability better than 1/2 +
negl(n), i.e. for any QPT adversary A:

Pr [A(k) = d0(tk) | (k, tk)← GenF ] ≤ 1

2
+ negl(n) (3.1)

– for all k ∈ K and x, x′ ∈ D′ such that fk(x) = fk(x′), we have:

hk(x)⊕ hk(x′) = d0 (3.2)

We also extend this definition to δ-2-regular homomorphic-hardcore family, when
the function is δ-2-regular, i.e. 2-regular with probability δ (see the full paper [16]
for a formal definition).
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Protocol 3.1 Malicious 4-states QFactory Protocol: classical delegation of the
BB84 states
Requirements:
Public: A δ-2-regular homomorphic-hardcore family F with respect to {hk} and d0, as
described above. For simplicity, we will represent the sets D′ (respectively R) using n
(respectively m) bits strings: D′ = {0, 1}n, R = {0, 1}m. In this protocol, we require δ
to be negligibly close to 1, see Section 7 for an extensions to a constant δ.
Stage 1: Preimages superposition
– Client: runs the algorithm (k, tk)← GenF (1n).
– Client: instructs Server to prepare one register at ⊗nH |0〉 and second register initi-
ated at |0〉m.
– Client: sends k to Server and the Server applies Ufk using the first register as control
and the second as target.
– Server: measures the second register in the computational basis, obtains the out-
come y. Here, in an honest run, the Server would have a state (|x〉+ |x′〉)⊗ |y〉 with
fk(x) = fk(x′) = y and y ∈ Im fk.
Stage 2: Output preparation
– Server: applies Uhk on the preimage register |x〉 + |x′〉 as control and another
qubit initiated at |0〉 as target. Then, measures all the qubits, but the target in the
{ 1√

2
(|0〉 ± |1〉)} basis, obtaining the outcome b = (b1, ..., bn). Now, the Server returns

both y and b to the Client.
– Client: using the trapdoor tk computes the preimages of y:

– if y does not have exactly two preimages x, x′ (the server is cheating with over-
whelming probability), defines B1 = d0(tk), and chooses B2 ∈ {0, 1} uniformly at
random

– if y has exactly two preimages x, x′, defines B1 = hk(x)⊕ hk(x′) = d0(tk), and B2

as defined in Theorem 2.

Output: If the protocol is run honestly, the state that the Server has produced is
(with overwhelming probability) the BB84 state |out〉 = HB1XB2 |0〉, having the basis
B1 = hk(x) ⊕ hk(x′) = d0 (see Theorem 2 for the exact value of B2). The output of
the Server is |out〉, and the output of the Client is (B1, B2).

3.2 Correctness of Malicious 4-states QFactory

In an honest run, the description of the output state of the protocol depends on
measurement results y ∈ Im fk and b, but also on the 2 preimages x and x′ of y.

The output state of Malicious 4-states QFactory belongs to the set of states
{|0〉 , |1〉 , |+〉 , |−〉} and its exact description is the following:

Theorem 2. In an honest run, with overwhelming probability the output state
|out〉 of the Malicious 4-states QFactory Protocol (Protocol 3.1) is a BB84 state
whose basis is B1 = hk(x)⊕ hk(x′) = d0, and:

– if d0 = 0, then the state is |hk(x)〉 (computational basis, also equal to
|hk(x′)〉)

– if d0 = 1, then if
∑
i bi · (xi ⊕ x′i) = 0 mod 2, the state is |+〉, otherwise the

state is |−〉 (Hadamard basis).
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i.e.

|out〉 = HB1XB2 |0〉 (3.3)

with

B1 = hk(x)⊕ hk(x′) = d0 (3.4)

B2 = (d0 × (b · (x⊕ x′)))⊕ h(x)h(x′) (3.5)

(the inner product is taken modulo 2, and x⊕ x′ is a bitwise xor)

Proof. The operations performed by the quantum server, can be described as:

|0〉

Ũh

|out〉

|0〉 H

Ufk

MX ⇒ b· · · · · ·

|0〉 H

|0〉
MZ ⇒ y· · ·

|0〉

Fig. 1. The circuit computed by the Server

|0〉 ⊗ |0n〉 ⊗ |0m〉 I2⊗H⊗n⊗I2⊗m−−−−−−−−−−→ |0〉 ⊗
∑
x∈D
|x〉 ⊗ |0m〉

I2⊗Ufk−−−−−→

|0〉 ⊗
∑
x∈D
|x〉 ⊗ |fk(x)〉 fk2-regular−−−−−−−→ |0〉 ⊗

∑
y∈Im(fk)

(|x〉+ |x′〉)⊗ |y〉
I2⊗I2⊗n⊗M⊗mZ−−−−−−−−−−→

|0〉 ⊗ (|x〉+ |x′〉)⊗ |y〉 Ũh⊗I2⊗m−−−−−−→ (|h(x)〉 ⊗ |x〉+ |h(x′)〉 ⊗ |x′〉)⊗ |y〉
I2⊗M⊗nX ⊗I2

⊗m

−−−−−−−−−−→

|out〉 ⊗ |b1〉 ...⊗ |bn〉 ⊗ |y〉 ⇒ |out〉 = Hd0Xd0(b·(x⊕x′))⊕h(x)h(x′) |0〉

where Ũh is a “swapped” Uh, acting on the first register as target and input

register as control: |0〉 |x〉 Ũh−−→ |h(x)〉 |x〉. For more detailed computations, see
the full paper.

It can be noticed that, in an honest run of the protocol, using y and the
trapdoor information of the function fk, the Client obtains x and x′ and thus
can efficiently determine what is the output state that the Server has prepared.
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In the next section, we prove that no malicious adversary can distinguish between
the 2 possible bases {|0〉, |1〉} and {|+〉, |−〉} of the output qubit, or equivalently
distinguish whether B1 is 0 or 1.

3.3 Security against Malicious Adversaries of Malicious 4-states
QFactory

In any run of the protocol, honest or malicious, the state that the client believes
that the server has is given by Theorem 2. Therefore, the task that a malicious
server wants to achieve, is to be able to guess, as good as he can, the description
of the output state that the client (based on the public communication) thinks
the server has produced. In particular, in our case, the server needs to guess the
bit B1 (corresponding to the basis) of the (honest) output state.

Note that we want to make sure that the server cannot guess the basis bit
B1 (for most applications ([10, 22]) basis blindness is sufficient as indicated in
[19]), and we do not care about the value bit B2 simply because it is not possible
to say that B2 cannot be guessed with probability better than random. Indeed,
even in the honest case, or in the “perfect” case with a quantum channel, the
server can always measure the qubit |out〉 he has to extract the value bit (for
example by measuring it in a random basis (computational or Hadamard) and
outputting the outcome of the measurement, he will succeed with probability
1
2 ×

1
2 + 1

2 × 1 = 3
4 > 1/2). Additionally, partial blindness of B2 is implicit in our

work, since learning B2 leads to leaking partial information about B1, in the case
that the server possesses the honest output state HB1XB2 |0〉. Optimal bounds
for B2s leakage are not known if the server is malicious and without verification,
is non-trivial and will be studied as a future work.

Definition 9 (4 states basis blindness). We say that a protocol (πA, πB)
achieves basis-blindness with respect to an ideal list of 4 states
S = {SB1,B2}(B1,B2)∈{0,1}2 if:

– S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉 = SB1B2
∈ S | ((B1, B2), |φ〉)← (πA‖πB)] ≥ 1− negl(n)

– and no information is leaked about the index bit B1 of the output state of the
protocol, i.e for all QPT adversary A:

Pr
[
B1 = B̃1 | ((B1, B2), B̃1)← (πA‖A)

]
≤ 1/2 + negl(n)

Theorem 3 (Malicious 4-states QFactory is secure). Protocol 3.1 satisfies
4-states basis blindness with respect to the ideal list of states
S = {HB1XB2 |0〉}B1,B2

= {|0〉 , |1〉 , |+〉 , |−〉}.

Proof. The advantage of our construction is that this theorem is now a direct
application of the definition of the family F (Definition 8). Indeed, let us suppose
that there exists a QPT adversary A such that:

Pr
[
B1 = B̃1 | ((B1, B2), B̃1)← (πA‖A)

]
≥ 1/2 +

1

poly(n)

13



where πA (respectively πB) is the honest Client (respectively Server) of Pro-
tocol 3.1. From Theorem 2, we notice that the value of B1 is always equal to
d0(tk). Moreover, our adversary is just a one-round adversary, so we can rewrite
the previous equation as:

Pr [d0(tk) = A(k) | (k, tk)← GenF ] ≥ 1/2 +
1

poly(n)

But d0 is a hardcore predicate, so this contradicts Equation 3.1. So no QPT
adversary A can guess the basis B1 with probability better than 1/2 + negl(n).

Remark 1. In the run of the Malicious 4-states QFactory protocol, the adver-
sary/server has no access to the abort/accept bit, specifying whether the Client
wants to abort the protocol after receiving the image y from the server (the
abort occurs when y does not have exactly two preimages). So that’s why this
first protocol is correct with overwhelming probability only when δ > 1−negl(n).
See Section 7 to see how we address this issue for constant δ.

4 Function Implementation

4.1 General construction of 2-regular homomorphic-hardcore family

To complete the construction of Malicious 4-states QFactory, we must find func-
tions F , h, and d0 satisfying the properties described in Definition 8. We first ex-
plain a general method to construct a 2-regular function from an injective homo-
morphic function (the generalisation to δ-2-regularity from pseudo-homomorphic
functions is treated in the full paper), and we give in the next section a candidate
that achieves the two other properties required in our definition (homomorphic-
hardcore predicate) whose security is based on the cryptographic problem LWE.

Lemma 1. It is possible to construct a family of functions F : {fk′ : D ×
{0, 1} → R}, hk′ and d0 that are a 2-regular homomorphic-hardcore family
(Definition 8) from a family of functions G = {gk : D → R}k that is injec-
tive, trapdoor, homomorphic and such that there exists a homomorphic hardcore
predicate hk : D → {0, 1} for all gk ∈ G.

Proof.

GenF (1n)

1 : (k, tk)←$GenG(1n)

2 : z0 ←$D
3 : y0 = gk(z0)

4 : t′k′ = (tk, z0)

5 : k′ = (k, y0)

6 : return (k′, t′k′)

Because G and D are homomorphic, there
exist 2 operations ” +D ” acting on D and
” +R ” acting on R such that ∀k,∀z1, z2 ∈ D,
gk(z1 +D z2) = gk(z1) +R gk(z2) and h(z1) ⊕
h(z2) = h(z2 +D z1) = h(z2 −D z1).Then, the
functions F , h′k, d0 are constructed as follow.
First, to generate a private key, we generate
a private key of G, and we pick a random ele-
ment z0 (see GenF (1n) on the right). And then

14



we define fk′ : D × {0, 1} → R as fk′(z, c) = gk(z) +R c · y0, we also define
h′k′ : D × {0, 1} → R as h′k′(z, c) = hk(z) and d0 : T ′ → {0, 1} (where T ′ is
the sets of trapdoors t′k′) as d0(tk, z0) = hk(z0). Now, it is easy to see that this
family is 2-regular homomorphic-hardcore family, as proven in the full paper.

4.2 Construction of δ-2-regular homomorphic-hardcore family F

We will now give an explicit implementation of a family G that is injective,
trapdoor, (pseudo) homomorphic with a homomorphic-hardcore predicate d0,
and then we will rely on a construction similar to Lemma 1 to produce a family F ,
h, and d0 with the properties described in Definition 8 needed by Protocol 3.1 and
Protocol 7.1. Note that we defined in a previous work [15] a similar construction,
but without the additional homomorphic-hardcore property.

The starting point is the injective, trapdoor one-way family of functions
Ḡ = {ḡK : Znq × Em → Zmq }K7 from [39] (where E defines the set of integers
bounded in absolute value by some “big-enough” value µ which will be defined
later, and additions are matrix additions modulo q, where q is an even integer).

ḡK(s, e) = Ks+ e

Then, to sample a function from the family F = {fk : Znq × Em × {0, 1} ×
{0, 1} → Zmq }, we will first sample a random matrixK ∈ Zm×nq with the trapdoor
matrix R using the construction from [39], as well as a uniform random vector
s0 ∈ Znq , a random small error vector e0 ∈ Zmq sampled according to a “small-
enough” Gaussian distribution Dmα′q on integers and a (uniform) random bit

d0 ∈ {0, 1}. Now, after defining the constant vector v =
(
q
2 0 . . . 0

)T
, and

y0 := Ks0 + e0 + d0 × v

the trapdoor is set to tk := (R, s0, e0, d0), and the public index is k = (K, y0).
We can already note at that step that d0 is a hardcore-predicate:

Lemma 2. The function d0(tk) := d0 is a hardcore predicate of k, i.e. for all
QPT adversaries A,

Pr[A(k) = d0(tk)] ≤ 1

2
+ negl(n)

Now, we can define fk : Znq × Em × {0, 1} × {0, 1} → Zmq as follow:

fk(s, e, c, d) = Ks+ e+ c× y0 + d× v

and h : Znq × Em × {0, 1} × {0, 1→ {0, 1} as:

h(s, e, c, d) = d

7 The bar on top of Ḡ denotes the version where there is not yet the hardcore bit d0
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The intuition behind this construction is more or less the same as the general
construction presented in Subsection 4.1. Moreover, the first two terms As + e
are useful for the security, the c × y0 term is needed to ensure the 2-regularity
(the two images will differ by (s0, e0, 1, d0)), and the last term d × v is mostly
useful to provide the hardcore property. More precisely:

– This function cannot have more than 2 preimages because the partial func-
tions f(·, ·, c, ·) are injective (because ḡK is injective)

– h is the homomorphic-hardcore predicate required by Definition 8. Indeed,
if there is a collision, i.e. if fk(s, e, 0, d) = fk(s′, e′, 1, d′), it is easy to see that
d⊕d′ = d0 (q is even, and operations are modulo q), i.e. that h(x)⊕h(x′) = d0

– finally, for an appropriate choice of parameters (see Lemma 3), this function
is 2-regular with good probability. Indeed, if for a random element (s, e, 0, d)
there exists (s′, e′, 1, d′) with fk(s, e, 0, d) = fk(s′, e′, 1, d′), then e = e′ + e0.
But e0 is sampled from a set significantly smaller than E, so with good
probability e′ = e− e0 will belong to E.

Note on the parameters: α′ is chosen to make sure that the sampled
elements are small compared to µ (the upper bound on E), but such that the
noise is still big enough for security. On the contrary, µ must stay small enough
to ensure that the function does not have more than two preimages. Our previous
work provides a set of parameters having all the required constraints:

Lemma 3 (from [15]). The family of functions F is δ-2-regular with good
(constant greater than 1/2) probability, trapdoor, one-way and collision resistant
(all these properties are true even against a quantum attacker), assuming that
there is no quantum algorithm that can efficiently solve SIVPγ for γ = poly(n),
for the following choices of parameters:

q = 25dlog(n)e+21

m = 23n+ 5n dlog(n)e
µ = 2mn

√
23 + 5log(n)

α′ =
µ

m
√
mq

(4.1)

Moreover, we can find another set of parameters such that this probability δ is
negligibly close to one assuming that SIVPγ is secure for a superpolynomial γ
(depending on the value of δ, you may choose Protocol 3.1 (δ ∼ 1) or Protocol 7.1
(δ > 1/2)).

We can now formalize the above intuitions:

Theorem 4. The family F defined above with appropriate parameters such as
the one defined in Lemma 3 is a δ-2-regular homomorphic-hardcore family.

Proof. The proofs that hk(x)⊕hk(x′) = d0, and that gK is injective and one-way
can be found in the full paper, the Lemma 3 ensures that the family is δ-2-regular,
the hardcore property comes from Lemma 2, and the other properties are trivial
to check.
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5 The Malicious 8-states QFactory Protocol

In order to use the Malicious 4-states QFactory functionality for applications
such as blind quantum computing [10], we need to be able to produce states
from the set {|+θ〉 , θ ∈ {0, π4 , ...,

7π
4 }}, always ensuring that the bases of these

qubits remain hidden. Here we prove how by obtaining two states of Malicious
4-states QFactory Protocol, we can obtain a single state from the 8-states set,
while no information about the bases of the new output state is leaked.

To achieve this, we need to find an operation, that in the honest case maps
the correct inputs to the outputs, in such a way, that the index of the output
state corresponding to the basis, is directly related with the bases bits of the
input states. This relation should be such that learning anything about the basis
of the output state implies learning non-negligible information about the input.
This directly means, that any computationally bounded adversary that breaks
the 8-states basis blindness of the output, also breaks the 4-states basis blindness
of at least one of the inputs.8

Protocol 5.1 Malicious 8-states QFactory

Requirements: Same as in Protocol Protocol 3.1
Input: Client runs twice the algorithm GenF (1n), obtaining (k1, t1k), (k2, t2k). Client
keeps t1k, t

2
k private.

Protocol:
– Client: runs Malicious 4-states QFactory algorithm to obtain a state |in1〉 and a
”rotated” Malicious 4-states QFactory to obtain a state |in2〉 (by rotated Malicious
4-states QFactory we mean a Malicious 4-states QFactory, but where the last set of

measurements in the |±〉 basis (Fig. 1) is replaced by measurements in the
∣∣∣±π

2

〉
basis).

– Client: records measurement outcomes (y1, b1), (y2, b2) and computes and stores the
corresponding indices of the output states of the 2 Malicious 4-states QFactory runs:
(B1, B2) for |in1〉 and (B′1, B

′
2) for |in2〉.

– Client: instructs Server to apply the Merge Gadget (Fig. 2) on the states |in1〉, |in2〉.
– Server: returns the 2 measurement results s1, s2.
– Client: using (B1, B2), (B′1, B

′
2), s1, s2 computes the index L = L1L2L3 ∈ {0, 1}3 of

the output state.
Output: If the protocol is run honestly, the state that the Server has produced is:

|out〉 = X(s2+B2)·B1ZB
′
2+B2(1−B1)+B1[s1+(s2+B2)B

′
1]R(

π

2
)B1R(

π

4
)B
′
1 |+〉 (5.1)

5.1 Correctness of Malicious 8-states QFactory

We prove the existence of a mapping M (which we will call Merge Gadget),
from 2 states |in1〉 and |in2〉, where |in1〉 ∈ {|0〉 , |1〉 , |+〉 , |−〉} and |in2〉 ∈
{|+〉 , |−〉 , |+y〉 , |−y〉} to a state |out〉 =

∣∣+L·π4

〉
, where L = L1L2L3 ∈ {0, 1}3.

Namely, as defined in Protocol 5.1, M is acting in the following way:

M(|in1〉 , |in2〉) = MX,2MX,1∧Z2,3∧Z1,2

[∣∣+π
4

〉
⊗ |in1〉 ⊗ |in2〉

]
(5.2)

8 Here it is worth pointing out that a similar result (in a more complicated method)
was achieved in [19]. That technique however, is applied in the information theoretic
setting.
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∣∣∣+π
4

〉
• |±〉 s1

|in1〉 Z • |±〉 s2

|in2〉 Z |out〉

Fig. 2. Merge Gadget

Theorem 5. In an honest run, the Output state of the Malicious 8-states QFac-
tory Protocol is of the form

∣∣+L·π4

〉
, where L = L1L2L3 ∈ {0, 1}3.

It can also be noticed that, in an honest run of Malicious 8-states QFactory,
the client can efficiently determine L: using b1, b2, y1, y2 and the trapdoors t1k, t

2
k,

he first obtains (B1, B2) and (B′1, B
′
2), and after receiving s1, s2, he determines

the description of the state prepared by the server.

5.2 Security against Malicious Adversaries of Malicious 8-states
QFactory

In any run of the protocol, honest or malicious, the state that the client believes
that the server has, is given by Theorem 5.
Therefore, as in the case of Malicious 4-states QFactory, the task that a malicious
server wants to achieve, is to be able to guess, as good as he can, the index of
the output state that the client thinks the server has produced. In particular,
in our case, the server needs to guess the bits L2 and L3 (corresponding to the
basis) of the (honest) output state.

Definition 10 (8 states basis blindness). Similarly, we say that a protocol
(πA, πB) achieves basis-blindness with respect to an ideal list of 8 states S =
{SL1,L2,L3

}(L1,L2,L3)∈{0,1}3 if:

– S is the set of states that the protocol outputs, i.e.:

Pr [|φ〉 = SL1,L2,L3
∈ S | ((L1, L2, L3), |φ〉)← (πA‖πB)] = 1

– and if no information is leaked about the “basis” bits (L2, L3) of the output
state of the protocol, i.e for all QPT adversary A:

Pr
[
L2 = L̃2 and L3 = L̃3 | ((L1, L2, L3), (L̃2, L̃3))← (πA‖A)

]
≤ 1/4+negl(n)

Theorem 6. Malicious 8-states QFactory satisfies 8-state basis blindness with

respect to the ideal set of states S = {
∣∣+πL/4

〉
}L∈{0,...,7} = {|+〉 ,

∣∣+π
4

〉
, ..,
∣∣∣+ 7π

4

〉
}.

Sketch Proof (The full proof can be found in the full paper). We prove this re-
sult by reduction showing that, if there exists a QPT adversary A that is able to
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break the 8-states basis blindness property of Malicious 8-states QFactory (de-
termine the indices L2 and L3 with probability 1

4 + 1
poly1(n) for some polynomial

function poly1), then we can construct a QPT adversary A′ that can break the
4-states basis blindness of the Malicious 4-states QFactory protocol (determine
the basis bit with probability 1

2 + 1
poly2(n) , for some polynomial poly2(·)).

6 Blind Measurement Gadget

In this section we show how our basic module can be used to achieve another
task, that of blind-measurement. The task is the following: we want a classical
client to instruct a quantum server to measure one of his qubits in either the
Pauli X or Z basis, in a way that the server is not aware of which of the two
bases was actually used. We give below a gadget that achieves this task using
a single output of the Malicious QFactory 4-states. We note also, that other
blind-measurements, between different sets of bases, are also possible using our
module, but we focus on this one since it is this type of measurement needed for
post-hoc verification [21] and thus is the basis for classical verification protocols
such as that of [33].

The following gadget Fig. 3 achieves the desired task. Note, that we consider
a general state |ψ〉 where the measurement is performed on the first of its qubits
(thus the second wire in the figure represents all the non-measured qubits).
Depending on the value ofB1, the actual outcome is Z orX and the measurement
outcome is obtained from either s1 or s2 (see details in the full paper) (Fig. 3).

|in〉 = HB1XB2 |0〉 • H s1

Z H s2
|ψ〉

Fig. 3. Blind Measurement Gadget

7 Malicious-abort 4-states QFactory: treating abort case

In this section, we will discuss an extension of Malicious 4-states QFactory, whose
aim is to achieve basis blindness even against adversaries that try to exploit the
fact that Malicious 4-states QFactory can abort when there is only one preimage
associated to the y returned by the server. One may think that we could just
send back this accept/abort bit to the server, but unfortunately it could leak
additional information on the hardcore bit d0 (which corresponds to the basis
B1 of the produced qubit) to the server, and from an information theory point
of view, as soon as the probability of acceptance is small enough, we cannot
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guarantee that this bit remains secret. On the other hand, for honest servers,
the probability of aborting is usually non-negligible, so we cannot neglect this
case.

We stress out that it is also possible to guarantee that for honest servers
this probability goes negligibly close to 1 by making an appropriate choice of
parameters for the function. In that case the initial protocol of Malicious QFac-
tory defined Section 3 is secure, but this comes (as far as we know), at the cost
of using a function with is “less” secure. More specifically, instead of having
a reduction to GapSVP with a polynomial γ, the reduction usually goes to
GapSVP with a super-polynomial γ. Such function parameters have been used
implicitly in other works [32] ([7] later removed this assumption), and for now
they are believed to be secure (the best known polynomial algorithm cannot
break GapSVP with a γ smaller than exponential), but these assumptions are
usually not widely accepted in the cryptography community, and that’s why we
aim to remove this non-standard assumption.

The solution we propose in this section uses the assumption that the classical
Yao’s XOR Lemma also applies for one-round protocols (with classical messages)
against quantum adversary. This lemma roughly states that if you cannot guess
the output bit of one round with probability better than η, then it’s hard to
guess the output bit of t independents rounds with probability much better than
1/2 + ηt. As far as we know, this lemma has been proven only in the classical
case (see [25] for a review of this theorem as well as the main proof methods),
and other works [52] even extend this lemma to protocols, and also to quantum
setting [49, 28]. Unfortunately, these works focus on communication and query
complexity and are not really usable in our case.

In the following, we will call “accepted run” a run of Malicious 4-states
QFactory such that the y received from the server has 2 preimages (“probability
of success” also refers to the probability of this event when the server is honest),
and otherwise we call it an “aborted run”.

7.1 The Malicious-Abort 4-state QFactory Protocol

In a nutshell, the solution we propose is to run several instances of Malicious 4-
states QFactory, by remarking that we do not need to discard the aborted runs.
Indeed, it is easy to see that in these cases, the produced qubits will always be
in the same basis (denoted by 0). The idea is then to implement on the server
side a circuit that will output a qubit having as basis the XOR of all the basis
of the accepted runs (without even leaking which runs are accepted or not), and
check on client’s side that the number of accepted runs is high enough (this will
happen with probability exponentially close to 1 for honest servers). If it is the
case, the client will just output the XOR of the basis of the accepted run, and
otherwise (i.e. if the server is malicious), he will just pick a random bit value.

Unfortunately, in practice things are a bit more complicated, and in order
to be able to write the proof of security we need to divide all the t runs into nc
“chunks” of size tc, and test them individually. Here is a more precise (but still
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high level) description of the protocol and proof’s ideas, the full proofs being in
the full paper:

– firstly, we run t = nc × tc parallel instances of Malicious 4-states QFactory,
without revealing the abort bit for any of these instances;

– then the key point to note is that for honest servers, if yi has only one
preimage then the output qubit produced by the server at the end of the
protocol will be either |0〉 or |1〉, but cannot be |+〉 or |−〉 (with one preimage
we do not have a superposition). In other words, the basis is always the
{|0〉 , |1〉} basis (denoted as 0) so we do not really need to abort. Therefore,
at the end, (for honest runs) the basis of the output qubits will be equal for
all i ∈ [[0, t]] to βi = d0,i · ai, where ai = 1 iff yi has two preimages, and
ai = 0 otherwise. Of course, this distribution will be biased against 0, but it
is not a problem. See Lemma 4 for proof.

– then, it also appears that from t qubits in the basis β1, . . . , βt, we have a way
to produce a single qubit belonging to the set {|0〉 , |1〉 , |+〉 , |−〉} whose basis
B1 is the XOR of the basis of the t qubits, i.e. B1 = ⊕ti=1βi (see Lemma 5).

– Then, the client will test every chunk, by checking if the proportion of ac-
cepted runs in every chunk is greater than a given value pc. If all chunks have
enough accepted runs, then the client just computes and outputs the good
value for the basis (which is the XOR of the hardcore bit of all the accepted
runs) and value bits. However, if at least one chunk doesn’t have enough ac-
cepted runs (which shouldn’t happen if the server is honest), then the client
just outputs random values for the basis and value bit, not correlated with
server’s qubit (equivalent to saying that a malicious server can always throw
the qubit and pick a new qubit, not correlated with client’s one).

– Correctness: if the probability to have two preimages for an honest server is at
least a constant pa greater than 1/2 (the parameters we proposed in [15] have
this property), and if t is chosen high enough, the fraction of accepted runs
will be close to pa, and we can show that the probability to have a fraction
of accepted runs smaller than a given constant pb < pa is exponentially (in
t) close to 0. So with overwhelming probability, all the chunks will have
enough accepted runs, i.e. honest servers will have a qubit corresponding to
the output of the client.

– Soundness: to prove the security of this scheme, we first prove that it is
impossible for any adversary to guess the output of one chunk with a proba-
bility bigger than a constant η < 1 (otherwise we have a direct reduction that
breaks the hardcore bit property of gK). Now, using the quantum version of
Yao’s XOR Lemma that we conjecture at Conjecture 1, we can deduce that
no malicious server is able to guess the XOR of the tc chunks/instances with
probability better than 1/2 + ηtc + negl(n), which goes negligibly close to
1/2 when tc = Ω(n).

Putting everything together, the parties will just run t = nc ·tc Malicious 4-states
QFactory in parallel, the client will then check if

∑
i ai is higher than pc · tc for

all the nc chunks, and if so he will set B1 = ⊕ti=1di · ai (server has a circuit to
produce a qubit in this basis as well). Otherwise B1 will be set to a uniformly
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chosen random bit (it is equivalent to say that a malicious server can destroy the
qubit, and this is also unavoidable even with a real quantum communication),
and we still have correctness with overwhelming probability for honest clients.

The exact algorithm is described in Protocol 7.1, while the security result is
shown in Theorem 7 (and the proofs can be found in the full paper).

7.2 Correctness and security of Malicious-Abort 4-state QFactory

Now, we will formalize the previous statements, the proofs are in the full paper.

Conjecture 1 (Yao’s XOR Lemma for one-round protocols (classical messages)
against quantum adversary).
Let n be the security parameter, fn : Xn × Yn → {0, 1} be a (possibly non-
deterministic) function family (usually not computable in polynomial time), and
χn be a distribution on Xn efficiently samplable. If there exists δ(n) such that
|δ(n)| ≥ 1

poly(n) and such that for all QPT (in n) adversaryAn : Xn → Yn×{0, 1}:

Pr
[
β̃ = fn(x, y) | (y, β̃)← An(x), x← χn

]
≤ 1− δ(n)

then, for all t ∈ N∗, there is no QPT adversary A′n : X tn → Ytn×{0, 1} such that:

Pr

[
β̃ =

t⊕
i=1

fn(xi, yi) | (y1, . . . , yt, β̃)← A′n(x1, . . . , xt),∀i, xi ← χn

]

≥1

2
+ (1− δ(n))t + negl(n)

∣∣+π/2

〉
• |±〉 s1,1

|in1〉 Z • |±〉 s1,2

∣∣+π/2

〉
• |±〉 s2,1

|in2〉 Z • |±〉 s2,2

...
...

...∣∣+π/2

〉
• |±〉 st,1

|int〉 Z • |±〉 st,2

|+〉 Z Z Z |out〉

Fig. 4. The XOR gadget circuit Gad⊕ (run on server side)
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Lemma 4 (Aborted runs are useful). If πA4
and πB4

are following the
Malicious 4-states QFactory protocol honestly, and if y has not 2 preimages,
then the output qubit produced by πB4 is in the basis {|0〉 , |1〉}.

Lemma 5 (Gadget circuit Gad⊕ computes XOR). If we denote by bi the
basis of |ini〉 (equal to 0 if the basis is 0/1, and 1 if the basis is +/−), and if
we run the circuit Gad⊕ (inspired by measurement based quantum computing)
represented Figure 4 on these inputs, then basis of |out〉 is equal to ⊕ti=1bi.

We will now describe here the protocol of Malicious-Abort 4-states QFactory:

Protocol 7.1 Malicious-Abort 4-states QFactory Protocol

Requirements:
Public: The family of functions F and h described above, such that the probability of
having two pre-images for a random image is greater than a constant pa > 1/2.
This protocol is based on the constants tc ∈ N (number of repetitions per chunk),
nc ∈ N (number of chunks), pa ∈ (1/2, 1] (lower bound on probability of accepted run
in the honest protocol), pc ∈ (1/2, 1] < pa (fraction of the runs per chunk that must be
accepted). These constants can be chosen to have overwhelming probability of success
for honest players, and negligible advantage for an adversary trying to guess the basis.
Stage 1: Run multiple QFactories
– Client: prepares t = nc × tc public keys/trapdoors:

(k(i,j), tk(i,j))← GenF (1n) , where i ∈ [[1, nc]], j ∈ [[1, tc]]

The Client then sends the public keys k(i,j) to the Server, together with h.
– Server and Client: follow Protocol 3.1 t times, with the keys sent at the step before.
Client receives ((y(i,j), b(i,j)))i,j , and sets for all i, j: a(i,j) = 1 iff |f−1(y(i,j))| = 2,

otherwise a(i,j) = 0, and B
(i,j)
1 and B

(i,j)
2 like in Protocol 3.1 when a(i,j) = 1 (otherwise

B
(i,j)
1 = 0 and B

(i,j)
2 = h(f−1(y)). Server will get t outputs

∣∣in(i,j)〉.
Stage 2: Combine runs and output
– Server: applies circuit Figure 4 on the t outputs |int〉, and outputs |out〉.
– Client: checks that for all chunks i ∈ [[1, nc]] the number of accepted runs is high
enough, i.e.

∑
j a

(i,j) ≥ pctc.
– If at least one chunk does not respect this condition, then picks two random bits
B1 (the basis bit) and B2 (the value bit) and outputs (B1, B2), corresponding to
the description of the BB84 state HB1XB2 |0〉.

– If all chunks respect this condition, then sets B1 :=
⊕

i,j B
(i,j)
1 (the final basis is

the XOR of all the basis), and B2 will be chosen to match the output of Figure 4.

Theorem 7 (Malicious-Abort QFactory is correct and secure). Assum-
ing Conjecture 1, if the probability of the family F to have two preimages for any
image is bigger than a constant pa > 1/2, then there exists a set of parameters
pc, tc and nc such that Protocol 7.1 is correct with probability exponentially close
to 1 and basis-blind, i.e. for any QPT adversary A:

Pr
[
B̃1 = B1 | ((B1, B2), B̃1)← (πA4⊕‖A)

]
≤ 1/2 + negl(n)

More precisely, we need tc ∈ (1/2, pc) to be a constant, and both tc and nc need
to be polynomial in n and Ω(n).
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8 Verifiable QFactory

In the previous protocols, Malicious 4-states QFactory and Malicious 8-states
QFactory, the produced qubits came with the guarantee of basis-blindness (Def.
9 and Def. 10). While the property refers to the ability of a malicious adversary
to guess the honest basis bit(s), it tells nothing about the actual state that a
deviating server might produce. For a number of applications and most notably
for verifiable blind quantum computation [22], the basis-blindness property is not
sufficient. What is needed is a stronger property, verification, that ensures that
the produced state was prepared correctly even in a malicious run.

8.1 Verifiable QFactory Functionality

There are two issues with trying to define a verification property for QFactory.
The first is that the adversarial server can always abort, therefore the verifica-
tion property can only ensure that the probability of non-aborting and cheat is
negligible. The second issue is that, since the final state is in the hands of the
server, the server can always apply a final deviation on the state9. This is not
different from what happens in protocols that do have quantum communication.
In that case, the adversarial receiver (server) can also apply a deviation on the
state received before using the state in any subsequent protocol. This deviation
could even be the server replacing the received state with a totally different
state.

Here, we define the strongest notion of verifiable QFactory possible, which
exactly captures the idea of being able to recover the ideal state from the real
state without any knowledge of the (secret) index of the ideal state. This notion is
sufficient for any protocol that includes communication of random secret qubits
of the form

∣∣+Lπ/4

〉
which includes a verifiable quantum computation protocol

and furthermore, it is also possible to relax slightly the definition of verifiable
QFactory, as it is proven in the full paper.

Definition 11 (Verifiable QFactory). Consider a party that is given a state
uniformly chosen from a set of eight states S = {ρL |L ∈ {0, 1, ..., 7}} or an
abort bit, where S is basis-blind i.e. given a state sampled uniformly at random
from S, it is impossible to guess the last two bits of the index L of the state within
the set S with non-negligible advantage. We say that this party has a Verifiable
QFactory if, it aborts with small probability and when he does not abort, there
exists an isometry Φ, that is independent of the index L, such that:

Φ(ρL)
ε
≈
∣∣+Lπ/4

〉 〈
+Lπ/4

∣∣⊗ σjunk (8.1)

where the state σjunk is independent of the index L.

It is worth stressing, that if the security setting is computational (as in this
work), the basis-blindness and the approximate equality above involve a QPT
distinguisher, while the isometry Φ needs to be computable in polynomial time.

9 However that deviation needs to be independent of anything that is secret.
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8.2 Blind Self-Testing

Before giving a verifiable QFactory protocol, we define a new concept of blind
self-testing, that will be essential in proving the security of the former. Self-
testing is a technique developed [36, 31, 51, 38, 37] that ensures that given
some measurement statistics, classical parties can be certain that some untrusted
quantum state (and operations), that two or more quantum parties share, is es-
sentially (up to some isometry) the state that the parties believe they have. In
high-level, we are going to use a test of this kind in order to certify that the
output of Verifiable QFactory is indeed the desired one.
Existing results, that we will call non-local self-testing, only deal with how to
exploit the non-locality (the fact that the quantum state tested is shared be-
tween non-communicating parties) to test the state and operations. Naturally,
the correctness is up to a local isometry (something that the servers can apply,
while preserving the non-communication condition).
Here, instead of testing a single non-local state, we test a family of states, where
the non-locality property is replaced by the blindness property - the fact that
server is not aware (is blind) of which state from the possibly known family
of states he is actually given in each run of the protocol. To see how this is
closely related, one can imagine the usual non-local self-testing of the singlet
state, where one quantum side (Alice) actually performs a measurement (as in-
structed). From the point of view of the other quantum side (Bob), he has a
single state that, in the honest run, is one of the BB84 states, while he is totally
oblivious about the basis of this state (if that was not the case, it would lead
to signalling the basis choice of Alice’s measurement). However, this is, by no
means the most general case. Here we introduce the concept of blind self-testing
formalising the above intuition.
We give here the most general case of blind self-testing and we conjecture that
it holds. In the full paper we also list three simpler scenarios (of increasing com-
plication) that lead to the most general case given here, following similar steps
with the extension of simple i.i.d. self-testing to fully robust and rigid self-testing
in existing literature [31, 38, 26, 48, 17]. The security proof of the first case can
be found in the full paper, while complete analysis of the most general blind
self-testing goes beyond the scope of this work.
Protocol 8.1 Blind self-testing: The general case

– Server prepares a single state ρtot (consisting of N qubits in the honest run). This
state has a corresponding index consisting of N 3-bit indices Li (Li ∈ {0, ..., 7} ∀i ∈
{1, ..., N}), and the server is basis blind with respect to each of these N indices, i.e.
(being computationally bounded) he cannot determine with non-negligible advantage
the two basis bits of any index Li. On the other hand, client knows the indices Li’s.
– The client, randomly chooses a fraction f of the qubits to be used as tests and an-
nounces the set of corresponding indices T = {i1, · · · , ifN} ⊂ {1, 2, ..., N} to the server.
– For each test qubit ij ∈ T , the client chooses a random measurement index Mij ∈
{000, · · · , 111} and instructs the server to measure the corresponding qubit in the{∣∣∣+Mijπ/4

〉
,
∣∣∣−Mijπ/4〉} basis.

– The server returns the test measurement results {c(ij)}.
— For each fixed pair (L,M), the client gathers all the test positions that correspond

25



to that pair and from the relative frequencies, the client obtains an estimate for the
probability pL,M (where by convention we have that pL,M corresponds to the +1 out-
come, while 1− pL,M to the −1).
– If |pL,M − cos2((L−M)π/8)| ≥ ε2 for any pair (L,M) the client aborts.
Output: If the client does not abort (and this happens with non-negligible probabil-
ity), then there exists an index-independent polynomial isometry Φ = Φk1 ⊗ · · ·Φkl ,
given by products of the isometries in Fig. 5, that is applied to a random subset of
non-tested qubits i, such that:

Φ(Trall but k1,··· ,kl qubitsρtot)
ε(ε1,ε2)≈

(∣∣∣+Lk1π/4

〉
k1

⊗ · · · ⊗
∣∣∣+Lkl

π/4

〉
kl

)
⊗σjunk (8.2)

|+〉 H • H •

|Ψ(L)〉 X ′ −iY ′

Fig. 5. The isometry of the blind self-testing. Note that the controlled gates are con-
trolled in the X-basis, i.e. ∧U12(a |+〉+b |−〉)1⊗(|ψ〉)2 = a |+〉1⊗|ψ〉2+b |−〉1⊗U |ψ〉2.

In this most general setting, we make no assumption on the state ρtot produced
by server and want to recover the full tensor product structure of the resulting
states given by Eq. (8.2). In the self-testing literature, Azuma-Hoeffding, quan-
tum de-Finetti theorems and rigidity results [27, 6, 13, 9] were used to uplift the
simple i.i.d. case and prove security in the general setting.

8.3 The Verifiable QFactory Protocol

In this section we introduce a protocol for the final version of our functionality,
Verifiable QFactory. Here, we give the protocol, show the correctness and the
security, namely that the protocol achieves the verification property from Defi-
nition 11, based on the conjectured security of the most general blind self-testing
given in Protocol 8.1. The basic idea is the following: repeat the Malicious 8-
states QFactory multiple times, then the client chooses a random fraction of the
output qubits and uses them for a test and next instructs the server to measure
the test qubits in random angles and, finally, the client checks their statistics.
Since the server does not know the states (or to be more precise, the basis bits),
he is unlikely to succeed in guessing the correct statistics unless he is honest.
(up to some trivial relabelling). The output qubits and the measurement angles,
need to be from the set of 8-states, which is one of the reasons we wanted to
give the 8-states extension of our Malicious 4-states QFactory.
Protocol 8.2 Verifiable QFactory

Requirements: Same as in Protocol Protocol 3.1
Input: Client runsN times the algorithm (k(i), t

(i)
k )← GenF (1n), where i ∈ {1, · · · , N}

denotes the ith run. He keeps the t
(i)
k ’s private.

Protocol:
– Client: runs N times the Malicious 8-states QFactory Protocol 5.1.

26



– Client: records measurement outcomes y(i), b(i) and computes and stores the
corresponding index of the output state L(i).

– Client: instructs the server to measure a random fraction rf of the output states,

each in a randomly chosen basis of the form {
∣∣∣+M(i)π/4

〉
,
∣∣∣−M(i)π/4

〉
}. Here M (i) is

the index of the measurement instructed.

– Server: returns the measurement outcomes c(i).

– Client: for each pair (L,M) collects the results c(j) for all j’s that have the specific
pair and with the relative frequency obtains an estimate for the probability p(L,M).

– Client: aborts unless all the estimates of the probabilities p(L,M) are ε-close to

the ideal one i.e. p(L,M)
ε
≈ |
〈
+Mπ/4

∣∣+Lπ/4〉|2.

Output: Probability of non-abort and being far from the ideal state10 is negligible
ε′:

p(non-abort ∧∆(ρ
L(i1)···L(iN(1−f)) , ρideal) ≥ t(n)) ≤ ε′ (8.3)

where i1, ..., iN(1−f) refer to the unmeasured qubits and where

Φ(ρideal) = ⊗N(1−f)
k=1

∣∣∣+L(ik)π/4

〉〈
+
L(ik)π/4

∣∣∣⊗ σjunk (8.4)

σjunk is a constant density matrix, ε, ε′ are negligible and t(·) is non-negligible function.

Moreover, in an honest run, the probability of aborting is negligible and the output
is:

ρhonest = ⊗N(1−f)
k=1

∣∣∣+L(ik)π/4

〉〈
+
L(ik)π/4

∣∣∣ (8.5)

Theorem 8 (correctness). If Protocol 8.2 is run honestly, it aborts with neg-
ligible probability and the output (non-measured) qubits are exactly in a product

state of the form
∣∣∣+L(ik)π/4

〉〈
+L(ik)π/4

∣∣∣. Thus, the trivial isometry (the identity)

suffices to recover the state of Eq. (8.1), and where there is no junk state.

Proof. In an honest run, each of the outputs of different Malicious 8-states QFac-
tory runs, are of the correct form, therefore measuring any of those outputs in the
{
∣∣±Mπ/4

〉
} basis returns the correct statistics with high probability. Hence, the

protocol does not abort, while the remaining states are prepared correctly.

Theorem 9 (security). Protocol 8.2 is a Verifiable QFactory (Definition 11),
i.e. the probability of accepting the tests and having a state far from the ideal is
negligible irrespective of the deviation of the adversary, assuming that the self-
testing Protocol 8.1 is correct.

In the full paper we also explain how this task is very similar with self-testing
results, and provide the first step for our self-testing result.

10 The distance ∆ used here depends on the setting. In our case it is understood as a
QPT distinguisher.
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