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Abstract 

PURPOSE. To identify the gene defect that causes blindness and  the predisposition 

to embryonic death in the retinopathy globe enlarged (rge) chicken. 

METHODS. Linkage analysis, with previously uncharacterized microsatellite 

markers from chicken chromosome 1, was performed on 138 progeny of an rge/ β 

and an rge/rge cross, and candidate genes were sequenced. 

RESULTS. The rge locus was refined and the gene for guanine nucleotide– binding 

protein β -3 (GNB3), which encodes a cone transducin β subunit, was found to have a 

3-bp deletion (D153del) that segregated with the rge phenotype. This mutation 

deleted a highly conserved aspartic acid residue in the third of seven WD domains in 

GNB3. In silico modeling suggested that this mutation destabilized the protein. 

Furthermore, a 70% reduction was found in immunoreactivity to anti-GNB3 in the 

rge-affected retina. 

CONCLUSIONS. These findings implicate the β -subunit of cone transducin as the 

defective protein underlying the rge phenotype. Furthermore, GNB3 is ubiquitously 

expressed, and the c.825C3T GNB3 splicing variant (MIM 139130) has been 

associated with hypertension, obesity, diabetes, low birth weight, coronary heart 

disease, and stroke in the human population. It therefore seems likely that the defect 

underlying these human diseases also causes reduced embryonic viability in the rge 

chicken, making it a powerful model for studying the pathology involved in these 

associations. (Invest Ophthalmol Vis Sci. 2006;47:4714–4718) DOI:10.1167/iovs.06-

0292 

 

The chicken genome was the first of the taxonomic class Aves (Birds) to be 

sequenced,1 and now many resources are available to support genetic research in 

chickens (http:// poultry.mph.msu.edu/). Furthermore, the chicken has served for 

many years as a useful developmental model, particularly for the formation of the eye 

(see, for example, Fokina and Frolova2). In contrast, the chicken has been underused 

as a model for human inherited disease. Nevertheless, five forms of hereditary retinal 

degeneration have been reported in the chicken. These are the Rhode Island Red 

strain rd,3 blindness enlarged globe (beg),4 retinal dysplasia and degeneration 



(rdd),5–7 delayed amelanotic strain DAM,8 and retinopathy globe enlarged (rge).9,10 

The rd phenotype is caused by a null mutation in the photoreceptor guanylate cyclase 

(Gucy2d) gene and is thus a model for Leber congenital amaurosis.3 Originally 

reported as a recessive trait, rdd was subsequently mapped to the chicken Z 

chromosome by linkage analysis,11 and rge was localized to chicken chromosome 1. 

The chicken eye differs from that of the human eye in a number of ways. In contrast 

to the rod-dominated human retina, avian retinas are generally cone dominated and 

often bifoveate.12 However, the chicken eye is comparable in size to the human eye, 

which facilitates pathologic examination and should simplify the testing of 

experimental therapies. Furthermore, the level of conservation of gene order 

between the chicken and human genomes is similar to that between humans and 

mice, in spite of the much greater evolutionary separation.13 

One of the blind chicken lines, retinopathy globe enlarged (rge), arose spontaneously 

in commercial chicken flocks in the United Kingdom.9 By 3 weeks of age, affected 

chickens exhibit poor pupillary light response and abnormal behavior resulting from 

loss of vision. All functional vision appears to be lost by 8 weeks, but 

electroretinogram amplitudes, which are reduced at hatch, are still measurable in 1-

year-old birds. The earliest retinal changes, seen at 1 day after hatch, are 

disorganization of the outer plexiform layer and abnormal location of the 

endoplasmic reticulum in photoreceptors. These changes are associated with 

developmental disruption of rod and cone photoreceptor synaptic terminals that 

progresses with age. Total retinal thickness is normal at hatch but decreases with 

age, though at a much slower rate than visual loss, suggesting a functional deficit. 

Older affected birds have generalized secondary globe enlargement and cataracts.14,15 

With the use of DNA from 138 progeny of an rge/ + x  rge/rge cross, linkage analysis 

mapped the trait to a 13.7-Mb centromeric interval of chicken chromosome 1 

delineated by the polymorphic markers MCW0112 and LEI0101.14 Results from this 

cross also suggested that the rge trait affects embryonic viability in chickens. Of 138 

progeny, 56 were blind and 82 were sighted. This ratio of 0.41:0.59 is significantly 

different from the expected 1:1 ratio under a model of simple recessive inheritance  

(P = 0.026). Mortality after hatch was low and was not observed beyond the first 2 

weeks of life, before sight was severely compromised. Here, we report that a 3-bp 



homozygous deletion in the guanine nucleotide– binding protein β -3 (GNB3) gene 

causes the rge phenotype. 

 

Methods 

Animals 

The rge line was maintained at the Roslin Institute, as described,14 under a Home 

Office project license. All animals were treated in accordance with the ARVO 

Statement for the Use of Animals in Ophthalmic and Vision Research. 

Genotyping 

Genomic DNA was extracted from chicken blood using DNAzol (Invitrogen, Paisley, 

UK). High-resolution genotyping was performed with previously uncharacterized 

microsatellite markers that had been downloaded as simple repeat sequences from 

the chicken genome database at UCSC (http://www.genome.ucsc.edu/). Primer 

sequences were designed (Primer3 program; http://frodo.wi.mit.edu/cgi-

bin/primer3/), and primers were labeled with fluorochrome FAM, HEX, or TET 

(Invitrogen). Primer pairs were optimized, and parent DNAs were genotyped to 

check for informativity of the microsatellite markers. PCR products were size 

fractionated on an automated DNA sequencer (ABI377; ABI Prism; Applied 

Biosystems, Warrington, UK), and fragment length analysis was carried out 

(GeneScan 3.5 and Genotyper 3.6 software; Applied Biosystems). Polymorphic 

markers were amplified using the progeny DNA as template, and refinement of the 

rge critical interval was achieved by constructing a linked haplotype. 

 

Sequencing 

PCR was carried out on 50 ng genomic DNA in the presence of master mix solution 

(Promega, Southampton, UK) for each 25-mL reaction. Primers 

dATGCAGGATTGGAACCCTTCA and dTGAGATCACACAGCACCCTGA were used to 

amplify exons 5 and 6 of chicken GNB3. The reaction was performed for 30 cycles at 

94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 30 seconds. Reaction 

products were cleaned up with a purification kit (QIAquick PCR Purification; Qiagen, 

http://frodo.wi.mit.edu/cgi-bin/primer3/
http://frodo.wi.mit.edu/cgi-bin/primer3/


Crawley, UK). Ten nanograms purified PCR product and 3.2 pmol of either the 

forward or the reverse primers used to amplify exons 5 and 6, or the internal 

sequencing primer dCCCGCTCTCCTATCTACT, were sent to The Sequencing Service 

at the University of Dundee (http://www. dnaseq.co.uk/) for sequencing on a DNA 

sequencer (ABI377; ABI Prism), and the generated SCF sequence trace files were 

analysed (Chromas lite software; http://www.technelysium.com.au/chromas_ 

lite.html). 

 

PCR-ARMS Analysis 

The presence of the D153del mutation in genomic DNA was determined using the 

PCR-ARMS (amplification refractory mutation system). This procedure relies on two 

independent reactions that use the same anchor primer but a different 

discriminatory primer during PCR. Each discriminatory primer differs at the 3 ’-end 

of the sequence to permit the specific amplification of the wild-type or mutant allele. 

For each 10- μL  reaction, PCR was carried out (PCRx Enhancer Kit; Invitrogen) with 

1x enhancer solution, 1x amplification buffer, 1.5 mM MgSO4, 0.2 mM dNTP, and 

1.25 U Taq DNA polymerase. Primers used in the reaction were 

dGCAGGGAACTCTCAGCTCATA (as the anchor primer) and either 

dAGCTAGTCACAATACTGTTGTGATC (wild-type) or 

dAGCTAGTCACAATACTGTTGTGAAG (mutant) as the discriminatory primer to give 

reaction products of 175 bp and 172 bp, respectively. Twenty nanograms DNA was 

used as a template for each reaction, which was performed for 30 cycles at 94°C for 

30 seconds, 61°C for 30 seconds, and 72°C for 30 seconds. Reaction products were 

visualized after agarose gel electrophoresis under ultraviolet illumination. 

 

RT-PCR Analysis 

Reverse transcription of chicken RNA isolated from various tissues was performed 

using oligo (dT)15 primer and reverse transcriptase (Superscript II; Invitrogen). 

Amplification of 373 bp GNB3 cDNA was carried out with the primers 

dCTGGTCAGTGCCTCACAAGA and dGGGAAACTGCCAAGCTCATA. As a 

normalization control, amplification of 237 bp glyceraldehyde 3-phosphate 

http://www/
http://www.technelysium.com.au/chromas_%20lite.html
http://www.technelysium.com.au/chromas_%20lite.html


dehydrogenase (GAPDH) was performed with the primers 

dGGAAAGTCATCCCTGAGCTG and dCATCAAAGGTGGAGGAATGG. 

 

Bioinformatics 

Multiple sequence alignments were performed (ClustalW; http:// 

www.ebi.ac.uk/clustalw/index.html). Alignments were viewed (Jalview; Java; Sun 

Microsystems, Santa Clara, CA) and were saved in MSF format. The MSF file was 

then opened in GENDOC (http://www. psc.edu/biomed/genedoc/). Selected blocks 

of the generated alignment were saved in rtf format and edited (Word; Microsoft, 

Redmond, WA). 

 

Structural Prediction 

The D153del GNB3 mutation was modeled in Bos taurus GNB-1 (1B9X) using the 

“What If” program  

(http://btcpxx.che.uni-bayreuth.de/ COMPUTER/Software/WHATIF/html/). 

 

 

 

Immunoblotting 

Retinas were isolated from the eyes of a 5-week-old normal and rgeaffected bird and 

were frozen in liquid nitrogen before storage at –80°C. Thawed retinas were weighed 

and placed in tissue extraction buffer (Invitrogen) containing a protease inhibitor 

cocktail (kindly donated by Cyclacel, Dundee, UK) at a concentration of 10 mL 

extraction buffer for each milligram of tissue. Retinal samples were then 

homogenized and centrifuged at 8000g for 5 minutes at 4°C to pellet the tissue 

debris. The extracted protein supernatant was collected, aliquoted, and frozen at        

-80°C. Protein extracts were subsequently quantified with the use of a 

spectrophotometer, with BSA as a standard. 

http://www/
http://btcpxx.che.uni-bayreuth.de/


For slot blotting, 15 μ L equal amounts of normal and rge-affected protein extracts 

were blotted, in triplicate, on a nitrocellulose membrane (Hybond ECL; GE 

Healthcare Life Sciences, Little Chalfont, UK) with a slot blot apparatus (PR600; 

Hoefer Scientific Instruments, San Francisco, CA). Blots were then incubated with 

blocking solution (Upstate, Southampton, UK) for 1 hour at room temperature before 

the addition of a 1:1000 dilution of rabbit anti–GNB3 polyclonal antibody (Merck 

Biosciences, Nottingham, UK) or rabbit anti–PDE6α  polyclonal antibody (Merck 

Biosciences) and incubation for another 2 hours. Blots were washed three times for 

15 minutes each with wash buffer (Upstate). A 1:1000 dilution of horseradish 

peroxidase– conjugated secondary antibody (Merck Biosciences) was then added to 

each blot and incubated for 1 hour with agitation. Membranes were washed three 

times with wash buffer before they were treated with the colorimetric substrate 3,3’ 

,5,5’ -tetramethylbenzidine (TMB; Upstate). Resultant bands were photographed and 

quantified by densitometry analysis (Gelpro software; Image Processing Solutions, 

North Reading, MA). 

 

Results 

Further Refinement and Candidate Gene Screening 

The first draft of the chicken genome sequence is available through the Ensembl 

(http://www.ensembl.org) and UCSC (http://www.genome.ucsc.edu/) databases. 

Further testing of previously uncharacterized microsatellite markers in the rge 

interval refined the locus to a 3.8-Mb region spanning the centromere between 68.1 

and 71.9 Mb (data not shown). Significant chromosomal synteny exists between the 

human and chicken genomes, so the synteny view function of Ensembl 

(http://www.ensembl.org/Gallus_gallus/syntenyview) provides a powerful tool for 

identifying orthologous genes within syntenic chromosomal regions. The largest 

contiguous syntenic region identified in this way within the rge interval extended 

from the TAPBL gene to the Pex5 gene, a region located at 6.4 Mb and 7.2 Mb on 

human chromosome 7 and at 71.0 Mb and 71.5 Mb on chicken chromosome 1, 

respectively. 

Chicken GNB3 and its human ortholog map within this region at 71.3 Mb on chicken 

chromosome 1 and at 6.8 Mb on human chromosome 7. GNB3 is ubiquitously 

http://www.ensembl.org/Gallus_gallus/syntenyview


expressed but is highly expressed in mammalian cones,16 and, given that the avian 

eye is cone dominated, it was considered a strong candidate rge gene. We therefore 

sequenced GNB3 in wild-type and rge birds and identified an in-frame 3-bp deletion 

spanning codons 153 and 154 (Fig. 1), which segregated with the rge phenotype in all 

birds tested (Fig. 2). 

 

Functional Consequences of GNB3 D153del 

RT-PCR of the GNB3 transcript in a range of normal chicken tissues confirmed its 

ubiquitous expression and relatively high expression in the retina, but comparison of 

the transcript level in normal and rge retinas revealed no significant difference, 

implying that the mutated transcript escapes nonsense-mediated decay (Fig. 3). The 

in-frame deletion in GNB3, designated D153del, deletes one of two highly conserved 

aspartic acid residues in the third of seven WD domains in the GNB3 protein (Fig. 

4).17 Each WD domain consists of a stretch of approximately 40 amino acids that 

usually end with tryptophan and aspartic acid (WD) residues and that forms 4 β 

strands in the protein structure. The seven WD domains within GNB3 permit the 

formation of a stable platform onto which protein scaffolds can form and multiple 

protein–protein interactions can occur.18,19 Hence, it seems likely that the D153del 

mutation, which lies between two β strands in the third WD domain, disrupts the 

spatial configuration of the folded protein and prevents its optimal function. 

 

Effect of GNB3 D153del on Protein Structure 

The structure of B. taurus GNB1, which is a close homolog of human GNB3, has been 

described by Sondek et al.20 Modeling the equivalent mutation in GNB1 using the 

“What If” computer program21  suggests that this deletion abolishes  β sheets in 

propellers 1 and 5 of the GNB protein (Fig. 5). On submitting this structure to the 

CASP5 committee (Critical Assessment of Methods for Protein Structure 

Prediction22), it was predicted that this GNB protein would be unstable and liable to 

premature proteolysis. This was verified by comparing levels of GNB3 protein in 

retinal cell extracts from wild-type and rge birds. A 70% reduction in GNB3 protein 

immunoreactivity was seen in affected retinas compared with age- and sex-matched 



normal retinas (Fig. 6). This decrease in GNB3 protein level in rge birds provides 

further proof that D153del is the rge mutation and strongly suggests 

haploinsufficiency caused by protein instability as the primary disease mechanism. A 

similar outcome has been reported for two Drosophila missense mutations in the 

retina-specific G-� protein Gbe, each of which causes marked reductions (95% and 

99.5%) in the amount of protein produced, resulting in a dramatic loss in light 

sensitivity.23 

 

Discussion 

Guanine nucleotide– binding proteins, also known as G-proteins or transducins, 

mediate signal transduction triggered by hormones, neurotransmitters, and sensory 

stimuli and are found in all eukaryotes. They are composed of three protein 

subunits— α, β, and γ. In mammals, 16 α subunits and 11 γ subunits have been 

documented, many with a high degree of tissue specificity. Only five β subunits have 

been reported, and GNB3 is one of them.24 It is ubiquitously expressed but is 

particularly highly expressed in cone photoreceptors, 16 where it functions as the 

transducin β subunit in cone phototransduction. 

This study shows that a mutation in the chicken cone β transducin, GNB3, causes 

retinal degeneration, implying that GNB3 is also a candidate human retinal 

dystrophy gene. However, a previous screen of the human GNB3 gene for mutations 

in 164 patients with cone-rod and macular dystrophy revealed no sequence change 

that could be unequivocally linked to human disease.25 

In contrast, defective splicing of human GNB3 caused by the c.825C→T substitution 

has been associated with hypertension,26 obesity,27 coronary heart disease,28 stroke,29 

depression,30 and diabetes.31 Homozygotes for c.825T still produce a proportion of 

normal-sized mRNA in all tissues but also produce a splice variant that lacks 123 

nucleotides.26 The latter deletes 41 amino acids (one complete propeller domain) and 

produces a protein that cannot form heterotrimers or modulate ion channel activity 

at the cell surface.32 However, these studies do not report a defect of vision in c.825T 

homozygotes, and an independent study found no association between the c.825T 

allele and diabetic retinopathy.33 To date, it remains to be investigated whether rge 



chickens are also predisposed to the diseases associated with c.825T in humans. 

Interestingly, homozygous mice with disruptions of the other guanine nucleotide– 

binding protein β subunits, GNB5 and GNB1, have abnormal rod transduction 

physiology and high infant mortality34 or embryonic lethality35 rates, respectively. 

GNB1 heterozygotes do survive but undergo retinal degeneration, as demonstrated 

by abnormal electroretinogram responses.35 Moreover, when the Caenorhabditis 

elegans gpb-1 (GNB1 ortholog) is knocked down by RNAi, it causes 50% to 80% 

embryonic lethality and an uncoordinated phenotype in surviving adult worms.36 

Evidence of early (stage 10) embryonic expression of GNB3 in chickens from EST 

data (est 603499939F1; http:// www.chick.umist.ac.uk/) may also help to explain 

the high embryonic mortality rate in rge chickens. 

This finding is the first use of Mendelian genetics in chickens to highlight a gene of 

potential medical significance. The eye phenotype observed shifts interest in GNB3 

back to a potential human retinal phenotype and illustrates the strength of the 

chicken as a model organism for studying human cone disease, as previously 

suggested.37 The absence of GNB3 mutations in patients with cone-rod and macular 

dystrophy in a previous study,25 together with the relatively severe phenotype in the 

rge chickens, could imply stationary achromatopsia or early-onset Leber amaurosis 

phenotype. Furthermore, systemic hypertension, obesity, and diabetes, which have 

been associated with the GNB3 c.825T variant, are also significantly associated with 

age-related macular dystrophy (AMD),38,39 making evaluation of c.825C→T and 

other GNB3 changes in AMD a priority. However, the reduced embryonic viability 

seen in rge chickens and similar observations in other GNB mutant animal models 

suggest that GNB mutations in humans may also predispose to pregnancy loss. 
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Fig.1 

GNB3 mutation analysis in wild-type and rge chickens.  

Upper: homozygous D153del GNB3 mutation present in rge chickens.  

Lower: corresponding normal sequence. 

 

 

 

 

 

 

 

 

 

 

 

 



Fig.2 

PCR-ARMS analysis of the GNB3 mutation D153del in two rge flocks. Lane 1: 

banding pattern in a White Leghorn (wild-type) bird. Lanes 2, 28: asymptomatic 

heterozygous female parents that gave rise to flocks 1 and 2. Lane 15: banding pattern 

of the homozygous D153del male parent of the flocks. Lanes 3–8, 16–21: banding 

patterns for the asymptomatic offspring from flocks 1 and 2, respectively. Lanes 9–

14, 22–27: pattern for the rge-affected birds. Lane 29: no DNA control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig.3 

RT-PCR analysis of GNB3 expression in multiple chicken tissues and in normal and 

rge retinas. Lanes 1–10: GNB3 expression levels in tissues derived from a normal 

bird. Lanes 11–12: level of GNB3 expression in the retina of a White Leghorn and an 

rge-affected bird, respectively. Lane 13: no DNA control. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig.4 

Alignment of the third WD domain of GNB proteins in various eukaryotic species 

using the program ClustalW. Bt, B. taurus; ce, C. elegans; cf, Canis familiaris; dm, 

Drosophila melanogaster; dr, Danio rerio; fr, Fugu rubripes; gg, Gallus gallus; hs, 

Homo sapiens; mm, Mus musculus; rn, Rattus norvegicus; sc, Saccharomyces 

cerevisiae; tn, Tetraodon nigroviridis; xt, Xenopus tropicalis. *Position of the highly 

conserved aspartic acid residue at codon 154 in chicken (gg) GNB3. Deletion of this 

or of the adjacent residue at codon 153, which is also an aspartic acid in chicken 

GNB3, causes the rge trait. Consistent with the mutation nomenclature criteria by 

den Dunnen and Antonarakis,17 we have designated this mutation D153del. 

 

 

 

 

 



Fig.5 

(A) Normal structure of B. taurus (bt) GNB1 (PDB ID: 1B9XA) showing the standard 

sevenpropeller structure20 in which each propeller domain consists of four anti–

parallel β -pleated sheets. (B) A “What If” prediction of a B. Taurus D153del GNB 

mutation deletes two β -pleated sheets in propellers 1 and 5 of GNB proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig.6 

(A) Wild-type (upper) and rge (lower) retinal cell extracts slot blotted and hybridized 

with anti-GNB3, and densitometric scans showing absolute levels of 

immunoreactivity. (B) The same slot blots probed with a PDE6α antibody. 

 

 

 

 

 


