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Abstract 

A second generation palladium(II)-complexed molecular shuttle, featuring structural changes to the size and shape 

of the macrocycle, shows significantly increased rates of shuttling and improved co-conformational bias compared 

to the original system. 

 

Introduction 

An understanding of how structural variations affect the positional bias and the kinetics of shuttling is 

important for developing rotaxane systems that possess a level of control over motion beyond that of simple 

switches.
1
 We recently described the synthesis and dynamics of a pH-responsive Pd(II)-complexed molecular 

shuttle
2
 L1Pd (Scheme 1a)—only the second class of rotaxane system (following Sauvage’s use of Cu(I) and 

Cu(II)/Zn(II))
3
 in which co-conformational switching is dependent upon the energetics of metal-ligand 

coordination. A notable feature of rotaxane L1Pd was its metastability; changing the chemical state of the 

thread did not immediately cause a change in the macrocycle’s position. Whilst this allowed the system to be 

held in an out-of-equilibrium state—something that is difficult
4
 to achieve using molecular shuttles that rely 

on weaker non-covalent interactions
5
—elevated temperatures and extended times were required to overcome 

the energy barrier to shuttling (up to 16 hours at 383 K to reach equilibrium
2
). Furthermore, the positional bias 

of the Pd-macrocycle between the 4-dimethylaminopyridine (DMAP) and pyridine (Py) stations was 

somewhat modest in both the neutral (ca. 6:1) and protonated (ca. 1:8) states of the rotaxane thread (Scheme 

1a). 

 

 

Scheme 1. Operation conditions and positional bias of (a) 1
st
 generation

2
 L1Pd and (b) 2

nd
 generation L2Pd 

molecular shuttles. 
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Here we report on a second generation molecular shuttle, L2Pd (Scheme 1b), in which the benzylic amide 

macrocycle is replaced by a larger and differently shaped bis-anilide ring.
6
 The alteration of the steric 

environment around the palladium(II) centre in the rotaxane leads to greatly enhanced rates of 

macrocycle shuttling and improved positional bias in both chemical states of the thread. In addition to the 

minimum energy co-conformers of the two switched systems, two metastable out-of-equilibrium 

positional isomers were sufficiently stable to be isolated and characterised by 
1
H NMR spectroscopy. 

L2Pd was prepared by a threading-and-stoppering procedure,
7
 first treating a palladium-macrocycle-

acetonitrile complex
6
 with an unstoppered-DMAP-end thread precursor, and the resulting pseudo-

rotaxane reacted with an excess of a phenol-based stopper under Mitsunobu conditions to afford the 

[2]rotaxane (see Supporting Information).  

Comparsion of the 
1
H NMR spectra of the free thread (Figure 1a) and the rotaxane isolated from the 

stoppering reaction (Figure 1b) showed that the signals assigned to the DMAP station (Hk and Hm) were 

split and shifted upfield by around 0.4 ppm in the rotaxane. In contrast, those of the Py station (Hx, Hy 

and Hz) were unchanged relative to their positions in the free thread, indicating that the co-conformation 

of the isolated [2]rotaxane was DMAP-L2Pd,
8
 i.e. with the palladium-macrocycle component coordinated 

to the DMAP station. 

 

 

← Figure 1. 
1
H NMR spectra (400 MHz, [D7]DMF, 

300 K) of [2]rotaxane [L2Pd] in four different 

protonated and co-conformational states and, for 

comparison, the free thread. a) Thread; b) DMAP-

[L2Pd]; c) DMAP-[HL2Pd]OTs; d) Py-[HL2Pd]OTs 

(97% + 3% DMAP-[HL2Pd]OTs); e) Py-[L2Pd] (97% 

+ 3% DMAP-[L2Pd]). The lettering in the figure refers 

to the assignments in Scheme 1. 
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Addition of one equivalent of p-toluenesulfonic acid (TsOH) to DMAP-L2Pd in [D7]DMF gave DMAP-

[downfield shifting of the signals associated with the protonated Py station -[HL2Pd]OTs, evidenced (Figure 

1c) by broadening and (Hy by 0.9 ppm and Hx and Hz each by ~0.8 ppm). The positions of the DMAP unit 

peaks (Hk and Hm) were virtually unchanged relative to DMAP-L2Pd (Figure 1b).  

After one hour at room temperature in [D7]DMF, small changes to the 
1
H NMR spectrum of this sample 

gave an indication that the activation barrier to macrocycle movement in the second generation molecular 

shuttle was significantly lower than for DMAP-[HL1Pd]OTs,
2
 and after four hours at 323 K a new 

equilibrium co-conformation had been fully realised (i.e. no further spectral changes were observed). The 

1
H NMR now showed (Figure 1d) a protonated DMAP signal at around 13 ppm for the major positional 

isomer present, shielding of the pyridine station signals (Hx, Hy and Hz) and a downfield shift of the 

DMAP heterocyclic signals (Hk and Hm), all of which indicated that the Pd-macrocycle was now bound to 

the pyridine station and a proton to the DMAP site. Integration indicated that the distribution of co-

conformers at equilibrium was ~3:97 DMAP:Py-[HL2Pd]OTs. Deprotonation of the 

dimethylaminopyridinium group by addition of Na2CO3 gave an out-of-equilibrium co-conformational 

mixture of ~3:97 DMAP:Py-L2Pd, apparent through changes to the 
1
H NMR spectrum (Figure 1e) the 

most noticable of which were a return of the DMAP signals (Hk and Hm) to positions similar to those of 

the free thread (Figure 1a) and the disappearance of the protonated DMAP signal at 13 ppm. Again, slow 

isomerisation of the sample (~5% an hour) was observed at room temperature in [D 7]DMF but not in non-

coordinating solvents such as CDCl3, supporting a solvent-mediated switching mechanism for 

translocation of the Pd-coordinated macrocycle between the Py and DMAP units. Raising the tempature 

to 323 K in [D7]DMF brought about the energetically downhill shuttling of the Pd-macrocycle from the 

Py to the DMAP station, yielding an equilibrium ratio of 92:8 DMAP:Py-L2Pd after just 2 hours.  

The associative nature of palladium(II) substitution reactions, and the faster shuttling rate of L2Pd 

compared to L1Pd, suggests that the bis-anilide macrocycle provides a less sterically demanding 

environment around the metal ion and thus easier access for an incoming coordinating solvent molecule 

or TsO
−
 counter-anion. In the protonated state, the better positional bias of [HL2Pd]

+
 with respect to 

[HL1Pd]
+
 suggests that the Pd-(bis-anilide) macrocycle binds less strongly to the track than the Pd-

(benzylic amide) component (the relative pKa’s of the protonated stations dominate the co-conformational 

energetics of [HL2Pd]
+
). This weaker interaction might also result in a longer Pd-N(thread) bond and 

increased access to the metal centre, which would also be consistent with the lower activation barrier to 

shuttling. Whilst the weakening of this interaction might be expected to produce a poorer co -

conformational bias in the absence of acid, in fact the bias for L2Pd is 12:1 DMAP:Py in comparison to 

6:1 for L1Pd (Schemes 1a and 1b). The reasons for the rather counter-intuitive improved positional 

discrimination in this neutral state of the the thread are probably a subtle balance of solvation, metal -

ligand coordination and -stacking effects.  
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In conclusion, we have described a second generation pH-switchable Pd(II)-complexed molecular shuttle 

which shows significantly increased rates of shuttling compared to the first generation system and also 

exhibits better positional discrimination of the macrocycle, somewhat surprisingly, in both chemical 

states of the rotaxane thread. The improved level of control should prove useful for the development of 

switchable, metastable, components for advanced molecular machinery, including Brownian ratchets
1
 and 

synthetic molecular walkers
9
. 
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