Melt inclusion constraints on the magma source of Eyjafjallajökull 2010 flank eruption

S. Moune,1 O. Sigmarsson,1,2 P. Schiano,1 T. Thordarson,3 and J. K. Keiding4

Received 26 July 2011; revised 23 December 2011; accepted 27 December 2011; published 24 February 2012.

[1] The 2010 eruptive activity at the Eyjafjallajökull volcanic system began 20 March with a basaltic flank eruption on a 300 m long fissure on the Fimmvöðuháls Pass, in between Eyjafjallajökull and Mýrdalsjökull volcanoes. The magma expelled from the fissure is olivine- and plagioclase-bearing mildly alkali basalt that exhibits uniform and rather primitive whole-rock composition. This event provides a rare opportunity to assess deep magmatic processes in Iceland. Melt inclusions (MIs) hosted in olivine phenocrysts were analyzed for their major, trace and volatile element concentrations to enable identification of magmatic source(s) for Eyjafjallajökull volcano and to better constrain processes occurring at depth. The MIs, in particular those in Mg-rich olivines, record primary magma composition before homogenisation and differentiation during magma ascent. The olivine phenocrysts hosting the MIs have a large compositional range, extending from Fo73 to Fo87, reflecting changes in the magma characteristics from the source to the surface. The MI compositions exhibit significant variations with MgO ranging from 5.2 to 7.2 wt%.

This compositional range was caused by a binary mixing of two basaltic end-members followed by fractional crystallization process. The sources of these end-members are identical to those of Katla and Surtsey basalts, with a dominant role of the Katla source. Trace element characteristics of the Fimmvöðuháls MIs suggest important proportions of recycled oceanic crust in their mantle sources.


1. Introduction

[2] Eyjafjallajökull volcano is located at the southern tip of the Eastern Volcanic Zone (Figure 1), which currently is the most active part of the Neovolcanic zones in Iceland [Thordarson and Larsen, 2007]. The 2010 activity at Eyjafjallajökull volcano began 20 March by a basaltic flank event along a 300 m long fissure trending N36°E on the western flanks of the Fimmvöðuháls Pass, which forms the saddle between Eyjafjallajökull and Mýrdalsjökull volcanoes (Figure 1). It featured up to 15 lava fountains, which reached heights of 50–150 m and produced tephra fall that formed a continuous 70-m-high cone constructed around the active vents and a thin tephra blanket extending up to 1–2 km from the source. Late on 31 March a new fissure opened at an angle of ~50° to the original fissure (trending ~N15°W). Shortly thereafter, on 2 April, it became the loci of the eruptive activity. The activity produced a small a’a lava flow field accompanied by efficient degassing. The lava that was discharged to the north in open channels formed spectacular lava falls when it cascaded into deep gullies carved in the basement of Eyjafjallajökull volcano. The flank eruption ended on 12 April having produced approximately 0.025 km3. The erupted magma was mildly alkali olivine- and plagioclase-phyric basalt with fairly uniform whole-rock composition with MgO of ~8.5 ± 0.3 wt%, a composition similar to that produced in the 1963–67 Surtsey eruption [Sigmarsson et al., 2011].

[3] Basaltic eruptions in Iceland are most frequently associated with high-level magma chambers (i.e., depth of 2–6 km) at central volcanoes producing basalt of evolved compositions. Eruptions of primitive basalts (MgO > 7%) are infrequent with the last one occurring during 1963–67 at Surtsey in the Vestmannaeyjar archipelago only 60 km south of Eyjafjallajökull [e.g., Jakobsson, 1979; Furman et al., 1991; Sigmarsson, 1996] (Figure 1). The geobarometry on the Fimmvöðuháls flank eruption shows that this initial phase of the Eyjafjallajökull eruption was tapped from a deep-seated magma reservoir of a depth of approximately 16–18 km [Keiding and Sigmarsson, 2012]. The flank eruption of relatively primitive basalt at Fimmvöðuháls thus presents an occasion to study deeper magmatic processes than is possible through more evolved basalts in Iceland. In order to discuss the magma generation of Fimmvöðuháls basalts, melt inclusions (MIs) were analyzed for major, trace and...
volatile element concentrations. Melt inclusions in minerals, especially Mg-rich olivines, have been shown to record primary magma composition before homogenization and differentiation during magma ascent [e.g., Schiano, 2003].

2. Sample Description and Preparation

[4] Lapilli-sized tephra (sample FH-2) that fell on fresh snow during the night of 24 March, was collected the day after approximately 100 m south of the main crater on the Fimmvörðuháls eruption fissure. The basalt contains euhedral phenocrysts of olivine, plagioclase and clinopyroxene, which occur frequently as glomerocrysts. The compositions of the phenocrysts range from Fo71–87, An73–86 and Mg#70–76, respectively, whereas more evolved compositions and oscillatory zonations are observed in those forming glomerocrysts (Fo57–68, An76–88, Mg#79–85). The glass composition shows slight but significant variations (MgO: 4.09–4.67%; TiO2: 4.82–5.31%; K2O: 1.00–1.17%; average on 21 analyses is given in Table 1). Olivine crystals were hand-picked under binoculars from the 600–1000 μm grain size fraction of crushed tephra. Melt inclusion bearing crystals were selected and washed with acetone, embedded in epoxy and polished individually to produce adequate exposure of the MIs for in situ microanalysis. The MIs are randomly scattered throughout the host olivine crystals and typically spherical to oblate in shape with a diameter in the range of 15–60 μm (Figure 2). Most inclusions contain shrinkage bubbles caused by the greater thermal contraction of the melt compared to the host mineral during post-entrapment cooling (Figure 2 and Table 1). Because they were naturally quenched during the eruption, most of the MIs are totally deprived of daughter minerals (see Anderson [1974] and Lowenstern [2003] for definition). Post-entrapment reactions that occurred inside the inclusions are restricted to limited crystallization of the host phase on inclusion walls (Table 1). Note that some melt inclusions from the FH-2 sample contain both glass and minute sulfides. However, no sulfide globule was observed under the microscope in any of the analyzed glass inclusions (Figure 2).

3. Analytical Methods

3.1. Electron Microprobe

[5] Major and volatile (S, Cl, F) element compositions of host minerals and MIs were measured on a SX-100 CAMECA electron microprobe (EMP) at Laboratoire Magmas et Volcans (LMV, Clermont-Ferrand) using 15 kV accelerating voltage. Sample currents and counting times used for analyzing different groups of elements are listed in Table 2a. A mixture of mineral standards (synthetic and natural) and glasses (A-THO and VG2) was used for calibration (see Oladottir et al. [2011] for further details).
[6] A focused beam of 1 μm diameter was used for mineral analysis but in order to reduce Na loss, a 5–10 μm defocused beam was employed during glass analysis. Analyses of Cl, S and F were preformed with 80 nA sample current and 50 s acquisition time using the LPET diffraction crystal (Cl and S) and 300 s on three TAP crystals (F, Table 2a). In order to minimize volatile losses during analysis, the beam was blanked regularly with the Faraday cup and counts were collected in 20 s intervals by 5 iterations. Variations in the wavelength of sulfur Kα X-ray as a function of its oxidation state in silicate glasses were taken into account during the sulfur analysis [Carroll and Rutherford, 1988; Métrich and Clocchiatti, 1996]. The EMP precision (2σ) is better than 5% for major elements, except MnO, Na₂O, K₂O and P₂O₅ where it is less than 10%. The estimated 2σ precision for Cl, S and F is 7%, 4% and 28%, respectively. Both reproducibility and accuracy were established by replicate analyses of VG-A99 glass standard [Jarosewich et al., 1979; Thorner et al., 2002] (Table 2b) for major-element concentrations, Alvin glass standard [Métrich and Clocchiatti, 1989, 1996; Mosbah et al., 1991; Straub and Layne, 2003] for S concentrations, and Ke12 glass standard [Métrich and
Rutherford, 1991] for Cl and F concentrations. Measured values of 0.100 \pm 0.003 wt% for S in Alvin, 0.34 \pm 0.01 wt% for Cl and 0.47 \pm 0.03 wt% for F in Ke12 are in good agreement with the published accepted values of these standards. Two points were measured in most melt inclusions and the average is given in Table 1, except for the smallest melt inclusions where only one point could be measured. Each olivine grain was analyzed twice, one point was measured near the MI and one far from the MI to check compositional homogeneity. For most olivines, both analyses are within the standard deviation (2σ). If the olivine is zoned (such as E3), the closest measurement to the analyzed MI was considered to assess equilibrium between MI and host crystal.

3.2. Laser-Ablation Inductively Coupled-Plasma Mass-Spectrometry (LA-ICP-MS)

[7] Trace element analyses of MIs were performed at the Laboratoire Magmas et Volcans (Clermont-Ferrand) with a Resonetics M50 EXCIMER laser (193 nm wavelength) coupled to an Agilent 7500cs ICP-MS. The laser was operated at 6 mJ energy, 2 Hz repetition rate and an 11 μm spot size diameter. Analytical details as well as reproducibility and accuracy are given by Sigmarsson et al. [2011]. Trace element compositions are given in Table 3.

3.3. Ion Probe

[8] Ion Probe analyses of water concentrations were performed on a Cameca 4f SIMS instrument at the University of Edinburgh in a few melt inclusions following the procedures detailed by Humphreys et al. [2008]. Calibration was...
Figure 3
performed using rhyolitic and basaltic glasses with known water concentrations. The water concentrations of the reference glasses bracket the sample concentrations. The estimated 2σ error for H2O is 10%.

3.4. Post-entrapment Modifications and Correction for Late-Stage Crystallization

In principle, the compositions of MIs could be modified by the diffusion of Fe from the melt into the host mineral and diffusion of Mg from the crystal into the liquid during re-equilibration of the overgrowth rim with the host mineral [e.g., Danyshevsky et al., 2000, 2002; Gaetani and Watson, 2002]. However, such potential Fe-Mg diffusion would result in significantly higher melt-olivine equilibrium constant Kd (FeO/MgO)host/FeO/MgO_melt) between ferrous iron and magnesium [Roeder and Emslie, 1970; Toplis, 2005] than the well established value of 0.3. The Fimmvörðuháls results, in contrast, have apparent Kd very close to 0.3 or somewhat lower. Moreover, the FeO content of the MIs of Fimmvörðuháls basalts does not vary with size. Finally, Mls with low Fe contents were trapped in olivine with high Fo composition (Fo86–87, Figure 3) suggesting negligible post-entrapment Fe diffusion. Therefore, we conclude that diffusion-controlled mechanisms did not play a significant role in modifying the major element composition of the Mls of Fimmvörðuháls basalts.

Figure 3. Major element concentrations of (a) SiO2, (b) MgO, (c) FeO, (d) CaO, (e) Al2O3, and (f) Na2O versus that of K2O in wt% showing the compositional variations of melt inclusions (Mls) in the Fimmvörðuháls FH-2 basalt. The whole rock and the groundmass compositions are also shown. In Figures 3b, 3c and 3d, ellipses are drawn around melt inclusions, which composition represent magma mixing between two end-members (C5 and C7). Black lines represent various differentiation trends between the most primitive (Fo ≥ 86) and primitive Mls (80 < Fo < 86), and between the latter ones and the evolved Mls (Fo < 80). Trend of olivine accumulation explaining the Fe and Mg concentrations of the whole-rock is also shown (see text for details). Results are normalized to 100%. Error bars are given at 95% confidence level.

Figure 4. Correlation between K2O concentration (wt%) of melt inclusions in the FH-2 basalt and the corresponding host olivine composition (Fo%). Average 2σ error is plotted.

4. Results

The FH-2 tephra emitted from the flank eruption at Fimmvörðuháls has a MgO content of 8.2 wt% (Table 1). This relatively primitive basalt with a mildly alkali character presents a rare opportunity to assess deep magma characteristics. The whole rock and the glass composition are generally within the range of the Mls (Table 1 and Figure 3), with the exception of higher MgO and FeO concentrations in whole-rock indicating an accumulation of ~10% of olivines (Figure 3). Such accumulation of olivines is also consistent with the Na2O, Al2O3, K2O and SiO2 concentrations of the whole-rock. Based on the melt-olivine Fe-Mg equilibrium constant, Kd of 0.3 the bulk magma composition is in equilibrium with olivine Fo75. All olivine crystals hosting melt inclusions analyzed in this study are euhedral and of homogeneous composition, with the exception of olivine E3 that presents a zonation from Fo79 to Fo86. The compositional range of the host olivines is rather large from Fo87 to Fo73 reflecting magma evolution from the source to the surface.

After correction for post-entrapment crystallization, the compositions of the Mls show significant variations with, for instance, MgO concentrations ranging from 5.23 to 7.21 wt% (Table 1). Compositions of Mls in the same olivine show a small variability (for instance K2O range 0.82–0.97 wt% in A7–1/A7–2 and 0.49–0.59 wt% in D1–1/D1–2), whereas the overall compositional range of the Mls is large (K2O ranging from 0.36 to 1.02 wt%) in comparison with that of the host olivine compositions (Figure 4). No clear differentiation trend emerges from the major element variations in the Mls (Figure 3). However, based on trace element systematics, two distinct MI populations can be identified (see below). Hence, the whole data set is divided into two groups depending on the forsterite content of their host olivines (Mls in Fo ≥ 80 and Mls in Fo < 80) and major...
element concentrations will be presented and discussed separately for the two groups. The compositions of MIs trapped in olivines Fo < 80 show decreasing olivine Fo content, stable SiO$_2$, decreasing Al$_2$O$_3$, CaO and MgO and increasing FeO and Na$_2$O concentrations with increasing K$_2$O concentration (Figures 3 and 4). The MIs compositional spread shows that a single liquid line of descent cannot explain the melt evolution that may suggest several parental magmas for the evolved compositions. The major element composition of the most evolved olivine-hosted MIs (in terms of K$_2$O content: A1 and A2 with K$_2$O = 1.02 and 0.96 wt%, respectively; Table 1) is indistinguishable to those of plagioclase-hosted MIs [Thordarson et al., 2011], which record more advanced differentiation stage of the Fimmvörðuháls basalt. In contrast, the more primitive MIs, trapped in olivines with Fo ≥ 80, show a more complex evolution where SiO$_2$ concentration decreases, Al$_2$O$_3$ and Na$_2$O remain stable and MgO increases with increasing K$_2$O concentrations. Both CaO and FeO vary considerably without any clear relationships to the K$_2$O concentrations.

[13] Concentrations of Cl, S, F and H$_2$O in MIs are in the range of 204–2470 ppm, 783–1939 ppm, 359–878 ppm and 0.82–0.99 wt%, respectively. The most primitive melt inclusions (i.e., trapped in olivines 80 ≤ Fo < 87) contain an average of 1058 ppm S, 273 ppm Cl, 542 ppm F and 0.97 wt% H$_2$O. On diagrams showing volatile element concentrations as a function of those of K$_2$O, the more evolved MIs plot on differentiation vectors from the MIs in olivines with Fo ≥ 80 that extrapolate through the origin (Figure 5). Melt inclusions in plagioclases (An$_{90-70}$) from the same sample [Thordarson et al., 2011] yield even more evolved compositions and plot on same differentiation vectors. The volatile elements thus confirm the observation that major element concentrations may reflect more than one differentiation trend. It is worth noting that very few MIs seem to have trapped a melt already degassed in sulfur or water (Figures 5a and 5d). Finally, Cl concentration of A2, and to a lesser extent C4 and B2, plot far above the differentiation vectors (Figure 5c and Table 1) indicating either that this inclusion is recording chlorine-brine-rich melt or a xenocrystic olivine with concentrations of K$_2$O, the more evolved MIs plot on differentiation vectors from the MIs in olivines with Fo ≥ 80 that extrapolate through the origin (Figure 5). Melt inclusions in plagioclases (An$_{90-70}$) from the same sample [Thordarson et al., 2011] yield even more evolved compositions and plot on same differentiation vectors. The volatile elements thus confirm the observation that major element concentrations may reflect more than one differentiation trend. It is worth noting that very few MIs seem to have trapped a melt already degassed in sulfur or water (Figures 5a and 5d). Finally, Cl concentration of A2, and to a lesser extent C4 and B2, plot far above the differentiation vectors (Figure 5c and Table 1) indicating either that this inclusion is recording chlorine-brine-rich melt or a xenocrystic olivine with consistent S and F volatile concentrations but exceptionally high Cl. A significant assimilation of Cl-rich material through crustal contamination is not supported by the Δ$^{18}$O values of Fimmvörðuháls samples, which range between 5.4% and 5.8% and correspond to mantle values [Sigmarsson et al., 2011]. At present this high Cl value remains enigmatic. The volatile concentrations of the MIs in more primitive olivines (Fo ≥ 80) show less variability whereas their ratios to that of K$_2$O is close to what is observed in the more evolved MIs.

[14] Trace element composition of the MIs varies considerably. The most incompatible elements show similar evolution as K$_2$O with a variation in composition over a factor of three (e.g., Rb concentration ranges from 7.57 ppm to 24.8 ppm, Figure 6 and Table 3). This is in stark contrast to relatively uniform whole-rock composition of the Fimmvörðuháls basalts (e.g., Rb-range: 11.9–12.8 ppm [Sigmarsson et al., 2011]), which is well within the compositional range of the MIs. This enhanced concentration variability, offered by the MI results, gives access to finer details of the deep-seated magmatic processes. In general, the Fimmvörðuháls MIs have trace element characteristics in between those of basalts from the neighboring volcanoes in the Eastern Volcanic Zone, namely Surtsey and Katla (Figures 1 and 7).

[15] A notable feature of the MIs trace element patterns is positive spikes in HFS-elements such as Nb and Ta (Figure 7), which are opposite to those of continental crust and arc-type lavas [Hofmann, 1988]. Moreover, although characterized by an overall enrichment in incompatible trace elements, the mantle-normalized patterns of the MIs display significant depletions in the LIL-elements such as U, Th, Ba and Rb.

5. Discussion

5.1. Do the MIs Represent Undegassed Magma at Depth?

[16] Melt inclusions trapped in early formed minerals, such as magnesian olivine phenocrysts, are potentially undegassed and therefore could hold clues to the primitive volatile composition of the erupted magma [e.g., Métrich and Wallace, 2008]. However, MIs may form in minerals crystallizing from partially degassed magma, MIs may leak if fractures are present [Lowenstern, 1995], hydrogen may diffuse out of the inclusion and fast-diffusion species may enter from the melt around the host crystals into the MIs [e.g., Massare et al., 2002; Cottrell et al., 2002; Portnyagin et al., 2008; Chen et al., 2011]. In this study, only MIs with no visible fracture or dislocation boundaries were chosen for analyses.

[17] Hydrogen diffusion out of the olivine during natural cooling of the sample cannot be excluded and such diffusion might explain the low water content of B2 (see Figure 5d). Alternatively, this MI represents a partially H$_2$O degassed melt. The facts that the average Cl/K$_2$O of all inclusions is close to the value of 0.06 ± 0.02, typical for Icelandic basalts (Cl/K$_2$O = 0.04) [Jambon et al., 1995], the H$_2$O, F and Cl concentrations and S/Cl are close to those from other mantle-plume related magmas (e.g., S/K$_2$O = 0.05–0.4, S/Cl = 0.5–6 [Schilling et al., 1980; Dixon and Clague, 2001; Lassiter et al., 2002; Métrich et al., 2004]) implies negligible degassing of the MIs. In addition, their water concentration and H$_2$O/K$_2$O (except for B2) are also consistent with those measured in subglacial basaltic glasses from Iceland, which are likely to reflect the juvenile water concentrations (H$_2$O/K$_2$O = 0.1–2 [Nichols et al., 2002]). These arguments allow us to assume that most of the MIs represent undegassed melts with juvenile S, Cl, F and H$_2$O concentrations.

5.2. Magmatic Processes at Depth

[18] Variations in major element concentrations clearly result from more than a single magmatic process at depth. To discriminate between various processes such as partial melting, fractional crystallization and magma mixing, the trace element concentrations and ratios can be very useful [e.g., Schiano et al., 2010, and references therein]. The mantle source appears homogeneous since both Sr and Nd isotope ratios are constant in the Fimmvörðuháls basalts [Sigmarsson et al., 2011]. However, such constancy of isotope ratios measured in whole-rocks could as well be due to thorough mixing and homogenisation of melts from different sources with variable isotope ratios [Sigmarsson et al., 2000]. Co-variations of trace element ratios and concentrations such
as Ba/Sm versus Ba, Rb/Nd versus Rb, La versus Th and Ba versus K2O reveal two very distinct processes (Figure 6).

Furthermore, when reported in C_A/C_B versus C_A diagram (where C_A and C_B are the concentrations of A, a highly incompatible element, and B, a moderately incompatible element) the MIs in olivines rich in Fo (Fo ≥ 80) define trends that are consistent with series of magma batches produced by different degrees of partial melting or mixing of different
Figure 6. (a, b) Highly incompatible trace element variation diagrams for melt inclusions (MIs) in olivines from Fimmvörðuháls basalts. The results define linear correlations that do not pass through the origin. Figure 6b shows a schematic CA1 versus CA2 diagram (with CA1 and CA2 being two highly incompatible elements) with curve showing calculated melt composition produced by fractional crystallization, partial melting and mixing processes. (c, d) Plots of Ba/Sm versus Ba and Rb/Nd versus Rb for MIs from Fimmvörðuháls. The MIs in Fo-rich olivines (Fo > 80) define arrays that are both consistent with a series of magma batches produced by different degrees of partial melting (gray curve and R²) and mixing (black line and R²; see text for further discussion). The MIs in olivines with Fo < 80 produce almost horizontal trends reflecting a simple fractional crystallization process. Figure 6c shows a schematic CA/CB versus CA diagram (with CA and CB are the concentrations of A, a highly incompatible element, and B, a moderately incompatible element) showing theoretical correlation curves during fractional crystallization, partial melting and mixing processes. C5 and C7 that represent the two end-members of the mixing process are also shown.
we determined that these trends result from mass balance algorithms from compositions generated by fractional crystallization. Using horizontal trends in Figures 6c and 6d as expected for melt 2007.

rock analysis on Katla and Surtsey basalts in dark and light (Fo > 80) from Fimmvörðuháls basalts along with whole-trace element data for a few primitive melt inclusions Figure 7. Primitive mantle normalized diagram showing melts (Figures 6c and 6d). It should be noted that, in such diagrams, horizontal lines define fractional crystallization, linear trends with a positive slope define partial melting process of a single magma source whereas hyperbolic curves are consistent with a binary magma mixing. Regression coefficients (R²) close to unity for both straight lines and hyperbolic curves (Figures 6c and 6d) do not permit to distinguish between mixing and partial melting processes from diagrams in Figure 6. However, even if an increase in the degree of melting by a factor of 2 could in principle account for the twofold variations of highly incompatible element concentrations such as K₂O (0.36–0.72 wt%) or Ba (75–168 ppm) (assuming a bulk partition coefficient close to 0 for these elements), such a limited variation in the degree of melting cannot explain the concomitant wide spread in the Fo contents of the host olivine phenocrysts (80 ≤ Fo < 87). Indeed, experimental results demonstrate that an increase in the degree of melting of peridotite and pyroxenite by a factor of 4.5–5 and 2.5–4, respectively, is needed to account for such a large variation in the Fo content of the olivine in equilibrium with the melt [Lambert et al., 2009; Baker and Stolper, 1994]. Consequently, the compositional variability of our primitive MIs is best explained by mixing between two end-members of basaltic compositions.

The more evolved MIs (in Fo < 80) define almost horizontal trends in Figures 6c and 6d as expected for melt compositions generated by fractional crystallization. Using mass balance algorithms from Störmer and Nicholls [1978], we determined that these trends result from ~35% of fractionation of 11% olivines Fo₈₀–₇₅, 62% plagioclases An₇₀–₈₀ and 27% augites from the more primitive mixed basaltic melt (with a sum of squared residuals equal to 0.04).

[20] Taken together, trace element constraints suggest that mixing of diverse basaltic melts is recorded in the more primitive MIs, with concomitant fractional crystallization producing the melt of the more evolved MIs.

5.3. Source of Fimmvörðuháls Basalts

In order to better constrain the source of the mixing end-members at the origin of the Fimmvörðuháls parental basalts, we focus our discussion only on the more primitive MIs (MIs in Fo ≥ 80).

[21] Primitive-mantle normalized trace element spectra are shown in Figure 7 and are, not surprisingly, typical of hot spot basalts. For clarity purposes, only six MIs are plotted. However, all the spectra display very similar trends, the main difference being variable concentration of the trace elements and the fact that the most incompatible elements are the most variable. Melt inclusions with the most and the least enriched trace element spectra (C7 and C5, respectively) represent the two end-members of the deep mixing process at the origin of Fimmvörðuháls basalts. Trace element spectra from two neighboring volcanoes (Surtsey and Katla) are plotted in Figure 7. It is clear that the spectra of Fimmvörðuháls basalts are enclosed between those of these two volcanoes: Katla basalts comparing favorably with the most enriched end-member (C7) and Surtsey basalts with the least enriched end-member (C5) of the mixing process beneath Fimmvörðuháls.

[24] These two end-members (represented by C5 and C7) can also be identified from variation of volatile elements in Figure 5. Mixing between these two end-members followed by fractional crystallization trends explains the MIs with variable volatile-potassium ratios. Furthermore, the identification of the two end-members, of the binary magma mixing at depth, is also clear from major-element compositions as can be seen from diagrams of FeO, CaO and MgO versus K₂O (Figures 4b–4d). In these diagrams, the compositional spread of MIs in Fo ≥ 80, generated by variable mixing proportions, is at the origin of different fractional crystallization trends as recorded in the more evolved inclusions. However, it is notable that the most primitive MIs (in Fo₈₆–₈₇) show a restricted but distinct range in FeO and CaO concentrations that appears to be linked to the C7 end-member composition. Indeed, these most primitive compositions could be the parental magma to the Katla-like mixing end-member. The presence of these primitive MI suggests a dominant role of the Katla-like source for the Fimmvörðuháls basalts. This is not surprising given the proximity to the Katla volcanic system (Figure 1). The same relationship between Katla- and Surtsey-type basalts producing the parental magma for the Fimmvörðuháls basalts is also observed in Figure 8, where the data show a very good linear correlation (R² = 0.99) between highly incompatible trace element concentrations (e.g., La versus Ce, Figure 8a), which does not extrapolate through the origin. The dominant role of the Katla basalts in the source of the nearby Eyjafjallajökull basalts (as represented by those of Fimmvörðuháls) is also supported by the quantification of the mixing proportions relative to Katla magma source in Figure 8a. Indeed, considering the most primitive whole-rock composition from Surtsey and Katla, the two end-members of the basaltic mixing C5 and C7 are quantified to represent ~30% and ~90% of Katla parental magmas, respectively. Primitive MIs of Fimmvörðuháls...
represent thus a compositional range of ~50 to 90% of Katla parental magmas.

[25] The mixing of melts derived from mantle sources similar to those under Surtsey and Katla volcanoes is confirmed by curved relationships in Figure 8b. In Figure 8b, C5 and C7 have respectively the same Th/Ce as observed in basalts from Surtsey and Katla. The difference in trace element ratios between these three volcanoes is consistent with isotope ratios indicating mantle source heterogeneity beneath this part of the Neovolcanic zones in Iceland [Sigmarsson et al., 1992, 2000; Kokfelt et al., 2006]. Moreover, whole-rock isotope ratios of Fimmvörðuháls basalts, which could be interpreted to reflect a homogeneous mantle source, can also be explained by a thorough mixing and homogenisation of different mantle melts. Indeed, the isotope ratios of Sr and Nd of Fimmvörðuháls basalts fall in between those of Katla and Surtsey basalts [Sigmarsson et al., 2008, 2011]. Therefore, the trace element compositions of the MIs reveal deep magma processes undetectable by whole-rock geochemical criteria.

[26] The trace element patterns of the melt inclusions (Figure 7) are characterized by a general inverted V-shape with a continuous decrease in the normalized abundances of the most highly incompatible elements, U to Rb. Such a depletion of the most incompatible elements is characteristic of all ocean-island basalts with a HIMU-type isotope signature (i.e., radiogenic Pb isotope ratios) and thought to reflect a link between the origin of HIMU-type ocean-island basalts and mid-ocean ridge basalt (MORB) mantle sources [see Hofmann, 1997, and references therein]; that is, the depletions on the left side of these patterns are consistent with a derivation from a source that is likely to incorporate large proportions of subduction-zone processed, recycled oceanic crust. This is also consistent with the proposition of recycled crust in the form of garnet pyroxenite in the mantle source of the southern end of the Eastern Volcanic Zone, where basalts are characterized by elevated Pb-isotope ratios [e.g., Kokfelt et al., 2006; Sigmarsson et al., 2008].

5.4. Primitive Volatile Source of Eyjafjallajökull: Comparison With Other EVZ Basalts

[27] The primitive flank magmas of Eyjafjallajökull volcano, erupted at the Fimmvörðuháls Pass and recorded in MIs in olivines with Fo > 80, have an average volatile content of 1058 ppm S, 273 ppm Cl, 542 ppm F and 0.98 wt% H2O. These volatile contents can be shown to be coherent with the tectonic setting of the volcano. In the S/Cl versus 1/Cl diagram (Figure 9), MIs from basalts of the Eastern Volcanic Zone show a regular geographical variation with the highest values at the center of Iceland and lower values toward the south along the volcanic zone. Indeed, samples from the Vestmannaeyjar islands (Sursey and Heimaey) have the lowest S/Cl, those from Hekla and Katla plot close to the proposed hot spot values of Métrich et al. [1991], whereas MIs from Laki and Veidivötn tholeiites form a linear array between this presumed hot spot and higher MORB values [Métrich et al., 1991; Thordarson et al., 1996, 2003; Mouné et al., 2007]. This range is easily explained by the fact that variable mixtures of mantle melts from the Iceland plume and the depleted upper mantle reservoir (such as MORB) are at


Maurette, D., N. Métrich, and R. Clochard (2002), High-temperature experiments on silicate melt inclusions in olivine at 1 atm: Inference on