Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells

Citation for published version:
https://doi.org/10.1039/C3SM51645H

Digital Object Identifier (DOI):
10.1039/C3SM51645H

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Soft Matter

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells

Timm Krüger,1 Markus Gross,2 Dierk Raabe,3 and Fathollah Varnik2,3
1Centre for Computational Science, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
2Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
3Max-Planck Institut für Eisenforschung, Max-Planck Str. 1, 40237 Düsseldorf, Germany

Via computer simulations, we provide evidence that the shear rate induced red blood cell tumbling-to-tank-treading transition also occurs at quite high volume fractions, where collective effects are important. The transition takes place as the ratio of suspension stress to the characteristic cell membrane stress exceeds a certain value, independent of volume fraction and cell deformability. This value coincides with that for a transition from an orientationally less ordered to a highly ordered phase. The average cell deformation does not show any signature of the transition, but rather follows a simple scaling law independent of volume fraction.

I. INTRODUCTION

Despite the large interest in a better understanding of the circulatory system and related diseases, there are still many open issues regarding the microscopic mechanisms which ultimately determine the rheology of suspensions of red blood cells (RBCs), the major particulate constituent of blood. Focusing on purely mechanical aspects, a RBC can be considered as a thin and flexible incompressible biconcave membrane which encloses an internal fluid (haemoglobin solution) and resists shearing and bending.

Depending on the ambient shear rate ˙γ, viscosity contrast (ratio between internal and external fluid viscosities), membrane viscoelasticity and other parameters, one observes tumbling, swinging, or tank-treading motion of isolated RBCs [1–4]. While in the case of single vesicles the dynamical phase space has been investigated thoroughly [5–11], there are only few studies of dense suspensions of deformable particles or RBCs [12–15]. These studies investigate the influence of concentration, deformability and aggregation tendency on suspension rheology.

In the present work, we focus on a dynamic phenomenon in dense RBC suspensions. Via computer simulations, we provide evidence for the transition from a tumbling to a tank-treading-like state (henceforth called TB-TT transition) upon increasing the capillary number Ca. The capillary number is defined as the ratio of fluid stress to the characteristic membrane stress, where the latter is related to the shear elasticity of the cell membrane. Transcending previous studies, we find that the TB-TT transition occurs not only in the well-known case of a dilute suspension, but up to haematocrit values as high as Ht = 65% (haematocrit, or volume fraction, is the ratio of the volume occupied by RBCs to the total suspension volume). It is shown that—for all studied shear rates, cell deformabilities, and volume fractions—this transition is characterised by an effective capillary number Ca^* (ratio between effective suspension stress and the characteristic membrane stress) rather than by the bare capillary number Ca. A detailed analysis of the average RBC inclination angle θ (a measure of average cell orientation) and the corresponding order parameter $Q_>$ is also provided. When plotted versus Ca^*, all values for $Q_>$ and θ tend towards a master curve as Ca^* exceeds a certain threshold value Ca^*_cr, which, remarkably, coincides with that for the onset of the TB-TT transition for a single cell.

Our results provide evidence that the change from tumbling to tank-treading-like dynamics is accompanied by a phase transition from weak to strong orientational ordering of the cells. Interestingly, the average deformation of a cell, quantified by the Taylor deformation parameter D_8 changes continuously in the investigated parameter range, without any signature of the observed transition.

The article is organised as follows. The setup of the simulations is discussed in section II. Section III contains the results and discussions of the TB-TT transition (section III A), the orientational order (section III B), and the RBC deformation (section III C). We conclude our work and provide an outlook in section IV.

II. SIMULATION SETUP

A. Numerical model

A hybrid immersed-boundary-lattice-Boltzmann-finite-element model has been used [16–17]. The liquid phase is fully considered and solved by the lattice-Boltzmann method [18–19], while the fluid-particle interaction is realised by the immersed-boundary method [20]. The red blood cells are represented by a finite-element mesh consisting of 1620 triangular facets. Physically, the cell membrane is made of a lipid bilayer (being essentially an incompressible 2D fluid), giving rise to a finite resistance against bending and changes of surface area, and a cytoskeleton, leading to a finite shear resistance which controls the cell dynamics.
FIG. 1 (a) Simulation snapshot. The ensuing effects on the collective and rheological properties of the RBC suspension can be captured by assuming a total membrane energy of the form

\[E = E_S + E_B + E_A + E_V, \]

where

\[E_S = \int dA \left[\frac{\kappa_S}{12} (I_1^2 + 2I_3 - 2I_2) + \frac{\kappa_a}{12} I_2^2 \right] \]

describes the energy penalty against shear and area dilation,

\[E_B = \frac{\kappa_B}{2} \int dA \left(H - H(0) \right)^2 \]

is energy change due to bending, while

\[E_A = \frac{\kappa_A}{2} \frac{(A - A(0))^2}{A(0)} \]

and

\[E_V = \frac{\kappa_V}{2} \frac{(V - V(0))^2}{V(0)} \]

where the membrane orientation vector \(\hat{i} \), on the other hand, is computed from the positions of the vertices of the RBC mesh and connects the centre of masses (green dots) of the top and bottom halves of the undeformed membrane. The identity of a mesh vertex of being in the “top” or “bottom” half remains unaltered during the course of the simulation, making \(\hat{i} \) an intrinsic measure of the RBC orientation that is not available from the inertia tensor.

Details: Note that both the parameters \(\kappa_a \) and \(\kappa_A \) penalize changes in the membrane surface area (physically, \(\kappa_a \) is related the cytoskeleton, while \(\kappa_A \) arises from the incompressibility of the the liquid bilayer). The bending energy in Eq. (3) has the classical Helfrich form [25] of

\[\frac{\kappa_S}{2} (A - A(0))^2

relative to the undeformed counterparts, \(A(0) \) and \(V(0) \), respectively. Eq. (2) represents Skalak’s energy density [23] with \(\kappa_S \) and \(\kappa_a \) being the shear and area resistance, respectively. \(I_1 \) and \(I_2 \) denote the in-plane strain invariants, which are related to the local membrane deformation tensor (see Krüger et al. [16] for more

FIG. 2 Relative suspension viscosity \(\eta/\eta_0 \) as function of bare capillary number \(Ca = \eta_0 \dot{u}/\kappa_S \). \(\eta_0 \) is the reference viscosity of the suspending fluid without red blood cells. For all volume fractions, the suspension is shear thinning. Additionally, the viscosity increases with increasing volume fraction. One observes that the data for soft and hard RBCs overlap, when plotted versus \(Ca \). Error bars are of the order of the symbol size. It is also noteworthy that the viscosities can be approximated by a Herschel-Bulkley law (dashed lines) of the form \(\eta/\eta_0 = a + b \times Ca^c \) with the parameters \((a,b,c) = (0, 2.0, 0.78) \) for 35%, \((0.004, 2.4, 0.73) \) for 45%, \((0.015, 3.4, 0.72) \) for 55%, and \((0.043, 5.0, 0.71) \) for 65%.

FIG. 3 Cross-section through an undeformed red blood cell (red) together with its equivalent inertia ellipsoid (black). \(r \) is the large RBC radius (dotted), \(a \) and \(b \) are the two large semiaxes \((a = b = 1.1r) \) and \(c \) is the small semiaxis \((c = 0.36r) \) of the inertia ellipsoid. The vector \(\hat{o} \) is perpendicular to the \(a-b \)-plane and is given by the normalized eigenvector of the inertia ellipsoid corresponding to the smallest eigenvalue (i.e., the shortest semiaxis, \(c \)). The intrinsic membrane orientation vector \(\hat{i} \), on the other hand, is computed from the positions of the vertices of the RBC mesh and connects the centre of masses (green dots) of the top and bottom halves of the undeformed membrane. The identity of a mesh vertex of being in the “top” or “bottom” half remains unaltered during the course of the simulation, making \(\hat{i} \) an intrinsic measure of the RBC orientation that is not available from the inertia tensor.

Note that both the parameters \(\kappa_a \) and \(\kappa_A \) penalize changes in the membrane surface area (physically, \(\kappa_a \) is related the cytoskeleton, while \(\kappa_A \) arises from the incompressibility of the the liquid bilayer). The bending energy in Eq. (3) has the classical Helfrich form [25], of
which a simplified version

\[E_B = \frac{\sqrt{3} \kappa_B}{2} \sum_{\langle i,j \rangle} \left(\theta_{ij} - \theta_{ij}^{eq} \right)^2 \]

is employed in the simulations\[20\]. Here, \(\kappa_B \) is the bending modulus and the sum runs over all pairs of neighbouring facets of the tessellated RBC surface with mutual equilibrium normal-to-normal angles \(\theta_{ij}^{eq} \). We remark that, in the present case, the biconcave shape of the RBC is not a result of the minimization of the bending energy subject to the constraint of fixed volume\[24\], but rather specified as input to the simulation via the construction of the membrane mesh (and ensured by the presence of the \(\theta_{ij}^{eq} \) in Eq. (6)).

In our simulations, a fixed number (494, 635, 776, and 917) of neutrally buoyant RBCs with equilibrium shape of a biconcave disk of radius of \(r = 9 \) (all quantities in lattice units) and equal internal and external viscosities have been distributed throughout a fixed fluid volume \((L_x \times L_y \times L_z = 100 \times 100 \times 160) \) resulting in volume fractions \(\text{Ht} = 35, 45, 55, \) and \(65\% \), respectively. To improve numerical stability and avoiding particle overlap, a repulsive force inspired by Feng and Michaelides \[27\] is introduced. It is zero for distances larger than one lattice constant and behaves like \(1/r^2 \) for smaller distances. The effect of the membrane energy, Eq. (7), is realized in terms of local forces derived from the principle of virtual work\[10\].

The shear flow (periodic in \(x \)- and \(y \)-directions) has been realised by moving the bottom and top walls at \(z = 0 \) and \(z = 160 \) in opposite directions along the \(x \)-axis with velocities \(\pm u_w \), giving rise to an average shear rate of \(\dot{\gamma} = 2u_w/L_z \). Inertia is neglected. One layer of RBCs has been stuck to each wall to avoid slip. A typical simulation snapshot illustrating the geometry is shown in Fig. 1(a).

Two different RBC rigidities have been considered. The softer RBCs, \((\kappa_S, \kappa_B, \kappa_\alpha, \kappa_A, \kappa_V) = (0.02, 0.004, 1, 1, 1) \), correspond to healthy RBCs. The more rigid RBCs obey \((\kappa_S, \kappa_B, \kappa_\alpha, \kappa_A, \kappa_V) = (0.06, 0.012, 1, 1, 1) \). The former are denoted ‘s’, the latter ‘r’. The choice of \(\kappa_\alpha = \kappa_A = \kappa_V = 1 \) ensures that local area and volume deviations are restricted to a few percent.

In order to improve the statistics, all simulations have been repeated with various random initial RBC configurations. Ten and five independent runs have been performed for the softer and more rigid RBCs, respectively. All reported observables are averaged over independent runs and time in the steady state. Due to the absence of thermal fluctuations in the present model, all observed effects are shear-induced.

\[\bar{\omega} = \frac{1}{p + 1/p} \]

where \(p = a/c \) (\(a \geq b \geq c \) are the semi-axes of the ellipsoid, \(a \) and \(c \) are aligned with the shearing plane, see Fig. 3 \[28\]). For a rigid sphere \((p = 1) \), the tumbling frequency \(\omega/\dot{\gamma} = \frac{1}{2} \). One finds for the inertia ellipsoid of an undeformed RBC \(a = b = 1.1r \) and \(c = 0.36r \), and Jeffery’s solution \[28\] predicts \(\bar{\omega}/\dot{\gamma} = 0.30 \). On the contrary, for purely tank-treading cells, the average is \(\bar{\omega} = 0 \), as they do not show any tumbling activity.

Additionally, we define the instantaneous reduced angular velocity of a RBC as

\[\bar{\omega}^* := \frac{L_y}{ac\dot{\gamma}} \]

where \(ac \) is approximately the RBC cross-sectional area in the shearing plane and

\[L = \frac{1}{A} \oint dA (r \times \mathbf{v}) \]
The dilute limit \(\text{Ca}^* \) holds.

For the highest capillary number (\(\text{Ca} = 0.01 \)), the RBC can rotate without tumbling, but shape oscillations are still observed. The tank-treading motion is fully developed since it is not sufficiently deformed to undergo a tumbling motion. However, already for \(\text{Ca} = 0.05 \), the RBC can rotate without tumbling, but shape oscillations are still observed. The tank-treading motion is fully developed for the highest capillary number (\(\text{Ca} = 0.5 \)). Note that in the dilute limit \(\text{Ca}^* \approx \text{Ca} \) holds.

A first evidence for the onset of the TB-TT transition is provided in Fig. 4 where the reduced angular membrane velocity \(\bar{\omega} / \dot{\gamma} \) and the reduced tumbling frequency \(\bar{\omega} / \dot{\gamma} \) is the surface-averaged rotational component of the membrane velocity (\(\mathbf{r} \) and \(\mathbf{v} \) are location and velocity of a RBC surface element relative to the current RBC centre, respectively, and \(A \) is the RBC surface area). Note that \(\bar{\omega} / \dot{\gamma} \) is sensitive to any form of membrane rotation, even if the cell’s inertia tensor is not rotating in space (i.e., if there is no tumbling).

For the highest capillary number (\(\text{Ca} = 0.01 \)), the RBC can rotate without tumbling, but shape oscillations are still observed. The tank-treading motion is fully developed since it is not sufficiently deformed to undergo a tumbling motion. However, already for \(\text{Ca} = 0.05 \), the RBC can rotate without tumbling, but shape oscillations are still observed. The tank-treading motion is fully developed for the highest capillary number (\(\text{Ca} = 0.5 \)). Note that in the dilute limit \(\text{Ca}^* \approx \text{Ca} \) holds.

A first evidence for the onset of the TB-TT transition is provided in Fig. 4 where the reduced angular membrane velocity \(\bar{\omega} / \dot{\gamma} \) and the reduced tumbling frequency \(\bar{\omega} / \dot{\gamma} \)
The RBC orientation vector \(\hat{\rho} \) is defined as the inertia tensor eigenvector corresponding to the shortest semiaxis \(c \) (see Fig. 3). The related eigenvector of \(Q \) is called the director \(\mathbf{n} \) indicating the average orientation of the cells.

\[Q_{\alpha\beta} := \frac{1}{2} (3\delta_{\alpha\beta} - \delta_{\alpha\beta}), \quad \alpha, \beta \in \{x, y, z\}. \]

The RBC orientation vector \(\hat{\rho} \) is further supported by a survey of the dynamics at the level of the individual cells. Fig. 4 exemplifies the typical temporal behaviour of an individual RBC in a moderately dense suspension, from which one can clearly identify tumbling motion at low effective capillary numbers, whereas tank-treading is performed at large Ca*. Interestingly, even at this comparatively large value of haematocrit (45%), the typical rotational motion of an individual cell does not appear to be significantly different from that of a single cell, apart from occasional hydrodynamical collisions with its neighbours. While a more detailed analysis of these aspects will be presented in a separate work, we point out here that a comparison of the rate of flips \(\delta \) of the equivalent inertia ellipsoid on the one hand and of a suitable intrinsic membrane orientation vector \(\mathbf{r} \) on the other hand provides an independent means to distinguish tumbling from tank-treading behaviour. This is demonstrated in Fig. 7, where we plot the ratio of the total number of flips (obtained by integrating the flip rate over several decades in inverse shear rate) of the two orientation vectors. Consistent with the expectations from the analysis of the angular velocities, we find that for low effective capillary numbers, both the inertia ellipsoid and intrinsic membrane orientation vector flip at the same rate, indicative of tumbling-like motion. In contrast, at higher Ca*, only the intrinsic membrane orientation vector performs flips while the orientation of the inertia ellipsoid remains virtually fixed, as would be expected for tank-treading-like motion.

It deserves special notice that, while the TB-TT transition is fairly well understood in terms of flow gradient effects and cell deformability (it is expected to occur when the fluid stress is strong enough to push the cells through the maximum of the elastic energy) \[2\], its occurrence in a dense suspension, where collective effects play a major role, is a more complex phenomenon. Our results suggest that, even at a haematocrit of Ht = 65%, RBCs can perform a tank-treading-like motion in an effective medium whose viscosity is no longer the viscosity of the ambient fluid but the significantly higher effective suspension viscosity. It has also to be noted that, due to RBC collisions and related complicated dynamics, an unperturbed swinging or tank-treading motion for \(\text{Ca} \gtrsim \text{Ca}^* \) is not expected. Instead, the cells’ inclination and deformation fluctuate about their time averages, which can also be inferred from Fig. 6. Therefore, the term tank-treading-like is used to emphasise that the cells are not tumbling, but neither show a perfect, unperturbed tank-treading motion.
As illustrated in Fig. 8, both Q_\geq and the average inclination angle $\bar{\theta}$ (average angle between the director and the flow axis) change rapidly at $Ca^* \sim Ca^*_c$. We have also investigated the time evolution and spatial dependence of n and Q_\geq. Both quantities show only slight fluctuations about their averages. Note that RBC ordering at high shear rates has been observed experimentally [1]. Similarly to the behavior of the tumbling frequency, all simulated data follow a master curve for $Ca^*_c \geq Ca^*_c$. The power-law fit, $a/b |_{max} = 1 - 0.89 \times Ca^{-0.3}$, is shown as dashed line. There is a one-to-one correspondence between a/b and D_α. The grey area denotes the TB-TT transition. The legend applies to both panels. (c) Inclination angle probability distribution for the softer cells with $Ht = 55\%$ and selected values of Ca^*. The analytic curve for a single rigid ellipsoid (aspect ratio $p = a/c = 1.1/0.36$) is also shown. The single cell in panel (b) approaches 90° for decreasing Ca^*, as expected from the analytical solution.

A typical distribution of inclination angles is shown in Fig. 8(b). For comparison, the probability of finding the rigid inertia ellipsoid of an RBC (aspect ratio $p = a/c$) with a given orientation angle in shear flow is

$$P(\theta) \propto \frac{p + \frac{1}{p} \cos^2 \theta + \frac{2}{p} \sin^2 \theta}{\cos^2 \theta + \frac{2}{p} \sin^2 \theta}.$$

(12)

This relation can be extracted from the known expression for the angular velocity of the ellipsoid [28].

As $\dot{\gamma}$ increases, the centre of $P(\theta)$ is shifted towards larger angles and its shape becomes narrower. While the former results in an increase of $\bar{\theta}$, the latter leads to a higher orientational order Q_\geq since deviations from a given cell orientation become restricted to a narrower range. It is striking that, for $Ca^*_c \geq Ca^*_c$, the average inclination angle equals that of the isolated cell (Fig. 8(b)).

FIG. 8 (a) Order parameter and (b) average inclination angle versus effective capillary number Ca^*. The curves obtained for one single cell are also shown. The grey area denotes the TB-TT transition. The legend applies to both panels. (c) Inclination angle probability distribution for the softer cells with $Ht = 55\%$ and selected values of Ca^*. The analytic curve for a single rigid ellipsoid (aspect ratio $p = a/c = 1.1/0.36$) is also shown. The single cell in panel (b) approaches 90° for decreasing Ca^*, as expected from the analytical solution.

FIG. 9 (a) Deformation probability distribution for the softer cells at $Ht = 55\%$ for different effective capillary numbers Ca^*. For each curve, an ellipsoid is shown whose deformation parameter equals $D_{\alpha \max}^*$. The deformation parameter with maximum probability. (b) $D_{\alpha \max}^*$ versus Ca^*. The power-law fit, $a/b |_{max} = 1 - 0.89 \times Ca^{-0.3}$, is shown as dashed line. There is a one-to-one correspondence between a/b and D_α. The grey area denotes the TB-TT transition. Note the excellent agreement with the experimental data obtained for young RBCs reported in Fig. 2 in Pfafferott et al. [33] (we converted the shear stress reported therein to Ca^* by assuming a shear elasticity of $\kappa_S = 5 \mu N/m$ [23]).
C. Deformation behavior

In Fig. [9(a)], some typical deformation probability distributions $P(D_a)$ are shown. Here,

$$D_a := \frac{a/a_0 - b/b_0}{a/a_0 + b/b_0}$$

(13)

is the Taylor deformation parameter as a measure for the RBC asymmetry in the a-b-plane, where the index zero refers to the undeformed state and $a_0 = b_0$ holds for an RBC. Using this data, we determine $D_{a_{\text{max}}}$, the deformation parameter with maximum probability. It is found (Fig. [9(b)]) that the data on $D_{a_{\text{max}}}$ collapse onto a single master curve when plotted as a function of Ca^{*} for all studied values of control parameters.

In marked contrast to the behavior of tumbling frequency and orientational order parameter, $D_{a_{\text{max}}}$ shows no signature of the TB-TT transition. A similar observation for dilute RBC suspensions has been reported before [10]. The entire observed range of capillary numbers can be parameterized by a simple power law, $a/b|_{\text{max}} - 1 \propto Ca^{*0.9}$, as shown in Fig. [9(b)].

IV. CONCLUSIONS AND OUTLOOK

The focus of the present study is on the tumbling-to-tank-treading transition (TB-TT transition) in suspensions of aggregation-free red blood cells in the limit of high volume fractions where collective effects become dominant. We provide evidence that this transition occurs when the ratio of the suspension stress to the characteristic membrane stress exceeds a threshold value Ca^{*}_c, independent of volume fraction and cell deformability.

Another interesting observation is the rather rapid decay of average tumbling frequency with Ca^{*} at the onset of the TB-TT transition, $\bar{\omega}/\dot{\gamma} \propto Ca^{*-3}$. Such a non-linear relation is presumably related to the collective nature of the observed phenomenon. As yet however, we are not aware of any theoretical prediction of this relation.

The value of Ca^{*}_c coincides with that for a transition from a less ordered cell orientation distribution to a highly ordered phase. Contrarily, the average cell deformation changes continuously in the investigated parameter range following a scaling law, $\propto Ca^{*0.9}$, without any signature of the observed transition.

The above findings support the following conclusions: (i) The cell dynamics is dominated by Ca^{*} and therefore the suspension stress. The cells in the tank-treading-like state behave more like isolated particles experiencing their environment only via the suspension stress. (ii) The large degree of orientational ordering at $Ca^{*} \geq Ca^{*}_c$ is related to the onset of tank-treading-like dynamics. (iii) Cell deformation alone does not seem to be a relevant factor for the TB-TT transition.

During tank-treading, particles explore a smaller volume as compared to tumbling, thus providing a less strong hindrance to the motion of other particles. The suspension viscosity is, therefore, expected to reduce as the number of tank-treading particles increases [11, 10, 14, 35]. Hence, the present work suggests that RBC models which inherently exclude the TB-TT transition will systematically underestimate the shear thinning character of the suspension. At the same time, it opens a route to equipping coarse-grained blood models [36, 37] with proper constitutive laws for the tumbling/tank-treading probability or the average particle deformation given an ambient stress value.

Finally, while the present work focuses on the limit of high Ca^{*}, many interesting open questions remain regarding the opposite limit of small shear rates such as the possible existence of a yield stress or flow heterogeneity [38, 39].

Acknowledgements

This work is financially supported by the DFG-project VA205/5-1. We thank B. Kaoui, S. Frijters, J. Harting, and M. Ripoll for valuable discussions. We are also grateful for the computational time granted by the Juelich Supercomputing Centre (Project ESMI17). ICAMS acknowledges funding from its industrial sponsors, the state of North-Rhine Westphalia and the European Commission in the framework of the European Regional Development Fund (ERDF).

[40] The intrinsic membrane orientation vector is computed at the beginning of the simulation as the vector connecting the centre of masses of the top and bottom halves of the undeformed RBC, see Fig. 3.