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Abstract. Arti�cial intelligence is essential to succeed in challenging
activities that involve dynamic environments, such as object manipula-
tion tasks in indoor scenes. Most of the state-of-the-art literature ex-
plores robotic grasping methods by focusing exclusively on attributes
of the target object. When it comes to human perceptual learning ap-
proaches, these physical qualities are not only inferred from the object,
but also from the characteristics of the surroundings. This work proposes
a method that includes environmental context to reason on an object af-
fordance to then deduce its grasping regions. This a�ordance is reasoned
using a ranked association of visual semantic attributes harvested in a
knowledge base graph representation. The framework is assessed using
standard learning evaluation metrics and the zero-shot a�ordance predic-
tion scenario. The resulting grasping areas are compared with unseen la-
belled data to asses their accuracy matching percentage. The outcome of
this evaluation suggest the autonomy capabilities of the proposed method
for object interaction applications in indoor environments.

1 Introduction

One of the most signi�cant challenges in arti�cial intelligence is to achieve a
system that simulates human-like behaviour. Let us consider a robot in a simple
task such as �nding, collecting and delivering an object in home environments.
Given the complexity of home settings, it is hard to provide a robot with every
possible representation of the objects contained in a house. It is even harder to
feed the robot with all the possible uses of those objects. Instead of learning
all possible scenarios, suppose that a reasoning technique allows the system to
deduce an object a�ordance. As a result, o�ering the opportunity to achieve
autonomous capabilities. The term a�ordance refers to everything that de�nes
the interaction with an object, from the way to grasp it to its inherited ability to
perform di�erent tasks [10]. Thus, a�ordance de�nes all possible actions depend-
ing on the target objects’ physical capabilities. For instance, a glass cup looks
as if it can be handed over, contain liquids, or pour liquids from it. The charac-
teristics that de�ne the glass cup as a container or graspable object constitute
its a�ordance. According to di�erent theories of human perception, the psychol-
ogy of perceptual learning compounds the di�erent qualities in the environment
rather than acquiring associated responses to every object [9,3]. Thus, humans
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Fig. 1. A�ordance map model to create a correlation between the objects properties
and their environment to improve on grasp-action a�ordance.

are e�cient at deducing a�ordance for objects with di�erent appearances and
similar abilities, e.g. glasses: wine, tumbler, martini, and discern among those
with similar features but di�erent purposes, e.g. bowling pin vs water bottle.
Nonetheless, in robotics, the most common approach to learn a�ordances is from
labels [16,14,4]. This technique limits the number of learned objects, grasping
areas and a�ordance groups. Moreover, the robot is unable to interact with novel
objects. Further, by learning the limited set of responses, it is not possible to
deduce the key features that de�ne the objects a�ordance.

Using the same analogy as the theories of human perception this paper hy-
pothesises that using the semantic features of the object and its surroundings
not only improves the a�ordance grasping action towards the object but it also
allows a reasoning process that, in the long term, o�ers autonomy capabilities,
a solution not yet seen in the current literature. This work summarises an ar-
chitecture that addresses the previously described challenges. The focus is on
a�ordance reasoning for calculating grasping areas, using a combination of the
object and its environment features. Figure 1 shows the foundations of this pro-
posal, which is an extended version of the a�ordance map presented in [16]. The
proposed methodology works with the concept that an a�ordance relates at-
tributes of an object and the environment to an interactive activity by an agent
who has some ability, which relates back to the object causing some a�ordance.
In other words, the attributes of the object and the environment reside in the
context of the a�ordance, the abilities of the agent and the object in the a�or-
dance actions and the outcome of this interactive activity in the e�ects. This
work focuses on the integration of the semantic features of the previously men-
tioned environment in order to obtain a good grasp a�ordance action, from now
on referred to as grasp-action, of the object. The presented framework can reason
on the object grasping areas that are strongly related to the a�ordance group.
The reasoning process is based on a Knowledge Base (KB) graph representation.
This KB is built using semantic attributes of the object and the environment.
For every object explored by the framework, the KB uses weights to relate a
subset of attributes. This association then leads to an a�ordance category which
is highly correlated with a grasp-action area. The designed framework is assessed
not only using standard learning evaluation metrics, but it is also tested on the
zero-shot a�ordance prediction scenario. Moreover, the resulting grasping areas
are compared with unseen labelled data to asses their accuracy matching per-
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centage. The results demonstrate the suitability of the method for grasp-action
a�ordance applications, o�ering a generalised object interaction alternative with
autonomy capabilities.

2 Related Work

Many methods extract viable grasping points on objects, independently on their
a�ordance [14,1]. Others focus explicitly on the task of grasp-action a�ordance
from visual features and model parameters that are learned through reinforce-
ment learning using biologically inspired methods [23,4]. [23], interestingly em-
braces psychology theories for human development such as the ones presented
in [9] to learn from exploratory behaviours the invariants to obtain the best
grasps. Contrary, [2,15] focus on the ability-action a�ordance of the objects.
In their work, they use statistical relational learning to learn the ability a�or-
dance of di�erent objects, which shows to cope with uncertainty. Other works
go beyond the visual representation of the object and combine visual as well as
textual descriptors to build a KB [25,22]. This KB is composed of actions learned
through reinforcement learning techniques with the purpose of interacting with
the object. [8,12] work on the actions and objects relations in a single interface
representation to capture the needs of planning and robot control. Another ex-
tension is [5], they use these action complexes to extract the best grasping points
of the objects. In literature, it is extensive the use of learning techniques such
as deep Convolutional Neural Networks (CNN) to build an a�ordance model
based on the visual objects features, resulting in a plausible generalised method
given the robustness of their data [17,6]. Unlike these works, this paper presents
a methodology that combines attributes of the object and the environment to
provide a denser context for object a�ordance interaction. Thus, allowing it to
generalise the grasp-action a�ordance on similar objects.

3 Proposed Solution

In this paper, a grasp-action area of the object is the result of the relation be-
tween the object and its surrounding environment. Figure 1 shows a summary of
the proposed a�ordance model. Let us consider a glass cup in an a�ordance map
relationship. Additional to its inherited a�ordance action qualities, i.e. contain
liquids and being graspable, there are other elements that de�ne its opportunity
of interaction. For example the way in which it is being manipulated as well as the
features that describe the glass cup itself and its surrounding environment. All
these elements together de�ne the a�ordance of the glass cup. This does not mean
they are dependant of each other but rather code�ning and coherent together.
Bearing this example in mind, in Figure 1, the context C = fc1; c2; :::; cng is the
set of semantic attributes of the glass cup and its environment (such as kitchen
and living room), (fogbject [ fsgurrounding) � fCgontext. The set of available
actions, A = fa1; a2; :::; ang, is understood as a twofold: (i) the way in which
the glass cup can be approached, its suitable grasp-action areas, and (ii) the
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Fig. 2. Proposed framework for grasping a�ordance reasoning.

usages that the glass cup can achieve, its ability-action such as containing liq-
uids, (fggrasps [ fugsage) � fAgctions. The set of e�ects of performing those
actions, E = fe1; e2; :::; eng, is kept as a simple discretisation between positive
or negative e�ects, such as holding the glass cup correctly in order not to spill
the liquid, (fpgositive [ fngegative) � fEg�ects. The key attributes of the af-
fordance reasoning to get those grasp-action areas are enclosed in the form of a
KB. These methods are commonly used in arti�cial intelligence because of their
advantages for harvesting data and accessing a more extensive array of queries
regarding the essential features of a process, rather than just the result. KBs
achieve this task by connecting a collection of attributes through a general set of
rules. In this work, the attributes are the features that describe the object and
the environment and are connected through a hierarchical set of decisions that
result in the object a�ordance. This section �rst summarises the object mod-
elling stage, to then reason on the object a�ordance that is highly correlated
with the resulting grasp-action areas as schematised in Figure 2.

A KB is visualised as a graph representation, as illustrated in Figure 3 where
the entities (nodes) are connected by general rules (edges). In this setup, the en-
tities are the target object, the attributes of the object and its surrounding, and
the resulting a�ordance groups. The general rules are the attribute to attribute
relation that results from a classi�cation process. The relation between attributes
are weighted accordingly, where the higher the weight, the higher the correla-
tion between the two entities. In order to describe objects by their attributes the
best practice is to divide their features into base, semantic and discriminative
[7]. In this work, the base features, such as edges and colours, are extracted using
CNN. The semantic features are visual characteristics of the object as de�ned in
Table 1. From now on, these features will be referred to as visual semantic fea-
tures. They are the result of a deep CNN and are divided as (i) shape attributes,
these are the set of visual attributes that describe the objects geometrical ap-
pearance; (ii) texture attributes, are categories based on visual characteristics of
the objects materials; and (iii) environment attributes, which are the scenarios
in which the objects are more likely to be found in. This attribute is added with
the purpose of facilitating the object a�ordance reasoning. The implemented KB
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Attribute Entities per Attribute

Shape box, cylinder, irregular, long, round

Texture
aluminium, cardboard, coarse,

fabric, glass, plastic, rubber, smooth

Categorical
container, food, personal,

miscellaneous, utensils

Environment
bathroom, bedroom, play-room,

closet, kitchen, living room, o�ce
Table 1. Used attributes and entities of the KB graph.

considers di�erent scenarios in which the object can be located; thus the object
is not restricted to a particular environment. For example, a glass containing
liquids is more likely to be found in a kitchen and a living room. Finally, the
discriminative features are those that o�er a comprehensive understanding of the
semantic features. They are the result of a predictive decision tree model that
uses deep CNN as nodes. The KB is composed of four di�erent Deep Neural Net-
works that, through the pre-trained CNN, resnet50 [11], extract features from
the perceived images. These four di�erent deep learned CNN correspond to the
four di�erent visual semantic attributes, as described in Table 1, which result in
the deduced set of entities in a graph that de�nes a grasp-action a�ordance.

3.1 Knowledge Base Predictive Model
In this paper, the KB constitutes a data library that builds a predictive model
connected through a hierarchical set of decisions, such as the edges on Figure 3,
from now on referred as weights. These decisions are the result of a classi�cation
task of the object semantic features, represented as the nodes in Figure 3. From
each of the attributes, 8a 2 A : A 2 [1; :::;K], where K is the total number of
visual semantic features as described in Table 1, a set of weights represented as a
vector 	ak = [ 1;  2; :::;  n] is extracted, where n is the total number of entities
in that attribute. These 	ak are hierarchically connected with the next attribute
ak+1. Then 	ak o�ers a way to rank on the next best entity candidate. The
higher the  n, the higher the probability that the connected two entities among

Box

Fabric

Utensils

Hand towel

To clean

Object
Shape
Texture

Categorical

Affordance
Environment

Bathroom
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Fig. 3. Example of a cleaning object and the extracted attributes used to build the
KB graph. The higher weights 	 (red) create the reasoning to an a�ordance group.
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attributes result in a better a�ordance reasoning. These weights are proportional
to the posterior probability distribution obtained from the classi�cation task.
Such that the posterior probability distribution is de�ned as the Bayes rule:

bP (ajx) =
P (xja)P (a)

P (x)
; (1)

where x is an image belonging an attribute a, P (a) is the posterior distribution
and P (x) is a normalisation constant that consists of the sum over a of the multi-
variate normal density. Figure 3 depicts an example of an object which grasping
a�ordance can be to clean or to hand over. In this example, the weights deduce
the best path (shown in red) to the to clean grasping a�ordance. The collected
information from each of the deep CNN is then used to learn a decision tree
as a predictive model: (y; Z) = (y1; y2; y3; :::; yn; Z); where Z is the a�ordance
group that the system is trying to reason, and the vector y is the set of features
fy1; y2; y3; :::; yng used for the reasoning task. Thus, the model learns the rank-
ing that reasons on the a�ordance grasping task R(x) = 	|

Ay(x) where 	A is
the transpose of the model parameters from all the attributes and y(x) is the
set of visual features of a given image x.

3.2 Calculating the Grasping Points
Once the a�ordance is deduced, the system selects from the set of grasping points
obtained in the object reconstruction stage and limits the grasps depending
on the a�ordance reasoning obtained from the KB. In order to impose such
constraints, the space of the previously obtained grasping points is discretised
in the third dimension, z, so that the following decision on the grasping area
can be made: (i) The grasping region should lie on those points located in the
central subspaces of the discretised space for objects that are meant to contain
edibles. (ii) For the rest of objects, it is considered as the grasping region those
subspaces where the density of grasping points is higher than a threshold, given
that the a�ordance action-e�ect is not critical.

4 Evaluation

This work’s goal is to achieve a system able to reason on the object grasp-action
a�ordance, thus o�ering autonomy capabilities. As a result, it is of interest to
evaluate the KB on (i) its attribute accuracy classi�cation, and (ii) its reasoning
e�ciency with similar objects.

4.1 System Setup
The setting up of the system consists on collecting the required data for the
training and the assessment of the method. This collection is built using two
di�erent datasets that are manually organised into entities of the attributes
described in Table 1. After passing through the predictive model in the KB,
every object in the library is expected to fall into: to eat, to contain, to hand
over, to brush, to squeeze, to clean or to wear. The �rst set of images is from
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Classi�er Accuracy

Shape 95.71%

Texture 98.83%

Categorical 99.91%

Environment 76.50%
Table 2. Each of the attributes classi�cation accuracies.

the Washington-RGB dataset, which contains 300 objects providing the point
clouds and the two-dimensional (2-D) images for each one of the instances [13].
The second dataset is the MIT indoor scene recognition that contains 15;620
di�erent 2-D images of 67 di�erent indoor scenes from which this work uses seven
of those classes [20]. By unifying these two datasets, the objects are correlated
to the environment in which they are more likely to be located. Both datasets
are split into 70% for training and the remaining 30% for testing. These subsets
are used to train and test a battery of classi�ers that help to de�ne good object
a�ordances features. In order to represent the obtained grasping area of the
objects, an ellipse with the iCub humanoid robot end-e�ector dimensions is
simulated. The orientation of such ellipse is out of the scope of this work and
the focus remains on the position of the grasping area.

4.2 Reasoning on the A�ordance
A summary of the accuracies per deep CNN in the KB is presented in Table 2. As
a reminder to the reader, the aim of the proposed methodology is not to improve
the performance of the individual classi�ers. Nonetheless, the illustrated accura-
cies match the state-of-the-art results shown in [11,13]. To evaluate the overall
performance of the KB, the accuracies before and after adding the environment
features were collected. Figure 4 shows the data for both cases. A lower accu-
racy is obtained in the case where the environment features are not included, as
illustrated in Figure 4(a) and Figure 4(b). Furthermore, Figure 4(a) not includ-
ing the environment shows a slightly higher spread among di�erent a�ordance
classes. This misclassi�cation is the case for a�ordances which objects have a
general semantic categorical attribute such as \miscellaneous" or \container".

Accuracy: 92.57%
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Fig. 4. A�ordance category classi�cation performance: (a) before adding environment
features, showing an average diagonal accuracy of 92.57%; (b) after including the en-
vironment, showing a diagonal average accuracy of 96.81%.
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Fig. 5. Distributional posterior probabilities per class of the KB before (shown in black)
and after (shown in magenta) the environment features.

Thus, a percentage of objects are misclassi�ed among the to contain, to brush,
to eat, and to squeeze categories. Regarding grasping, this miscue represents a
signi�cant adverse e�ect, especially for objects which real a�ordance is to con-
tain, and its misclassi�cation results in the system lifting up the object from any
point, risking dropping its content. This risk is reduced by 4:24% when adding
the environment features, as portrayed in Figure 4(b), especially in categories
such as to contain, to hand over and to eat. The posterior probability distribu-
tion of the a�ordances categories is also evaluated. Figure 5 shows that while
there is a decrement in the distribution for some categories such as to hand,
there is an increment for others such as to clean. This change in the distribution
is accredited to the variation in environments where these objects are found.

4.3 Zero-shot A�ordance

(a) to hand over
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Fig. 6. Zero-shot a�ordance prediction on semantically similar objects. The original
images contain the labels (rectangles) for the preferred grasping regions from [14,24].

Considering the changing nature of indoor scenes, it is useful to measure the
method’s a�ordance prediction on new objects. In this work, the object a�or-
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dance is limited to its grasping action and is seen as the combination of the
action-e�ect pair that results from the observations of the object and its envi-
ronment. Zero-shot a�ordance, in this case, refers to the a�ordance prediction
of a familiar but previously unseen object. For this part of the experiments, a
set of semantically similar objects has been chosen from a third dataset, Cor-
nell [24]. This dataset is used to learn how to grasp objects in other works such
as [14,24]. These works exploit the fact that the Cornell dataset contains the
three-dimensional (3-D) point cloud of the objects and their corresponding la-
belled grasping regions in the form of rectangles. From the Cornell dataset, 22
semantically similar objects to the ones used for the training of the KB are cho-
sen, obtaining an average accuracy of 81.3% on the object a�ordance reasoning.
In order to deduce the a�ordance of an unknown object, the same hierarchical
procedure previously explained is followed. The set of weights 	A has ranked
a connection of attributes that results in an a�ordance, depending on the per-
ceived semantics. Furthermore, this hierarchical connection has been learned in
a predictive model to result in the grasping areas of the object. Figure 6 shows
a sample of the familiar objects tested using the KB with their a�ordance group
and deduced grasping area (shown with the red ellipse). Out of this subset, the
most critical case is shown by the ones which a�ordance is to contain edibles,
the cup and the mug in Figures 6(b) and 6(d), for which the grasping areas are
correctly calculated.

5 Discussion

The proposed methodology is not only able to (i) reason on the object a�ordance
of known and semantically similar objects, but also (ii) to extract a suitable
grasp-action region of the target depending on the interpreted a�ordance. Given
these features, this section discusses the performance of the KB on discerning
the a�ordance of semantically similar objects, followed by a comparison of the
obtained grasp-action regions with other methods’ ground truth data.

5.1 Similar Shape, Di�erent A�ordance
One of the most signi�cant arguments for building this framework is to help a
robot generalise on object a�ordances. That is to say, just as humans succeed
at generalising an action towards objects of the same category with signi�cantly
di�erent shapes, e.g. glasses: wine, tumbler, martini, and di�erentiate how to
manipulate objects with similar shapes but for di�erent purposes, e.g. candle vs
water bottle. Given the objects in the library, it is of interest to evaluate the
di�erent a�ordance and grasping regions obtained for objects with similar shape
but di�erent a�ordance thus di�erent preferred grasping regions. Figure 6(b) and
Figure 6(e) are examples of two di�erent everyday objects (a cup and a candle
respectively) with considerably di�erent a�ordance, where the located grasping
regions di�er according to the deduced a�ordance of the object.

5.2 Quality on the Calculated Grasping Area
Di�erent works have been done in the �eld of a�ordance detection and grasping.
However, they commonly learn a labelled set of data in order to be able to iden-
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tify the grasping regions. Contrary to these techniques, the method presented in
this paper deduces the grasping region without any a-priori information about
the grasping points. Given that the presented method does not train on grasp
labels, in order to evaluate its output, it is compared to the ground truth labels
of the Cornell dataset. There are works that use deep learning techniques to
learn the grasping points of the objects mapped in the Cornell dataset images
[14,24,21]. It is worth mentioning that these works do not account for a�ordance
learning but for object classi�cation. They simulate the end-e�ector with a rect-
angle, allowing it to account for its orientation, and use point and rectangle
metrics to measure the mean square error (MSE) between their ground truth
and the obtained grasps. Their proposed point metric computes the centre point
of the predicted rectangle and considers the grasp as a success if it is within
some distance from at least one of the ground truth rectangles. Contrary to
this work, their labelled grasping areas are based on their end-e�ector control,
and kinematic constraints and not on object a�ordance. Thus, a direct quanti-
tative comparison is not viable. However, it is possible to use a modi�ed version
of their proposed point metric. The results of this work can be qualitatively
evaluated by visually inspecting the resulting area. Moreover, quanti�ed by the
percentage of grasping regions that coincide between both sets of data, i.e., the
labelled rectangles of the Cornell dataset and the ellipses of this proposal. In
order to obtain such percentage, the Euclidean distance from the centre point of
the labelled rectangles, observation a, to the centre point of the superellipsoid,
observation b, is measured and expected to be below a set threshold. From the
Cornell dataset, a subset of 65 random images was taken, including images from
di�erent perspectives of the same object. These images were categorised into an
a�ordance group, illustrating their provided grasping label as a red rectangle on
the 2-D image, as seen in Figure 6. By measuring the Euclidean distance, 88% of
the calculated grasps using the KB proposed in this work fall inside the labelled
grasping regions. The other 12% falls either close to a valid region, or entirely
in a new area given that it has followed the constraints of the grasps depending
on the object a�ordance, as it is the case of the cup in Figure 6(b).

6 Conclusions and Future Work

Contrary to the available methods, the framework presented in this paper is
able to (i) reason on the a�ordance grasp-action of known and familiar objects
without previously acknowledging the grasping areas, thus (ii) o�ering a reason-
ing process for object interaction with autonomy capabilities. The results of the
evaluation performed on the framework support the hypothesis presented at the
beginning of this work: that the grasp-action a�ordance does not depend solely
on the object semantic features but on their combination with the features that
describe the environment. The results show that without any a-priori awareness
on the grasping regions, the designed KB can reason on the object’s a�ordance
grasping points. The presented framework has room for improvement. The per-
formance of the KB can be increased by adding more attributes to the base,
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as well as modifying the predictive model to classify more than one a�ordance
at the time (for example, an object’s a�ordance can be to hand over as well as
to clean). Furthermore, the dynamics and system control schemes of the robot
and the environment are considered out of the scope of the presented work.
Nonetheless, [18,19] o�ers a learning-based framework that comprises relative
and absolute robotic skills for dual-arm manipulation suitable for dynamic en-
vironments, that together with a dense context representation of the scenario
semantics o�ers a complete solution for an interactive object platform.
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