Two-dimensional frameworks built from Single-Molecule Magnets

Athanassios D. Katsenis,1 Ross Inglis,2 Alessandro Prescimone,2 Euan K. Brechin2,* and Giannis S. Papaefstathiou1,*

[1] Laboratório de Química Inorgânica, Departamento de Química, Universidade Nacional da Atenas, Panepistimiopolis, Zografou, Grécia.

[2] EaStCHEM, School of Chemistry, Joseph Black Building, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.

*Corresponding authors; G.S.P. e-mail: gspapaef@chem.uoa.gr, fax: +30 210-727-4782, tel: +30 210-727-4840; E.K.B. e-mail: ebrechin@staffmail.ed.ac.uk, tel: +44 131 650 7545

Supporting information:
† Electronic Supplementary Information (ESI) available: CIF files of complexes 1 and 2, and Figures. See http://dx.doi.org/10.1039/C2CE06536C

Funding information:
This paper is linked to research project ‘Advanced Fellowship: Novel Single-Molecule Magnets’ that acknowledges EPSRC funding (ref. GR/S49575/02).

Keywords:
networks; complexes; clusters; family; dimer; units
Abstract

Fine tuning the Mn / salicylaldoxime / trimesic acid reaction conditions leads to the formation of a regular 2D net held together by dative bonds and to a non-regular 2D net stabilised by both dative and hydrogen bonds. Both networks are built from [Mn₆] Single-Molecule Magnets.

Introduction

Since it has been established that the physical properties of crystalline molecular materials can be influenced by crystal packing effects and intermolecular interactions (e.g. hydrogen bonding, π⋯π interactions etc), we and others have been investigating how to manipulate the magnetic properties of Single-Molecule Magnets (SMMs) in the solid state by modulating their surroundings. To this end, we recently exploited certain members of a family of hexanuclear, [Mn₆], and trinuclear, [Mn₃], Mn³⁺ complexes of general formulae [Mn³⁺₆O₂(R-sao)₆(O₂CR)₂(L)₄] and [Mn³⁺₃O(R-sao)₃(X)(L)₃] (saoH₂ = salicylaldoxime; R = H, Me, Et etc; X = RCO₂⁻, ClO₄⁻; L = solvent) as building blocks for constructing discrete and infinite supramolecular architectures with the use of both bis-pyridyl and bis-carboxylate type ligands. Both types of bridging ligands resulted in, among others, coordination polymers built from either [Mn₃] or [Mn₆] clusters. The bis-pyridyl type ligands gave rise to both one- (1D) and two-dimensional (2D) coordination polymers based on [Mn₃] SMMs while the bis-carboxylate ligands resulted in 1D coordination polymers incorporating [Mn₆] SMMs.

Having in mind that the incorporation of bis-carboxylate ligands resulted in polymeric species where the [Mn₆] clusters retained their single molecule behaviour, we sought to construct higher dimensionality coordination polymers (i.e. 2D or 3D) built from [Mn₆] SMMs and polycarboxylate ligands. For this purpose, we incorporated 1,3,5-benzene-tricarboxylic acid (trimesic acid, tmaH₃) into blends of manganese / saoH₂ reaction mixtures to isolate the 1D coordination polymer [Mn₆O₂(sao)₆(tmaH)(MeOH)₈.₅(H₂O)₀.₅·(MeOH)₀.₇₅(H₂O)₀.₁₂₅] and the 2D coordination polymer [Mn₆O₂(sao)₆(tma)(MeOH)₃.₃₃(H₂O)₁.₃₃·(MeOH)₄.₄₆(H₂O)]·(MeOH)₄.₄₆(H₂O). Both polymers are constructed from [Mn₆] SMM building blocks. Besides the efforts to intentionally link SMMs or magnetically interesting clusters, higher dimensionality (i.e. 2D, 3D) polymers are scarce.

Complex 2 represents a rare 2D framework constructed intentionally from SMMs building blocks.

Although it is possible to employ pre-formed [Mn₆] and [Mn₃] species as starting materials for the synthesis of polymeric materials [they are solution stable as gauged by NMR, mass
spectrometry and solution SQUID magnetometry7, it is much more efficient to simply perform the reactions \textit{in situ}. The Mn(ClO\textsubscript{4})\textsubscript{2}·6H\textsubscript{2}O / saoH / tmaH\textsubscript{3} / base reaction blend is however very sensitive to reaction conditions and indeed it produces different complexes depending on the order of addition of the reagents. The 1D coordination polymer 1 is produced when tmaH\textsubscript{3} is added into an alcoholic solution containing Mn(ClO\textsubscript{4})\textsubscript{2}·6H\textsubscript{2}O / saoH / MeONa, while the 2D coordination polymer 2 is formed when MeONa was added into an alcoholic solution containing Mn(ClO\textsubscript{4})\textsubscript{2}·6H\textsubscript{2}O / saoH / tmaH\textsubscript{3}. Complex 1 was isolated serendipitously during our efforts to synthesise the targeted 2D coordination polymer 2.

Complex 1 (Figure 1) crystallises in the triclinic space group $P\overline{1}$.‡ The assymetric unit consists of two tmaH\textsubscript{2}− anions, one [MnIII\textsubscript{6}] and two [MnIII\textsubscript{3}] units.† In effect, there are two crystallographically independent [Mn\textsubscript{6}] clusters, namely [Mn\textsubscript{6}]\textsubscript{A} and [Mn\textsubscript{6}]\textsubscript{B}, repeating along the chain of 1. Each [Mn\textsubscript{6}] unit consists of two off-set, stacked [MnIII\textsubscript{3}O(sao)\textsubscript{3}]+ triangles linked by two oximato O- atoms, while one phenolato O- atom bridges between the [Mn\textsubscript{3}] subunits in [Mn\textsubscript{6}]\textsubscript{A}. Four sao\textsubscript{2}− ligands bridge along the edges of the [Mn\textsubscript{3}] subunits in a $\mu_{5}:\eta^{1}:\eta^{1}:\eta^{2}$ fashion, one in a $\mu_{5}:\eta^{2}:\eta^{3}:\eta^{1}$ fashion while the remaining seven sao\textsubscript{2}− ligands adopt the $\mu_{5}:\eta^{1}:\eta^{1}:\eta^{3}$ coordination mode. Ten out of the twelve crystallographically independent MnIII atoms are in an (axially) elongated octahedral environment with one MnIII in each of the [Mn\textsubscript{6}] clusters being five-coordinate and in a square pyramidal environment. Nine MeOH molecules (one is 50\% disordered with a H\textsubscript{2}O molecule) occupy the Jahn Teller positions on the MnIII ions, with the remaining sites coordinated by carboxylato O- atoms from the two crystallographically independent tmaH\textsubscript{2}− ligands. These ligands adopt the $\mu_{5}:\eta^{1}:\eta^{1}:\eta^{1}$ and $\mu_{5}:\eta^{1}:\eta^{1}:\eta^{1}$ coordination modes, respectively. The Mn-N-O-Mn torsion angles for [Mn\textsubscript{6}]\textsubscript{A} are 32.55° for Mn4-N-O-Mn5, 38.22° for Mn5-N-O-Mn6, 21.47° for Mn6-N-O-Mn4, 41.83° for Mn7-N-O-Mn8, 12.25° for Mn8-N-O-Mn9 and 30.13° for Mn9-N-O-Mn7. For [Mn\textsubscript{6}]\textsubscript{B} the corresponding angles are 18.00° for Mn1-N-O-Mn2, 8.18° for Mn2-N-O-Mn3, 13.44° for Mn3-N-O-Mn1, 15.99° for Mn10-N-O-Mn11, 9.05° for Mn11-N-O-Mn12 and 18.44° for Mn12-N-O-Mn10.
Figure 1. (top) The asymmetric unit of complex 1. (bottom) The hydrogen-bonded chains of complex 1 creating a non-regular 2D framework. Most hydrogen atoms and some carbon atoms of the sao\(^2\)-ligands have been omitted for clarity. Colour code: Mn: purple, O: red, N: blue, C: grey, H: cyan.

The chains of 1 are arranged in parallel, with the free carboxylic acid groups of the tmaH\(^2\)-ligands able to donate a hydrogen bond to a phenolato O-atom and accept a hydrogen bond from a neighbouring coordinated MeOH molecule, thus bridging between chains to create a 2D non-regular network (Fig. 1) with vertex symbol \((4.6^2;4.6.4.6)\). The tmaH\(^2\)-ligands and the [Mn\(_6\)]\(_B\) clusters serve as 3- and 4-connected nodes within the 2D network, respectively, with [Mn\(_6\)]\(_A\) simply bridging between the tmaH\(^2\)-ligands.

Complex 2 also crystallises in the triclinic space group \(P\bar{T}\).‡ The asymmetric unit consists of one tma\(^3\)-anion and three [Mn\(^{III}\)O(sao)\(_3\)]\(^+\) subunits (Fig. 2).† This arrangement gives rise to three crystallographically independent [Mn\(_3\)] clusters, with each sitting on an inversion centre. Two off-set stacked [Mn\(^{III}\)O(sao)\(_3\)]\(^+\) triangles linked by two oximato O-atoms create each [Mn\(_3\)] cluster. Therefore, four sao\(^2\)-ligands bridge along the edges of the [Mn\(_3\)] subunits in a \(\mu_2\eta^1\cdot\eta^1\) fashion, while two sao\(^2\)-ligands adopt the \(\mu_3\eta^1\cdot\eta^1\cdot\eta^2\) coordination mode. Two Mn\(^{III}\) ions in each [Mn\(_3\)] are five-coordinate in a square pyramidal environment while the remaining four Mn\(^{III}\) ions are in an (axially) elongated octahedral environment. Ten MeOH and four H\(_2\)O molecules, ten carboxylate O-atoms from the tma\(^3\)-ligands and six oximato O-atoms from the sao\(^2\)-ligands.
occupy the Jahn Teller positions on the Mn$^{\text{III}}$ ions. The tma$^{3-}$ ligand bridges five Mn$^{\text{III}}$ ions, from three different [Mn$_6$] clusters, adopting the $\mu_5:\eta^1:\eta^1:\eta^1:\eta^1$ coordination mode. The Mn-N-O-Mn torsion angles are 9.45° for Mn1-N-O-Mn2, 1.81° for Mn2-N-O-Mn3 and 31.37° for Mn3-N-O-Mn1 for the first [Mn$_6$], 24.64° for Mn4-N-O-Mn5, 14.67° for Mn5-N-O-Mn6 and 18.22° for Mn6-N-O-Mn4 for the second [Mn$_6$] and 2.33° for Mn7-N-O-Mn8, 29.81° for Mn8-N-O-Mn9 and 22.60° for Mn9-N-O-Mn7 for the third [Mn$_6$].

The [Mn$_6$] clusters and the tma$^{3-}$ ligands assemble to create a regular 2D network with a (6,3) topology, commonly known as a honeycomb, with the tma$^{3-}$ ligands serving as 3-connected nodes and the [Mn$_6$] clusters as the spacers (Fig. 2).

Figure 2. (top) The asymmetric unit of complex 2. (bottom) The 2D framework of complex 2. All hydrogen atoms and many carbon atoms of the sao$^{2-}$ ligands have been omitted for clarity. Colour code as in Figure 1.
Previous studies of molecular salicylaldoxime-based [Mn$^{III}_6$] and [Mn$^{III}_3$] clusters have shown that their magnetic behaviour is strongly correlated to small geometrical changes. Specifically, the sign and magnitude of the exchange (J) between neighbouring MnIII ions is dependent on the Mn-N-O-Mn torsion angle. Unfortunately the presence of more than one crystallographically independent [Mn$_n$] in the crystal structures of both 1 and 2, which possess different geometries, precludes a detailed quantitative analysis of the magnetic behaviour.

Solid state dc magnetic susceptibility data for 1 and 2 were recorded between 275 and 5 K in an applied field of 0.1 T. The plots of $\chi_M T$ versus T for 1 and 2 are shown in Fig. S1. The $\chi_M T$ products at 275 K are 16.54 and 14.95 cm3 mol$^{-1}$ K for 1 and 2, respectively, close to the spin-only ($g = 2$) value of 18 cm3 mol$^{-1}$ K expected for a [Mn$_n$] unit comprising six high spin MnIII ions. The $\chi_M T$ values for both complexes remain approximately constant as the temperature is lowered, before dropping more rapidly at temperatures below 125 K. Thereafter, the $\chi_M T$ value for complex 1 decreases constantly to reach a value of 9.1 cm3 mol$^{-1}$ K at 5 K, while that for complex 2 decreases to a value of ~8.0 cm3 mol$^{-1}$ K at 20 K and then plateaus to 5 K. The decrease of the $\chi_M T$ product upon cooling to smaller but non-zero values is consistent with the presence of both antiferromagnetic and ferromagnetic interactions between the MnIII ions with the low-temperature values indicating $S \approx 4$ spin ground states for the [Mn$^{III}_6$] units in both complexes. Indeed we note that the $\chi_M T$ behaviour for 1 and 2 is very similar to that observed for previously reported and magnetically isolated [Mn$^{III}_6$] complexes with $S = 4$ spin ground states. For comparison we include in Figure S1 the data for [Mn$_n$O$_2$(sao)$_n$(ketoacetate)$_2$(EtOH)$_2$(H$_2$O)$_2$] (3) and [Mn$_n$O$_2$(sao)$_n$(1-Me-cyclohexit)$_2$(MeOH)$_4$] (4) from reference 3c which contain [Mn$_n$] with similar Mn-N-O-Mn torsion angles. In order to investigate the possibility of long range antiferromagnetism we performed zero field ac susceptibility measurements on 1 and 2 in the 1.8 – 10 K temperature range with a 3.5 G ac field oscillating at frequencies ranging from 50 – 1000 Hz (Fig. 3). A cusp in the real component χ' (Fig. S3) is accompanied by a non-zero imaginary component χ'' at ~3 K. The maxima for both are strongly frequency dependent, suggesting super-paramagnetic blocking of the magnetisation. Arrhenius plots (inset Fig. 3) constructed from the χ'' data afford $r_0 = 3.3 \times 10^{-9}$ s and $U_{\text{eff}} = 32.84$ K (22.82 cm$^{-1}$) for 1, and $r_0 = 5.6 \times 10^{-6}$ s and $U_{\text{eff}} = 24.54$ K (17.05 cm$^{-1}$) for 2. The presence of significant inter-[Mn$_n$] interactions would be expected to slow down the spin dynamics at low temperatures and this would be manifested in a smaller frequency shift, k. Using the average values of blocking temperatures (T_B) of 2.70 K for 1 and 2.69 K for 2, the frequency shift of T_B is calculated as $k = \Delta T_B/(T_B \Delta \log f)$, where ΔT_B is the change in T_B for the given change in frequency $\Delta \log f$, were $\Delta \log f = 1.30$ for both complexes. This provides values of 0.19 and 0.24 for 1 and 2, respectively, which are within the range expected for super-paramagnets and close to those reported for molecular [Mn$_n$] complexes. This suggests that the relaxation is in accordance with SMM behavior, and is not attributed to long
range interactions mediated through the polycarboxylate ligands.

Figure 3. Plot of χ'' versus T for complex 1 at the indicated temperature and frequency ranges. Inset: Arrhenius plot constructed from the χ'' data to afford $\tau_0 = 3.3 \times 10^{-9}$ s and $U_{\text{eff}} \approx 33$ K.

To conclude, we presented two new coordination polymers built from $[\text{Mn}_n]$ clusters and trimesate anions. The first polymer conforms to a non-regular 2D net held by both dative and hydrogen bonds, while the second adopts a regular 2D net held together exclusively by dative bonds. Both polymers consist of magnetically isolated $[\text{Mn}_n]$ SMMs with $S \approx 4$ ground states. We continue exploiting $[\text{Mn}_{3/6}]$ SMMs as starting materials for the construction of polymeric molecular magnetic materials with the next stage being to introduce added functionality through the presence of redox-active or radical linker ligands which might enable [stronger] communication between the cluster building blocks.
Notes and references

† Crystal data for 1: C_{224}H_{220}Mn_{24}N_{24}O_{101.50}, M = 6190.80, triclinic, a = 12.5838(4) Å, b = 19.5656(5) Å, c = 25.6050(6) Å, α = 99.792(2)°, β = 90.436(2)°, γ = 97.756(2)°, V = 6152.5(3) Å³, T = 100(2) K, space group P1̅, Z = 1, 121047 reflections measured, 24245 independent reflections (R_{int} = 0.1296).

The final R values were 0.0674 (I > 2σ(I)). The final wR(F²) values were 0.1494 (I > 2σ(I)). The final R values were 0.1601 (all data). The final wR(F²) values were 0.1759 (all data).

Crystal data for 2: C_{83.70}H_{100.80}Mn_{9}N_{9}O_{42.20}, M = 2402.52, triclinic, a = 14.7534(4) Å, b = 16.3686(4) Å, c = 22.2983(6) Å, α = 101.659(2)°, β = 101.396(2)°, γ = 96.649(2)°, V = 5101.3(3) Å³, T = 100 K, space group P1̅, Z = 2, 42686 reflections measured, 19808 independent reflections (R_{int} = 0.055). The final R values were 0.0744 (I > 2σ(I)). The final wR(F²) values were 0.0128 (I > 2σ(I)). The final R values were 0.1160 (all data). The final wR(F²) values were 0.0128 (all data).

