
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Position-Dependent Arrays and Their Application for High
Performance Code Generation
Citation for published version:
Pizzuti, F, Steuwer, M & Dubach, C 2019, Position-Dependent Arrays and Their Application for High
Performance Code Generation. in FHPNC 2019: Proceedings of the 8th ACM SIGPLAN International
Workshop on Functional High-Performance and Numerical Computing. ACM Association for Computing
Machinery, pp. 14-26, FHPNC 2019 Functional High-Performance and Numerical Computing
, Berlin, Germany, 18/08/19. https://doi.org//10.1145/3331553.3342614

Digital Object Identifier (DOI):
/10.1145/3331553.3342614

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
FHPNC 2019: Proceedings of the 8th ACM SIGPLAN International Workshop on Functional High-Performance
and Numerical Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Dec. 2022

https://doi.org//10.1145/3331553.3342614
https://doi.org//10.1145/3331553.3342614
https://www.research.ed.ac.uk/en/publications/dc59380e-9269-44fd-8c53-92faec083193


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Position-Dependent Arrays and Their Application
for High Performance Code Generation

Federico Pizzuti
The University of Edinburgh

Edinburgh, Scotland, United Kingdom
federico.pizzuti@ed.ac.uk

Michel Steuwer
University of Glasgow

Glasgow, Scotland, United Kingdom
michel.steuwer@glasgow.ac.uk

Christophe Dubach
The University of Edinburgh

Edinburgh, Scotland, United Kingdom
christophe.dubach@ed.ac.uk

Abstract
Modern parallel hardware promises unprecedented perfor-
mance, for the gifted few experts who can program it cor-
rectly. Code generators from high-level languages provide
an attractive alternative, promising to deliver high perfor-
mance automatically. Existing projects such as Accelerate,
Futhark, Halide, or Lift show that this approach is feasible.
Unfortunately, existing efforts focus on computations over
tensors: regularly shaped higher dimensional arrays. This
limits the expressiveness of these approaches and excludes
many interesting data structures that are commonly encoded
manually in memory, such as trees or triangular matrices.

This paper presents an extended array type that lifts this
restriction. For multidimensional arrays, the size of a nested
array might depend on its position in the surrounding ar-
rays, which enables the expression of computations over less
regularly shaped data structures. However, these position-
dependent arrays bring new challenges for high-performance
code generation, as determining the position of the elements
in memory becomes more challenging.

This paper shows how these challenges are addressed by
extending the existing Lift type system and compiler. The
experimental results show that this approach enables the
efficient code generation of triangular matrix-vector multi-
plication, with performance improvements over cuBLAS on
an Nvidia GPU by up to 2×. Furthermore, we show a use case
for a low-level optimization for avoiding unnecessary out-of-
bound checks in stencils, leading to up to 3× improvements
over already optimized generated stencil codes.

1 Introduction
Domain specific code generators enables the generation of ef-
ficient parallel code from high-level abstractions. These code
generators attempt to fulfill the high-performance needs
of many domains, such as machine learning, that crucially
rely on the efficient exploitation of high-performance hard-
ware such as GPUs. It is extremely challenging, even for
experts, to write correct and efficient programs in low-level
programming approaches such as CUDA or OpenCL. Code
generation from high-level abstractions offers an attractive

Conference’17, July 2017, Washington, DC, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

alternative and recent research has provided significant ad-
vances with projects such as Accelerate [13], Futhark [11],
Halide [14], and Lift [17, 18]. There has been particular in-
terest from industry in high performance code generations
for deep learning with projects such as Tensor Comprehen-
sions [19], Glow [16] for compiling PyTorch networks, as
well as XLA [8] for compiling TensorFlow graphs.

The focus of existing work in this area has been on com-
putations over regularly shaped higher-dimensional arrays,
know as tensors. Many important application domains fall
into this category, but there also exist many important appli-
cations that require more irregularly shaped data structures.
For instance, triangular matrices are extremely important in
many fields, as they are commonly used to perform efficient
inversion of symmetric matrices [3]. Moreover, many phys-
ical phenomena can be modelled using matrices that have
unusual characteristics, such as banded matrices, or even
more exotic type of matrices [7].
For such applications, irregularly shaped data must cur-

rently be encoded manually in the provided regular-shaped
arrays. This leads to increased complexity for the program-
mer, possible inefficiencies in memory usage and compute
time, and ultimately defies the purpose of a high-level code
generator. Encoding irregularly shaped data explicitly in
memory is well known to low-level programmers who are
forced to manually encode higher-level data structures in
flat memory buffers.
In this paper, we present our approach to generate effi-

cient parallel code for irregularly shaped data by extending
the functional Lift intermediate representation and code
generator. Crucially, we show how an extension of the type
system with a limited form of dependent types enables us to
generate efficient parallel code for computations over irreg-
ularly shaped data, without much changes in the way the
Lift code generator operates. We also tackle the challenges
that such irregularly shaped data bring for memory access
calculation when indexing elements.
High-level Lift programs are composed of well known

high-level primitives such as map or reduce. Such programs
are transformed by the Lift compiler into a low-level form
using a set of rewrite rules that are applied in an automated
optimization process. Finally, efficient parallel code is gener-
ated from an optimized low-level program. Our extension
to Lift ensures that existing primitives continue to work

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Federico Pizzuti, Michel Steuwer, and Christophe Dubach

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

over irregularly shaped arrays. Furthermore, we add a new
primitive — partition — to break down a one-dimensional
array into an irregularly shaped two-dimensional structure.
This primitive is useful for encoding lower level optimiza-
tions, such as avoiding out-of-bound checks for stencil codes.
Our implementation carefully extends Lift to reuse as much
existing infrastructure as possible.

Our experimental results demonstrates that the extended
Lift code generator is capable of generating efficient parallel
GPU code for a number of important use-cases operating on
irregular data. For triangular matrix-vector multiplication,
a crucial numerical kernel included in BLAS, we achieve
performance on par with cuBLAS on an Nvidia GPU and
even a speedup of 2× for certain input sizes. By using the
partition primitive, we improve the performance of GPU
stencil code by avoiding out-of-bound checks resulting in
up to 3× improvements for certain stencil sizes.
To summarize the contributions of this paper:

• We present a generalization of array types capable of
representing irregularly shaped data such as triangu-
lar arrays and discuss our design and implementation,
including a partition primitive for introducing irregu-
larity into regular arrays (Section 4);

• We show how we generate efficient array indices us-
ing symbolic simplification extended to deal with the
position dependent arrays (Section 5);

• We present performance results for two case studies
demonstrating that our approach generates efficient
parallel code with performance improvements of up to
2× compared to the tmrv kernel in cuBLAS as well as
performance improvements of up to 3× over already
optimized stencil code by automatically avoiding un-
necessary boundary checks (Section 6).

We first start with amotivation (Section 2) and background
information about traditional array types (Section 3).

2 Motivation
The ever growing demand of increased performance is fu-
eling the development of domain specific code generators
to automatically generate high performance code from high
level notations. Academic projects such as Accelerate [13],
Futhark [11], or Lift [17, 18] use functional languages as
compiler intermediate representation for high performance
code generators. This approach has the advantage that code
generation is guided by a strong formal foundation, including
a type system and formal semantics.

Lift, for example, tracks the size of multi-dimensional ar-
ray dimensions in the type system and uses this information
for the generation of loop bounds and array indices. This
allows for a high level notation that omits details such as
indexing arrays while typing guarantees that the informa-
tion required for generating correct array indices in the low

Figure 1. Triangular matrix vector multiplication

level program are always accessible. Similarly, Accelerate
and Futhark track the shape of multidimensional arrays.

The representation of regularly shaped multidimensional
arrays in a type system is well known in the functional pro-
gramming community and it is well understood how such
arrays are represented when flattened in memory. However,
the type systems used for functional intermediate represen-
tations are so far not expressive enough to represent other
useful less regular data multi-dimensional structures such
as triangular matrices. Triangular matrices for instance, are
used when dealing with some classes of partial differential
equations and least square problems, and are commonly used
to represent systems of equations, as discussed by de Cas-
tro Martins et al. [6].
In this paper, we investigate how multi-dimensional ar-

rays representing less regularly shaped data are represented
at the type level and how to generate high performance code
for them. We look at two use cases of computations in detail:
triangular matrix vector multiplication and the use of irregu-
larly shaped array as a compiler internal data structure to
optimize avoidance of out-of-bound checks for stencils. These
two very different use cases have been chosen to highlight
the potential of our generic approach.

2.1 Use-case 1: Triangular matrix vector
multiplication

Triangular matrices naturally appear in different areas of
mathematics, for example when solving linear equations.
Triangular matrix vector multiplication is a fundamental
building block included in the basic linear algebra subrou-
tines (BLAS) API in form of the trmv kernel. Figure 1 shows
a visualization of the operation. Since the matrix has a tri-
angular shape, for each row i the dot product is computed
only with the first i elements of the vector.
In current systems such as Accelerate, Futhark, or Lift,

it is unclear how a triangular matrix should be represented,
as their type systems are not expressive enough to precisely
represent a triangular matrix. Instead, the programmer is
forced to change how to express the computation, how to
represent the data or how to do both, e.g., by flattening the
matrix into a one dimensional array and use manual index
computations, or by wastefully representing the data as a
regular rectangular matrix filled with zeros.
As we will see, section 4 presents a type system that is

capable of precisely capturing the shape of the triangular
2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Position-Dependent Arrays for High Performance Code Generation Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

1 val sumNbh = fun(nbh => reduce(add , 0.0f, nbh))
2 val stencil = fun( A: Array(Float , N) =>
3 map(sumNbh , slide(3, 1, pad(1, 1, clamp , A))))

Listing 1. 3-Point Jacobi Stencil in Lift. From [10].

1 for(int i = 0; i < N; i++) { int sum = 0;
2 for(int j = -1; j <= 1; j++) { int pos = i+j;
3 pos = pos < 0 ? 0 : pos;
4 pos = pos > N-1 ? N-1 : pos;
5 sum += A[pos]; }
6 B[i] = sum; }

Listing 2. Simple 3-Point Jacobi Stencil in C. From [10].

matrix, section 5 explains how we generate GPU code for
the triangular matrix vector multiplication from the straight-
forward high level notation. Finally, section 6 will show that
our automatically generated code outperforms a cuBLAS
implementation up to 2×.

2.2 Use-case 2: Optimizing stencil boundary checks
Stencil computations are an important computational pat-
tern occurring in many application domains ranging from
image processing to convolution neural networks. Stencils
update a point in a grid with a computation that depends
on neighboring grid points. In Lift, stencils are represented
in a high level notation using a combination of primitives
as shown in listing 1 and described in detail by Hagedorn
et al. [10]. Here the pad primitive describes the boundary
handling by applying a clamping boundary condition, the
slide primitive creates a sliding window of neighboring grid
points, and, finally, the map primitive applies the sumNbh
function to all created neighborhoods.

Listing 2 shows the C pseudo code generated by Lift. The
boundary handling is done in lines 3 and 4 where an out-of-
bound check is performed in every loop iteration. Human
experts are able to produce a more optimal version, where
the first and last few iterations of the outer loop are peeled
away. The loop itself then becomes entirely free of bound
checks, leading to increased performance.

Code generators such as Lift are good at treating data in
arrays uniformly, but currently struggle with optimizations
where data and computations are treated non-uniformly.

What is required is a type system that is able to represents
arrays whose elements are themselves nested arrays of vary-
ing size. Using such ability, we could partition the input array
into three nested arrays each representing a differently sized
portion of the input data. If we had a value of such a type,
we could use Lift’s primitives such as map to generate a
version similar to the human optimized one. Section 6 shows
that this approach leads to improvements of up to 3× over
already optimized GPU code generated by Lift [10].

2.3 Summary
Current code generators do not support the generation of
high performance code for computations with irregularly
shaped multidimensional arrays. This section has motivated
an extension of the type system in the existing Lift compiler.
We have discussed two particular and quite different use-
cases. As we will see in section 4, the extension of the type
system increase the expressiveness by representing less reg-
ularly shaped multidimensional arrays while still imposing
structure that is exploited to generate efficient code.
The next section discusses the design of this extended

type system which is inspired by a limited form of dependent
types. We will first start by explaining the design of existing
type system for regularly shaped multidimensional arrays.

3 Traditional Multidimensional Arrays
This section describes how traditional multidimensional
arrays types are represented in existing code generators
with functional intermediate representations like Acceler-
ate, Futhark, or Lift that all track the shape or even size of
multidimensional arrays in the type.

Tracking the shape (i.e., dimensionality) and size of arrays
in the type system has proven useful for efficient code gen-
eration from functional intermediate representations. Accel-
erate tracks the shape of arrays in the type: Array sh a. Here
sh represents the shape of the array and a the type of the
array elements [13]. Futhark and Lift track the length of
multidimensional arrays in the type system. In Futhark an
array type is written: [n]ρ where n is the number of elements
and ρ the element type [11]. Similarly, but using a different
notation, Lift expresses an array type as: [A]n where A is
the element type and n the number of elements [17].
To represent multidimensional arrays, both Futhark and

Lift use nesting. A two dimensionaln×mmatrix type is writ-
ten as: [ [A]m ]n where A is the element type. Lift supports
rich arithmetic expressions for the length of arrays beyond
constants such as n. Operations such as addition, division, or
modulo are used to represent the length of arrays [18]. This
paper extends the Lift type system which we discuss next.

3.1 Type System
The type system used by Lift is shown in Figure 2 using
the formulation used by Atkey et al. [1] and adapted for the
presentation here. We distinguish between three different
kinds (2a): natural numbers (nat) for the length of arrays;
data types (datatype) for types that are stored in memory;
data types together with function types and a limited form
of dependent function types make up the final kind (type).
As types may contain variables we use a kinding judgement
∆ ⊢ τ : κ stating that type τ has kind κ in the kinding context
∆. As our types contain expressions of natural numbers type
equality can not be assumed by syntactic equality. Figure 2c

3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Federico Pizzuti, Michel Steuwer, and Christophe Dubach

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

κ ::= nat | datatype | type

(a) Kinds

x : κ ∈ ∆

∆ ⊢ x : κ

(b) Kinding Structural Rules

|= ∀σ : dom(∆) → N.σ (I ) = σ (J )

∆ ⊢ I ≡ J : nat

(c) Type Equality

∆ ⊢ n : nat
∆ ⊢ N : nat ∆ ⊢ M : nat

∆ ⊢ N +M : nat
∆ ⊢ N : nat ∆ ⊢ M : nat

∆ ⊢ N ·M : nat

(d) Natural numbers

∆ ⊢ int : datatype
∆ ⊢ N : nat ∆ ⊢ δ : datatype

∆ ⊢ [δ ]N : datatype
∆ ⊢ δ1 : datatype ∆ ⊢ δ2 : datatype

∆ ⊢ δ1 × δ2 : datatype

(e) Data Types

∆ ⊢ δ : datatype
∆ ⊢ δ : type

∆ ⊢ θ1 : type ∆ ⊢ θ2 : type
∆ ⊢ θ1 → θ2 : type

κ ∈ {nat, datatype}
∆,x : κ ⊢ θ : type

∆ ⊢ (x :κ) → θ : type

(f) Types

Figure 2.Well-formed Types of Lift

states that nats are equal when their interpretations as num-
bers are equal for all interpretations of their free variables.
Figure 2d defines well formed natural numbers which

are either literals (indicated by n) or expressions of natural
numbers. We show here only addition and multiplication
as possible binary operators, but in our implementation we
support much richer expressions of natural numbers using
additional operators such as division and modulo.
Figure 2e defines three different data types supported in

Lift: scalar types such as int; array data types; and pair
types. For each exists a direct representation in C, whereby
pair types are mapped to structs. The design of the type
system deliberately prevents function types inside arrays or
pairs as OpenCL does not support function pointers.
Finally, figure 2f defines all well-formed Lift types. We

consider all well-formed datatypes to be well-formed types
and add the usual function type and a function type abstract-
ing over data types and natural numbers at the type level.

3.2 Type checking
The typing judgment ∆|Γ ⊢ P : θ states that a program P is
well typed with type θ in the contexts ∆ and Γ. For this the
type θ as well as all types in Γ must be well-kinded by ∆ and
P must be well-typed by Γ. Figure 3 shows the typing rules
of Lift. The structural rules in figure 3a show the forming
of well-typed variables, implicit conversion between equal
types, and how the primitives of Lift integrate. The rules in
figure 3b are the standard λ-calculus rules for abstraction and
application for usual lambdas as well as the nat and datatype
dependent lambdas (written as Λ) where for application the
argument is substituted in the type of the lambda body.

3.3 Computations over multidimensional arrays
The most important Lift primitives are shown in figure 4.
We usually infer the first arguments representing nat and
datatype and omit them when we write Lift programs.
The primitives nest naturally: map applies a function to

each array element - independent if the element is a scalar
value or an array itself. Operations on higher dimensional
data are expressible using familiar functional primitives. For
example, matrix-matrix-multiplication can be expressed as:

map (λ r .map (λ c . reduce (+) 0 (map (∗) (zip r c))) B) A

While nesting of the presented array type enables the
representation of regularly – or rectangularly – shaped mul-
tidimensional arrays, it is not sufficient to represent less
regularly shaped arrays. In the two dimensional array type
[ [int]m ]n the inner sizemmust be the same for all elements
of the outer array, as arrays are homogeneous containers.
Our goal is to relax this strict notion of homogeneity to

allow differently shaped multidimensional arrays to be rep-
resented. But we still insist on some form of homogeneity
for multidimensional arrays: the underlying scalar data type
(int in the example) must be the same for all elements in the
multidimensional array. This ensures that arrays can be flat-
ten efficiently in memory, e.g., with a C-like row-major stor-
age layout. The information in the type:m,n, and sizeof(int),
is sufficient to compute the index of each element.

4 Position Dependent Arrays
This section describes the proposed extension to the Lift
type system for irregularly shaped multidimensional arrays.
We first describe the extended array type, followed by an

4



441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Position-Dependent Arrays for High Performance Code Generation Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

x : θ ∈ Γ

∆ | Γ ⊢ x : θ
Var

∆ | Γ ⊢ P : θ1 ∆ ⊢ θ1 ≡ θ2 : type
∆ | Γ ⊢ P : θ2

Conv
prim : θ ∈ Primitives

∆ | Γ ⊢ prim : θ
Prim

(a) Structural Rules

∆ | Γ,x : θ1 ⊢ P : θ2
∆ | Γ ⊢ λx .P : θ1 → θ2

Lam
∆ | Γ1 ⊢ P : θ1 → θ2 ∆ | Γ2 ⊢ Q : θ1

∆ | Γ1, Γ2 ⊢ P Q : θ2
App

∆,x : κ | Γ ⊢ P : θ x < fv(Γ)

∆ | Γ ⊢ Λx .P : (x :κ) → θ
TLam

∆ | Γ ⊢ P : (x :κ) → θ ∆ ⊢ τ : κ
∆ | Γ ⊢ P τ : θ [τ/x]

TApp

(b) Abstraction and Application Rules

Figure 3. Typing Rules of Lift

map : (n : nat) → (δ1 δ2 : datatype) →
(δ1 → δ2) → [δ1]n → [δ2]n

reduce : (n : nat) → (δ1 δ2 : datatype) →
(δ1 → δ2 → δ2) → δ2 → [δ1]n → δ2

zip : (n : nat) → (δ1 δ2 : datatype) →
[δ1]N → [δ2]n → [δ1 × δ2]n

split : (n m : nat) → (δ : datatype) → [δ ]n ·m → [[δ ]n ]m

join : (n m : nat) → (δ : datatype) → [[δ ]n ]m → [δ ]n ·m

Figure 4. Existing Lift primitives

example for triangular matrix and higher dimensions arrays.
This is followed by a section on how to compute over data
with such types. We end this section with a description of
new primitives added to Lift useful for expressing low level
optimizations such as avoiding out-of-bound accesses.

4.1 Position dependent array type
To describe the shape of a triangular matrix precisely in its
type, for instance, we need to lift some restrictions of the
traditional multidimensional array types. The homogeneity
of arrays which ensures an efficient data representation is
overly restrictive. It is obvious that a triangular matrix can
be stored efficiently in memory following a row-major or-
der into a flat representation. This shape can be precisely
described statically, allowing to efficiently compute element
indices.
Therefore, we can carefully extend the notion of an ar-

ray type to allow the size of nested arrays to depend on its
position. Figure 5 shows an array type where the element
type δ is allowed to depend on the position i in the array.
Since nat is only allowed to appear in the lengths of arrays,
it is ensured that the underlying scalar type of the array
remains the same. In other words, the position dependent
arrays are still homogeneous, besides for the array lengths
that might appear in the element type. This ensures that
multi-dimensional arrays are stored efficiently as a flat repre-
sentation of the underlying element type. This prevents, for

∆ ⊢ N : nat ∆, i : nat ⊢ δ : datatype
∆ ⊢ [i 7→ δ ]N : datatype

Figure 5. Well formed position dependent array type


[0],
[1, 2],
[3, 4, 5],
[6, 7, 8, 9]

 :
[
i 7→ [int]i+1

]
4

Figure 6. A triangular matrix value on the left and a type
precisely describing it on the right.


[
[0],
[1, 2]

]
,

[ [3, 4, 5] ],
[ [6, 7, 8, 9] ]

 :
[
i 7→

[
j 7→ [int]s1(i, j)

]
s0(i)

]
3

where

s0(i) =

{
2 if i = 0
1 otherwise

}
and s1(i, j) =

i−1∑
k=0

s0(k) + j + 1

Figure 7. A three dimensional array, irregularly grouping
rows of a triangular matrix. Type shown on the right.

instance, the expression of a type of a matrix which stores
floats in the some rows and doubles in some other rows, as
it wouldn’t be clear how to compute efficiently the addresses
of the individual elements in memory.

4.2 Example
To describe the type of a triangular matrix, we write:

[
i 7→

[int]i+1
]
n . This type indicates that the length of each row

is equal to its position i in the array plus one (to accommo-
date the 0-based indexing): the first row has length 1, the
second row has length 2, and so on with the last row (at

5



551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Federico Pizzuti, Michel Steuwer, and Christophe Dubach

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

position n − 1) having length n. This is shown in figure 6 for
a two dimensional array with four nested arrays of different
size. Overall the data forms a lower triangular matrix that is
reflected in its type.

TriangularMatrix For the triangularmatrix examplewith
the type

[
i 7→ [int]i+1

]
n , δ is the nested type [int]i+1 for

which the length depends on i and can be described by this
function: s(i) = i+1. This is a strict generalization of the clas-
sical array type seen in the previous section. If the element
type δ does not depend on i then all elements of the arrays
must have the exact same length, as for arrays with a classi-
cal array type. For example, a two dimensional matrix can
be expressed in our extended array type as:

[
i 7→ [int]m

]
n .

If the array index i is not used in the type we might omit
it:

[
_ 7→ [int]m

]
n . This type is equivalent to the classical

multidimensional array type:
[
[int]m

]
n .

Higher Dimension Arrays For higher dimensional types,
the sizes of nested arrays might depend on all positions of the
surrounding arrays. See figure 7 for an example. Here the first
two rows of a triangular matrix have been grouped together
forming a nested array togetherwith the third and fourth row.
Such a representation could be useful to achieve some form
of load balancing by grouping multiple shorter rows together
to balance the number of elements in every group. The three
dimensional type is interesting with two functions s0 and s1
describing the size of the nested array dimensions. For s0 a
case statement is used to define the function specifying that
the first element of the outer array will have two elements
while the other elements will all be of size one. The deeper
nested array has a more complex computation of its size.
s1 depends on both positions i and j of the surrounding
arrays. We can still see the same arithmetic expression used
to represent the triangular matrix: j + 1. In addition, the
expression

∑i−1
k=0 s0(k) computes a prefix sum over the outer

dimensions expressed in s0.Wewill understand how to derive
this expression from the triangular matrix type using a new
primitive we will introduce in section 4.4 called partition.

4.3 Computations over irregularly shaped arrays
So far, we have seen how to represent irregularly shaped
multidimensional arrays with a novel type. We will now
investigate how to express computations over such data
structures in the functional high-level notation of Lift. We
will use as much of the existing Lift primitives as possible.

The Lift primitives shown before in figure 4 are over-
loaded to work on the new position dependent arrays as
shown in figure 8 for this the type system is extended with
type level functions that map natural numbers to data types
(nat → datatype) or to natural numbers (nat → nat).

The types of the primitives using the position dependent
array types are interesting. For map the elements in the
input array are now described by the type level function

map : (n : nat) → (fδ1 fδ2 : nat → datatype) →
((k : nat) → (fδ1 k) → (fδ2 k)) →

[i 7→ (fδ1 i)]n → [j 7→ (fδ2 j)]n

reduce : (n : nat) → (fδ1 : nat → datatype) →
(δ2 : datatype) →
((k : nat) → (fδ1 k) → δ2 → δ2) →

δ2 → [i 7→ (fδ1 i)]n → δ2

zip : (n : nat) → (fδ1 fδ2 : nat → datatype) →
[i 7→ (fδ1 i)]N → [j 7→ (fδ2 i)]n →

[k 7→ ((fδ1 k) × (fδ2 k))]n

join : (n : nat) → (fn : nat → nat) → (δ : datatype) →
[i 7→ [δ ]fn (i)]n → [δ ]∑n−1

i=0 fn (i)

Figure 8. Overloaded Lift primitives operating on position
dependent array types

1 fun(matrix:[i → [f loat ](i+1)]N , vector:[f loat ]N ) => {
2 map(λ row → reduce(add , 0, map(mult ,
3 zip(row , slice(0, getLength(row), vector))))
4 , matrix) }

Listing 3. Lift code for triangular matrix multiplication

fδ1 mapping natural numbers to datatype. The first value
of the array has type (fδ1 0) the second (fδ1 1) and so on.
The function that map applies to each element of the input
array is now parameterized by an additional natural number
k that represents the index at which the function is applied.
The k-th element of the input array has the type (fδ1 k). A
similar type level function fδ2 describes the element types in
the output array. reduce, zip and join generalize to position
dependent arrays in a similar way to map.

We do not provide a version of split for position dependent
arrays, as we will introduce a new primitive in the next
section called partition, which is more general than split.
Using the overloaded Lift patterns together with the ex-

tended array type we can straightforwardly write the imple-
mentation of triangular matrix multiplication, as shown in
listing 3. We start by applying map to the triangular matrix
to perform a computation for every row. For each row we
compute the dot product with the vector by combining them
with zip, multiplying the resulting pairs and summing them
up. Lift transforms high-level programs into efficient low-
level code by applying a set of rewrite rules in an automated
optimization process. This process rewrites the expression
by, e.g., fusing patterns to avoid the generation of unneces-
sary temporaries and by mapping the computation to the
different levels of parallelism offered by modern hardware.
The only difference compared to the matrix vector mul-

tiplication of a rectangular matrix is the use of slice and
getLength. Slice is a pattern for accessing a subarray defined
by start and end indices. It is implemented in terms of a more
general pattern called partition, whose details are covered in

6



661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Position-Dependent Arrays for High Performance Code Generation Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

[
0, 1, 2, 3, 4, 5, 6

]
: [int]6w� partition 3 (i 7→ i + 1) w�


[0],
[1, 2],
[3, 4, 5]

 :
[
i 7→ [int]i+1

]
3

Figure 9. An example of partition used to transform a one
dimensional array into a two dimensional triangle.

the next section The getLength primitive returns the length
of the given array. For this it accesses the length represented
at the type level.
Together, these primitives select the upper part of the

vector up to an equal size to the current row. This part of
the vector is then combined with the row to compute their
dot product to produce an element in the output vector.

4.4 Partition
Type Partition has the following type:
partition : (n : nat) → (f : (nat → nat)) → (δ : datatype) →

[δ ]∑n−1
i=0 f (i)

→ [i 7→ [δ ]f (i)]n

Here n represents the number of subarrays produced by
partition and f is a type level function mapping each index
(ranging from [0,n − 1]) to the length of the corresponding
subarray. The produced array is a two dimensional array of
sizem and with subarrays as elements where element i has
a size of f (i). A simple example visualizing the partitioning
of an array into a triangle matrix is shown in figure 9. The
dual operation of partition is the generalized join defined in
figure 8. The following identity holds:

join n f δ (partition n f δ input) = input

The length of the input of partition can therefore also be
seen as the length of the output array of the type of join. A
similar duality exists for split and join for rectangular arrays.

Introducing Partition via Rewriting Rules One of the
core ideas underpinning Lift is the use of an automated ex-
ploration system that uses rewriting rules to automatically
generate high performance code. A rewrite rule is a semantic
preserving transformation of expressions, and is Lift’s way
to express optimization choices that are automatically ex-
plored in the optimization process using stochastic methods,
as explained by [15].

To make automatic use of the partition primitive as a low
level optimization we design rewrite rules that introduce the
primitive and, thus, expose it to Lift’s exploration process.
Asmentioned before, partition can be seen as a generalization
of split. There exists a few rewrite rules that include split,
like a divide-and-conquer style rule that splits an input array
into several parts that are then processed individually before

the results are joined back together:

map(f , input) 7→ join(map(map(f ), split(n, input)))

These rules can simply be generalized by exchanging parti-
tion for split, e.g., to express a load balancing aspect when
the work of applying f to every element of the input array
is not uniformly distributed. In addition to these general-
ized rules, it is possible to express a more specific low level
optimization: the use of partition for a more fine-grained
handling of stencil boundary conditions.

As seen in section 2.2, stencil applications need to handle
the boundary of its multidimensional input array specially,
for example by padding the array with additional values
or (as shown in listing 1) by clamping the index computa-
tion. This boundary handling introduce potentially expen-
sive branches in the code, human experts often write their
programs in such a way to handle these section as special
corner cases.

Due to the uniformity of the Lift primitives and its regu-
lar array types, it is not possible to express this optimization
without support for position dependent arrays. The introduc-
tion of partition, however, allows for the optimized handling
of boundary conditions to be expressed and automatically
introduced via a rewrite rule:
map(f , slide(size, step,pad(l , r , input))) 7→

join(map(map(f ),partition(3, caseSplit(l ,n − l − r , r ),

slide(size, step,pad(l , r , input)))))

The intuition behind this rule is as follows: we insert a par-
tition right before executing f which represents the stencil
computation performed over the stencil neighborhood. The
partition splits the grid of neighborhoods that has been pro-
duced by slide in three distinct sections: a prologue, a central
body, and an epilogue. The sizes of the prologue and epilogue
correspond to the number of elements padded to the input.
The central body takes up the remaining input size.

Due to the information available in the type the compiler
is capable of removing the out-of-bound checks from the
central body section of the code. We will discuss details how
this is implemented in section 5.

Concerning the rule correctness, we can see that the rule
is indeed semantic preserving: partition has the effect to split-
ting the input in chunks and add one layer of nesting. The
addition of a subsequent map wrapping around the original
body does not modify the number or order of the elements
in the output, but simply influences how the computation is
organized. Finally, the terminating join will undo the effects
of partition on the output.

4.5 Summary
In this section we have introduced an array type that allows
for the size of nested arrays to depend on their position in
the outer array. This enhances the expressiveness allowing
to represent data structures such has triangular matrices or

7



771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Federico Pizzuti, Michel Steuwer, and Christophe Dubach

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

trees. We have seen that computations over such structures
are as naturally expressed using the same set of primitives
already familiar to functional programmers.

Furthermore, we have introduced a new primitive to par-
tition a regular array into a nested irregular one and we
have discussed how an rewrite rule automatically exposes
this transformation as an optimization choice for removing
unnecessary boundary checks. In the next section we will
discuss important implementation details.

5 Implementation and Code Generation
After describing the design of the extendedmultidimensional
array type in the previous sectionwe now discuss some of the
implementation details. We first describe the implementation
challenges faced, before discussing them individually. Finally,
we will briefly discuss the code generation before evaluating
the performance achieved in the next section.

5.1 Implementation challenges
Extending the existing Lift OpenCL backend to support the
extended array type presented a number of challenges:

• Allowing for the array size to depend on its position in the
surrounding arrays significantly complicates the computa-
tion of the number of element in a multidimensional array.
This is a fundamental operation necessary for computing
array indices and to perform memory allocation.

• The implementation of efficient index computations in the
generatedOpenCL kernel is no longer straightforward.When
done naively, many of the generated arithmetic expressions
would require the introduction of loops and conditional
branches when computing indices.

• The implementation of partition should not produce results
directly but instead lazily influence the code generated for
following patterns. We describe a solution using Lift’s view
system.

• Finally, wewill discuss somememorymanagement andmem-
ory allocation challenges.

5.2 Calculating the Number of Array Elements
In the previous section, we have seen how Lift provides
support for multidimensional arrays, and that these arrays
are essential to the compositional nature of Lift programs.
Multi-dimensionality in Lift, however, exists purely as an
abstraction: in order to generate high performance code, the
OpenCL code generator flattens the multidimensional arrays
into contiguous memory buffers.
This requires the compiler to calculate the number of

elements contained in a potentially multidimensional array.
In the context of regular arrays with a classical type, one can
easily compute the linear index using the formula

dim1 × dim2 × ... × dimn

For an irregular sized arrays with an extended array type,
the number-of-elements formula generalized as follows:

dim1−1∑
i1=0

...

dimn−1(i1, ..,in−2)−1∑
in−1=0

dimn (i1, .., in−1)

An important feature of the Lift compiler is the exten-
sive use of symbolic algebra for reasoning about arithmetic
expressions of natural numbers, such as array sizes and it-
eration ranges. The system was originally designed to only
work with arrays of regular length and is introduced and
described in [18]. With the introduction of the extended
array types, it becomes, therefore, necessary to extend the
symbolic algebra system to include a new

∑
construct. This

constructs corresponds to the concept of an algebraic sum-
mation as commonly used in mathematics. We discuss next
how we exploit the properties of algebraic summations to
optimize many cases of index computations.

5.3 Optimizing Index Computations
Generating concise index computations is incredible impor-
tant for achieving high performance. Prior work [18] reports
massive performance losses for applications such as ma-
trix matrix multiplication when index computations are not
simplified by the compiler. In this section we describe the
generation of optimized index computations that contain the
newly introduced

∑
operator.

A possible naive implementation of
∑

would generate a
sequential loop. Due to performance considerations however,
this approach is in practice not viable. Instead, in themajority
of cases encountered in practice, the index computation can
be simplified to a close form formula without any further

∑
terms.

Example Consider the problem of indexing of an element
of a triangular matrix flattened in memory. As see earlier,
the matrix has type

[
i 7→ [δ ]i+1

]
n , which means the length

of each row is i + 1. To compute the position in memory of
element (rid, cid), we can compute a close form as follows
using well-known properties of

∑
:

memLocation(rid, cid) = (

r id−1∑
i=0

i + 1) + cid

= rid + (
r id−1∑
i=0

i) + cid = rid +
(rid) × (rid − 1)

2
+ cid

=
(rid + 1) × rid

2
+ cid

By implementing these algebraic simplification rules, the
compiler is capable of generating efficient index computa-
tions for a large number of expressions. The following sec-
tion list the rules implemented in the compiler.

8



881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Position-Dependent Arrays for High Performance Code Generation Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Simplification rules for

∑
The rules presented heremight

look slightly different from their usual presentation in math-
ematics: since in this work their main use is to determine
offsets in linear arrays, the rules are indexed from 0, as op-
posed to the more commonly used indexing from 1.

N∑
i=0

c = N ∗ c + 1 (1)

N∑
i=0

i =
N × (N − 1)

2
(2)

N∑
i=0

2i = 2n+1 − 1 (3)

b∑
i=a

f (i) =

b∑
i=0

f (i) −
a∑
i=0

f (i) (4)

N∑
i=0

c ∗ f (i) = c ∗
N∑
i=0

f (i) (5)

N∑
i=0

f (i) + д(i) =

N∑
i=0

f (i) +
N∑
i=0

д(i) (6)

N∑
i=c

{
f1(1) if i = c
f2(i) otherwise

}
=

{
l1(c) if c ≥ N
0 otherwise

}
+

N∑
i=c+1

f2(i) (7)

The algebraic simplification rules can be roughly grouped
in three categories, according to their main purpose:

• Rules (1) - (3) are used to compute the number of elements
of one dimension of an irregular array, each matching a
different primitive shape that the dimensions can take. (1)
is used for fixed size dimension, (2) corresponds to linearly
variable dimension, such as the rows of triangular matrices
(3) corresponds to exponentially variable dimension, such as
binary trees

• Rules (4) - (6) are auxiliary simplification rules, used to split
composite sums into simpler parts.

• Rule (7) deals with the elimination of if-statements, usually
generated by the length function of partition. This rule is an
analogue of loop peeling, a classical compiler optimization in
which loop iterations are extracted out of the loop into the
loop’s prologue and epilogue.

If-elimination rules We observe that programs contain-
ing non-trivial uses of partition could generate inefficient
OpenCL programs. The main cause of this is the presence of
a large number of conditional expressions - many generated
by the loop-peeling simplification mentioned above.

To address this issue, we investigated if-elimination rules
in the arithmetic expressions. By leveraging the strength of
the Lift symbolic algebra system, which tracks the ranges
for each arithmetic expression. It is possible to implement a
simplifier that is often capable of identifying the conditional
expressions that are guaranteed to be never taken. This is
achieved by checking the difference between the minimum
and maximum possible values of the expressions within the

conditional. For example, a conditional of the form{
x if a ≥ b
y otherwise

}
simplifies to x if min(a) ≥ max(b), and to y if max(a) <
min(b). Similar rules exist for other boolean operators.

5.4 Implementation of Partition
Some Lift primitives are lazy: instead of performing a com-
putation and writing into memory, they influence the behav-
ior of the following patterns, by creating a compiler interme-
diate data structure – called a view – over their inputs and
outputs. An example of a lazy pattern is split that reshapes an
input array by introducing another dimension. The partition
also primitive falls into this category as it lazily influences
the reading of memory of following patterns.

Partition’s view performs the mapping of the indices rang-
ing over the two dimensions of the output array to the one
dimensional index into the input array. In particular, the in-
dices i , for the outer dimension of the output array, and j , for
the inner dimension, will be mapped to a one dimensional
index: (i, j) 7→ ∑i−1

k=0 f (i)+ j. The offset is computed as the sum
of the length of the first i − 1 elements in the outer array and
j provides the index into the inner dimension.

5.5 Code Generation
After addressing the challenges described here, there is no
need to modify the Lift code generator which remains un-
changed compared to the techniques described in [1].

5.6 Summary
In this section we have discussed a number of implementa-
tion challenges and how we overcome them. Particularly, the
introduction of the extended array type has lead to changes
in computing length of and indices into arrays. By intro-
ducing and optimizing

∑
as arithmetic expressions, we are

able to generate low level code from familiar high level Lift
expressions. The new partition primitive is implemented as
a Lift view and maybe surprisingly, no other modification
to the Lift code generator was necessary for implementing
our work. The next section experimentally evaluate the im-
plementation using the two case studies introduced earlier.

6 Experimental Evaluation
Experimental Setup We conducted an experimental eval-
uation using single precision floats on a GeForce GTX TITAN
Xwith CUDA 8.0 and driver version 375.66.We report theme-
dian of at least 100 executions measured using the OpenCL
profiling API. Data transfer times are ignored since the focus
of the evaluation lies on the quality of the generated kernel
code. For the triangle matrix vector benchmarks, we perform
an automatic exploration of implementation parameters in-
cluding the OpenCL local size. We report the runtimes for
the best parameter configuration we found.

9



991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Federico Pizzuti, Michel Steuwer, and Christophe Dubach

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1 fun(matrix:[i → [f loat ](i+1)]N , vector:[f loat ]N ) → {
2 mapGlobal(λrow →

3 reduceSeq(λ(acc , t) → acc+(t.0*t.1))(
4 zip(row ,slice(N,0,getLength(row))(vector)) )
5 )(matrix) } }

Listing 4. Lift code for the Basic implementation of
triangular matrix-vector multiplication

1 fun(matrix:[i 7→ [f loat ](i+1)]N , vector:[f loat ]N ) → {
2 mapWorkgroup(λrow →

3 mapLocal(reduceSeq(λ(acc , t) → acc+(t.0*t.1))) o
4 split(SPLIT_SIZE)(
5 zip(padConstant (0,N-getLength(row) ,0.0)(row)),
6 vector)) }

Listing 5. Lift code for the Best implementation of
triangular matrix-vector multiplication

6.1 Triangle Matrix Vector Multiplication
We start with the triangular matrix vector multiplication for
which we saw already the high level Lift code in listing 3.

Lift implementations We present two different versions
of the triangular matrix vector multiplication in Lift. The
first one is derived from the high-level implementation, re-
ferred to here as basic version. The other is an improved
version, written to better exploit the parallel facilities of the
GPU. This version is referred to as the best.

The code for basic is shown in listing 4. The program then
follows the structure of a simple high-level matrix-vector
multiplication. Different to the high level Lift program in
listing 3 this version includes the OpenCL specific parallel
versions of map indicating the parallelism mapping. Global
threads are used to process each row of the matrix in parallel.
The only divergence from a regular matrix vector multiplica-
tion lies in the slice(N , 0,дetLenдth(row)) expression, which
clips the vector to the length of the current row.
The code for best is show in listing 5. In this version,

we assign each row to a workgroup and then, instead of
clipping the vector, we extend the row up to the vector length
using the padConstant primitive. The padConstant primitive
creates a view to lazily extend the array with a constant
value. This allows us to further split the row and column
vectors and process each chunk in a separate thread.

One must take note that the code for best presented here
comprises only the first part of the algorithm. The code
shown in listing 5 computes a partial reduction for each row.
A second reduction kernel is then necessary. As this is a com-
mon feature of many high performance GPU applications,
the code is omitted. The runtime cost of the second kernel,
while negligible, is included in the results.

Generated OpenCL code Listing 6 and listing 7 show the
automatically generated OpenCL codes. The outer for loop
of the basic version distributes the rows across the global
threads. The input index in lines 15 - 17 is automatically
derived from the extended array type. It is concise following
the optimizations described in section 5.

1 kernel void BASIC(const global float* restrict matrix ,
2 const global float* restrict vector ,
3 global float* out) {
4 float accum = 0.0f;
5 for (int row_idx = get_global_id (0); (row_idx < 5);
6 row_idx = (row_idx+get_global_size (0))){
7 for (int i = 0; i < 1+ row_idx; i = 1+i) {
8 accum = multAndSumUp(accum ,
9 matrix [( row_idx + i + (((-1 * row_idx) +
10 (row_idx * row_idx)) / 2))], vector[i]); }
11 out[row_idx] = id(accum); } }

Listing 6. OpenCL code for Lift basic implementation of
triangular matrix-vector multiplication.

1 kernel void BEST(const global float* restrict matrix ,
2 const global float* restrict vector ,
3 global float* out , int N) {
4 float accum = 0.0f
5 for (int row_idx = get_group_id (0); (row_idx < N);
6 row_idx = row_idx + get_num_groups (0)) {
7 for (int split_idx = get_local_id (0);
8 split_idx < ((N)/( SPLIT_SIZE));
9 split_idx = split_idx+get_local_size (0)){
10 for (int i = 0; (i < SPLIT_SIZE); i = 1+i){
11 accum = multAndSumUp( accum , (
12 (((i + (SPLIT_SIZE * split_idx)) < 0) ||
13 ((i + (SPLIT_SIZE * split_idx)) >=
14 (1 + row_idx)) ) ? 0.0f :
15 matrix [(i + row_idx +
16 (((-1* row_idx) + (row_idx*row_idx))/2) +
17 (SPLIT_SIZE * split_idx))]),
18 vector [(i + (SPLIT_SIZE * split_idx))]); }
19 out[split_idx +(N*row_idx)/SPLIT_SIZE] = id(accum);}}}

Listing 7. OpenCL code for Lift best implementation of
triangular matrix-vector multiplication.

The best version’s alternative parallelization strategy is
more complicated: the SPLIT_SIZE parameter in the Lift
code controls the amount of work in each workgroup.

Performance Results Figure 10 presents the performance
results measured for the triangular matrix vector multiplica-
tion expressed in Lift and compared against the equivalent
BLAS kernel trmv implemented in cuBLAS. cuBLAS is the
fastest known high performance linear algebra library for
Nvidia hardware. As we can clearly see, the Lift generated
code outperforms the trmv cuBLAS implementation clearly
on all input sizes. The best Lift version is also significantly
faster than the basic version. The largest input size represents
a large triangular matrix of over 500 MB and when approach-
ing this size, the performance of cuBLAS improves and the
advantage of the Lift generated code becomes smaller. Still,
the Lift generated code outperforms cuBLAS by up to 2.3×.

6.2 Boundary Conditions of Stencil code
In the second case study, we show how the introduction of
irregular arrays is used as a means to express a low level
optimization by considering the case of boundary checking
in stencil codes. Stencil codes need special handling at the
boundary, for example clamping array accesses with a check
and re-index computation when out-of-bound. This handling
requires the introduction of branches, human experts often
prefer to write extra code for handling the boundary regions.

10



1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Position-Dependent Arrays for High Performance Code Generation Conference’17, July 2017, Washington, DC, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

0.0

0.5

1.0

1.5

2.0

2.5

10
24

20
48

40
96

81
92

16
38

4

Input Size

R
el

at
iv

e 
P

er
fo

rm
an

ce

CUBLAS Lift basic Lift best

Figure 10. Relative performance of Lift triangle matrix vec-
tor multiplication implementations compared with NVIDIA
cuBLAS trmv implementation.

1 fun(input:[[f loat ]N ]M , boundary:float) → {
2 mapGlobal(mapGlobal(reduceSeq(add , 0) o join)) o
3 slide2D(STENCIL , 1) o
4 pad2D(STENCIL/2, STENCIL/2, boundary)(input) }

Listing 8. Jacobi stencil expressed in Lift

1 fun(input:[[f loat ]N ]M , boundary:float) → {
2 join o mapSeq(mapGlobal (( reduceSeq(add ,0) o join))) o
3 partition(3,caseSplit(STENCIL/2,M-STENCIL ,STENCIL /2))o
4 slide2D(STENCIL , 1) o
5 pad2D(STENCIL/2, STENCIL/2, boundary)(input) }

Listing 9. Jacobi stencil expressed in Lift with specialized
boundary handling

1 for (int i = get_global_id (0); i < 1+N;
2 i = (i + get_global_size (0))) { acc = 0.0f;
3 for (int j = 0; j < STENCIL_SIZE; j = 1+j) {
4 acc = add(acc , input[
5 (((-( STENCIL_SIZE /2)+i+j) >= 0)
6 ? (((-( STENCIL_SIZE /2)+i+j) < N)
7 ? (-( STENCIL_SIZE /2)+i+j) : -1+N) : 0)]); }

Listing 10. OpenCL code generated for a one-dimensional
stencil without special handling of boundary conditions.

Classical approach Listing 8 shows a classic Lift imple-
mentation of a 2D Jacobi stencil. The program contains of
three main steps: first, the input grid is padded, which is
Lift’s way of introducing specialized boundary handling.
Next, slide2D is used to create an array of neighborhoods.
Finally, the code within mapGlobal implements the actual
stencil computation performed on each neighborhood. The
main issue with this straightforward implementation lies in
the result of pad2D, which in Lift is a view over the padded
input array. Therefore, every access into this array needs to
be guarded by boundary checks, resulting in index expres-
sions with conditionals. But, these checks are only necessary
for neighborhoods with elements falling outside the bound-
ary. The use of regular arrays in the Lift expression prevents
us to be able to express this specialized behavior.

Position dependent array approach We can solve this
problem by applying the rewrite rule presented in section 4.4
that introduces the partition primitive. The code for the

1 // Prologue
2 int i = get_global_id (0);
3 if (i < STENCIL_SIZE /2) { float accum = 0.0f;
4 for (int j = 0; j < STENCIL_SIZE; j = 1 + j) {
5 accum = add(accum , input[
6 (((-( STENCIL_SIZE /2) + i+j) >= 0)
7 ? (-( STENCIL_SIZE /2) +i+j) : 0)]); }
8 ...
9 // Body
10 for (int i = get_global_id (0); i < (N - STENCIL_SIZE);
11 i = (i + get_global_size (0))) { float accum =0.0f;
12 for (int j = 0; j < STENCIL_SIZE; j = 1 + j) {
13 accum = add(accum , input[(i + j)]); }
14 ...
15 // Epilogue
16 int i = get_global_id (0);
17 if (i < STENCIL_SIZE /2) { float accum = 0.0f;
18 for (int j = 0; j < STENCIL_SIZE; j = 1 + j) {
19 accum = add(accum , input[
20 (((-( STENCIL_SIZE / 2) + i + j + N) < N)
21 ? (-( STENCIL_SIZE / 2) + i + j + N)
22 : (-1 + N))]); }

Listing 11. OpenCL code generated for a one-dimensional
stencil with special handling of boundary conditions.

rewritten Lift program is shown in listing 9. In this version,
a partition call has been introduced, splitting the input to the
stencil in three - unequally sized - areas: left boundary, cen-
ter, and right boundary. Since partition has a known constant
number of partitions, the code generator will not produce
a for-loop when mapping over it, but instead fully unroll it.
This will yield three different sections, corresponding to the
prologue, body and epilogue of the stencil computation.
Moreover, since the Lift compiler accurately tracks the

ranges of iteration variables, it also infers that the prologue
and epilogue sections are implemented with an if instead of
a for loop, since there is at most one iteration per thread.

The effects of this transformation on the generatedOpenCL
code are visible by comparing the code snippets shown in
listing 10 and listing 11. For sake of clarity, we are showing
the code for a one-dimensional stencil: the principle is the
same as for the 2d stencil used in the experimental evalua-
tion one with additional loops in the OpenCL code and more
complex index computations.

The traditional Lift stencil code has a single nested loop
that is performing the entire computation. Every access into
the input performs the costly out-of-bound checks.
In the rewritten stencil the computation has been split

in three separate code sections, where only the prologue
and epilogue containing the boundary checks. This is pos-
sible, as the arithmetic expression simplifier automatically
infers closer bounds for the loop variables guaranteeing that
such checks are redundant for the body of the stencil. It is
therefore safe to omit them.

Performance Results Figure 11 presents the performance
impact of applying the rewrite rule on a 2D Jacobi stencil
when we vary the size of the stencil. The bars represent the
speedup of the rewritten version compared with the non-
rewritten baseline for a variety of stencil sizes. The data
shown is relative to an grid-input size of 4096× 4096 floating

11



1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Conference’17, July 2017, Washington, DC, USA Federico Pizzuti, Michel Steuwer, and Christophe Dubach

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1.0

1.5

2.0

2.5

3.0

3.5

3x
3

5x
5

7x
7

9x
9

11
x1

1

13
x1

3

15
x1

5

17
x1

7

19
x1

9

Stencil Size

S
pe

ed
up

Figure 11. Relative performance benefits of specialized
boundary handling over traditional boundary handling

point entries. As we can see, the effect on performance are
positive, with a peak performance gain of approximately
3.2× for the 9 × 9 stencil size, with lesser gains as the sizes
increase or decrease. In no case was a slowdown measured.
Concerning the uneven distribution of performance, we

suspect this may be due to the behavior of the OpenCL com-
piler: heuristics-driven optimizations such as loop-unrolling
and constant-propagation have a significant impact on the
performance of stencil programs. As the rewritten kernel
is slightly different for all these sizes, there might be some
unexpected interactions between these two optimizations.

7 Related Work
High Level GPU Programming Languages such as Accel-
erate [13], Futhark [11], Halide [14], and Lift [17, 18] aim
to simplify GPU programming through the use of parallel
patterns, while at the same time allowing for the generation
of efficient code. Each of these provides some approach to
track the size of arrays at the type system level, in order to
improve performance and correctness.
While these facilities are adequate to deal with regularly

shaped arrays, they are lacking when dealing with irregular
data structures, such as triangular matrices.

Streaming IrregularArrays Streaming irregular arrays [5]
is an addition to the Accelerate [13] language which provides
support for irregular data structures backed by a flattened
representation, and provides type-system support for reason-
ing with nested irregular arrays. Unlike the work presented
here however, it relies on run-time support for tracking the
sizes of arrays, as opposed to attempting to resolve index
computations fully at compile time. The main reason for
the difference is it’s focus on sparse data structures who are
accessed as data streams, as opposed to our work, which
has to date focused on dense data representations backed by
arrays.

Dependent Types Dependently typed languages such as
the earlier Epigram [12] or the more modern Idris [4] possess
type systems capable of encoding and enforcing complex
properties over values in the type. This might include prop-
erties concerning the shape of data structures, which enable
dependently typed programs to naturally express irregular
data structures.
This great expressive power comes however at a cost,

and efficient compilation of dependent type languages is an
active area of research. We use a limited form of dependent
types in this work for a domain-specific purpose: to describe
parallel computations and to generate efficient parallel code.

Irregular structures in linear algebra applications The
linear algebra community has seen the development of a
number of approaches to produce efficient implementations
for complex linear algebra problems, such as the FLAME
methodology [9], a systematic way for deriving parallel al-
gorithms for linear algebra operations, and Linnea [2], a rule
based rewrite engine capable of generating efficient imple-
mentations of complex linear algebra expressions from a
high-level mathmetical expression.
The work presented in this paper would allow Lift to

serve as a high-performance code generator for high level
programs derived using such tools.

8 Conclusions
This paper has presented an extension to classical array types.
While existing functional code generators already track the
size of arrays in the type, this is overly restrictive and pre-
vents useful data structures such as triangular matrices or
trees to be represented precisely as types. In this paper we
have shown how to design an extended array type with a
limited form of dependent typing that allows for nested array
sizes to depend on their position in the surrounding array.

We have shown our practical implementation as an exten-
sion of the Lift compiler and presented the implementation
challenges mostly related to index simplification. We have
demonstrated that this approach enables the efficient code
generation of triangular matrix vector multiplication, with
performance improvements over cuBLAS on an Nvidia GPU
by up to 2×. We have discussed a use case for represent-
ing and implementing a low level optimization for avoiding
out-of-bound checks, leading to up to 3× performance im-
provement over already optimized stencil codes
In the future, we would like to further extend our array

type, exploring the practical implications of representing
tree data structures in a packed memory representation, as
common in computer graphics applications.

Acknowledgments
We thank Larisa Stoltzfus for her help with plotting results
and Bastian Hagedorn for advice with the Lift stencil codes.
We thank the entire Lift team for their development efforts.

12



1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Position-Dependent Arrays for High Performance Code Generation Conference’17, July 2017, Washington, DC, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

References
[1] Robert Atkey, Michel Steuwer, Sam Lindley, and Christophe Dubach.

2017. Strategy Preserving Compilation for Parallel Functional Code.
CoRR abs/1710.08332 (2017).

[2] Henrik Barthels and Paolo Bientinesi. 2017. Linnea: Compiling
Linear Algebra Expressions to High-Performance Code. In Proceed-
ings of the International Workshop on Parallel Symbolic Computation,
PASCO@ISSAC 2017, Kaiserslautern, Germany, July 23-24, 2017. 1:1–1:3.
https://doi.org/10.1145/3115936.3115937

[3] Paolo Bientinesi, Brian Gunter, and Robert A. van de Geijn. 2008.
Families of Algorithms Related to the Inversion of a Symmetric Positive
Definite Matrix. ACM Trans. Math. Softw. 35, 1, Article 3 (July 2008),
22 pages. https://doi.org/10.1145/1377603.1377606

[4] Edwin Brady. 2013. Idris: general purpose programming with depen-
dent types. In PLPV. ACM, 1–2.

[5] Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty,
and Gabriele Keller. 2017. Streaming irregular arrays. In Proceedings
of the 10th ACM SIGPLAN International Symposium on Haskell, Oxford,
United Kingdom, September 7-8, 2017. 174–185. https://doi.org/10.1145/
3122955.3122971

[6] Thiago de Castro Martins, Jacqueline de Miranda Kian, André Kuba-
gawa Sato, and Marcos de Sales Guerra Tsuzuki. 2012. Matrix-vector
multiplication and triangular linear solver using GPGPU for symmetric
positive definite matrices derived from elliptic equations. In SCIS&ISIS.
IEEE, 1286–1291.

[7] Yin Ding and Ivan W Selesnick. 2016. Sparsity-based correction of
exponential artifacts. Signal Processing 120 (2016), 236–248.

[8] Google et al. 2017. XLA (Accelerated Linear Algebra): domain-specific
compiler for linear algebra that optimizes TensorFlow computations.

[9] John A Gunnels, Fred G Gustavson, Greg M Henry, and Robert A Van
De Geijn. 2001. FLAME: Formal linear algebra methods environment.
ACM Transactions on Mathematical Software (TOMS) 27, 4 (2001), 422–
455.

[10] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. 2018. High performance stencil code genera-
tion with Lift. In CGO. ACM.

[11] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Hen-
glein, and Cosmin E. Oancea. 2017. Futhark: purely functional GPU-
programming with nested parallelism and in-place array updates. In
PLDI. ACM.

[12] Conor McBride. 2004. Epigram: Practical Programming with Depen-
dent Types. In Advanced Functional Programming (Lecture Notes in
Computer Science), Vol. 3622. Springer, 130–170.

[13] Trevor L. McDonell, Manuel M. T. Chakravarty, Gabriele Keller, and
Ben Lippmeier. 2013. Optimising purely functional GPU programs. In
ICFP. ACM.

[14] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman P. Amarasinghe. 2013. Halide: a
language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. In PLDI. ACM.

[15] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe
Dubach. 2016. Performance portable GPU code generation for matrix
multiplication. In GPGPU@PPoPP. ACM, 22–31.

[16] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman
Dzhabarov, James Hegeman, Roman Levenstein, Bert Maher, Nadathur
Satish, Jakob Olesen, Jongsoo Park, Artem Rakhov, andMisha Smelyan-
skiy. 2018. Glow: Graph Lowering Compiler Techniques for Neural
Networks. CoRR abs/1805.00907 (2018).

[17] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. 2015. Generating performance portable code using rewrite
rules: from high-level functional expressions to high-performance
OpenCL code. In ICFP. ACM, 205–217.

[18] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017.
Lift: a functional data-parallel IR for high-performance GPU code
generation. In CGO. ACM, 74–85.

[19] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. CoRR
abs/1802.04730 (2018).

13

https://doi.org/10.1145/3115936.3115937
https://doi.org/10.1145/1377603.1377606
https://doi.org/10.1145/3122955.3122971
https://doi.org/10.1145/3122955.3122971

	Abstract
	1 Introduction
	2 Motivation
	2.1 Use-case 1: Triangular matrix vector multiplication
	2.2 Use-case 2: Optimizing stencil boundary checks
	2.3 Summary

	3 Traditional Multidimensional Arrays
	3.1 Type System
	3.2 Type checking
	3.3 Computations over multidimensional arrays

	4 Position Dependent Arrays
	4.1 Position dependent array type
	4.2 Example
	4.3 Computations over irregularly shaped arrays
	4.4 Partition
	4.5 Summary

	5 Implementation and Code Generation
	5.1 Implementation challenges
	5.2 Calculating the Number of Array Elements
	5.3 Optimizing Index Computations
	5.4 Implementation of Partition
	5.5 Code Generation
	5.6 Summary

	6 Experimental Evaluation
	6.1 Triangle Matrix Vector Multiplication
	6.2 Boundary Conditions of Stencil code

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

