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Abstract We present a dynamical technique for sampling the canonical

measure in molecular dynamics. The method controls temperature by use

of a device similar to that of Nosé dynamics, but adds random noise to im-

prove ergodicity. In contrast to Langevin dynamics, where noise is added

directly to each physical degree of freedom, our method relies on an indirect

coupling to a single Brownian particle. For a model with harmonic poten-

tials, we show under a mild non-resonance assumption that the new dynamics

generates the canonical distribution. In spite of its stochastic nature, it ap-

pears to have a relatively weak effect on the physical dynamics, as measured

by perturbation of temporal autocorrelation functions. The kinetic energy is

tightly controlled even in the early stages of a simulation.
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1 Introduction

Molecular dynamics requires the use of auxiliary devices for control of the

ensemble. In many computations it is desirable that these devices do not

substantially corrupt dynamical processes, i.e. that they represent weak per-

turbations of dynamics.

Consider a physical system described by a Hamiltonian energy function

H(q, p), q, p ∈ R
n. The (forward) trajectories of the corresponding Hamil-

tonian dynamics are defined for t ≥ 0 by q = q(t; q, p); p = p(t; q, p), where

q̇ = ∂H
∂p , ṗ = −∂H

∂q , q(0) = q, p(0) = p. With respect to the canonical mea-

sure, static observables are functions O = O(q, p), computable by phase space

averaging:

〈O〉 =

∫

R2n

O(q, p) dρβ(q, p), (1)

where ρβ = 1
Z exp(−βH(q, p)) is the Boltzmann-Gibbs distribution and β is

inverse temperature. The time average with respect to a phase space curve

Γ = {(q̂(t), p̂(t))|t ≥ 0} is defined as:

〈O〉Γ = lim
τ→∞

1

τ

∫ τ

0

O(q̂(t), p̂(t)) dt. (2)

In the typical case, the computation of long-time averages can be reduced to

a sampling problem, i.e. identifying an appropriate means to generate curves
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Γ such that almost surely (i.e., for almost all initial conditions) 〈O〉Γ =

〈O〉. In many cases the process used to generate sampling trajectories is a

perturbation of Hamiltonian dynamics, but this is not essential.

Molecular dynamics is also used to compute dynamic observables, i.e.

generalized autocorrelation functions. For example, the canonically weighted

momentum autocorrelation function is given by

ν(τ) =
1

α2

∫

R2n

p · p(τ ; q, p) dρβ(q, p),

where, α2 =
∫

R2n p · p dρβ(q, p), defined in terms of the Hamiltonian tra-

jectories of the system. As a practical device, and in order to avoid excess

computation, or artificial nonequilibrium effects due to switching between

thermostatted and Hamiltonian dynamics, it is often desirable to compute

both static and dynamic observables from a single dynamics. These con-

siderations motivate the search for methods sampling from the canonical

distribution that alter the original Hamiltonian evolution in a minimal way.

Canonical sampling may be achieved using stochastic and deterministic

methods. A stochastic method models a heat bath in contact with the system.

In this approach the heat bath acts on the system by adding random forces

to the system which will be appropriately balanced by a diffusion process

(according to the fluctuation-dissipation theorem). The best known repre-

sentative of this class of methods is the Langevin-thermostat [1]. It replaces
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Newtonian dynamics by stochastic dynamics:

dq

dt
= M−1p, (3)

dp = −∇V dt − γ p dt +
√

2γβ−1 M
1
2 dW, (4)

where we have assumed that H(q, p) = 1
2
pT Mp + V (q), M is a mass matrix

and W is a vector of n independent Brownian motions. It is easily shown that

the Boltzmann-Gibbs distribution is the unique invariant measure for the

process generated by (3)-(4), but the Langevin thermostat has the tendency

to alter time correlations, hence it is often less suited to computing dynamic

observables.

A common deterministic method is known as Nosé-Hoover dynamics [2,

3]. This method augments the physical system with one additional variable ξ

called a thermostat variable. The thermostat models an artificial heat bath

and is coupled to all the degrees of freedom of the physical system. Moreover

the dynamics of ξ is governed by a heuristic auxiliary equation which forces

the spontaneous kinetic energy of the system, per degree of freedom, to os-

cillate around a given target temperature. Nosé-Hoover dynamics takes the

form

q̇ = M−1p, (5)

ṗ = −∇V − ξp, (6)

Qξ̇ = pT M−1p − n
β , (7)
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where q and p are position and momentum vectors, respectively, n is the

number of degrees of freedom, β−1 = kBT , kB is the Boltzmann constant, and

T is temperature. The parameter Q is an (artificial) thermostat coefficient

that influences the coupling of the heat bath to the system. It can be checked

that the distribution with density function

ρaug

β ∝ exp
(

−β
(

H + Q
2
ξ2
))

,

where H is the Hamiltonian of the physical system, is invariant with respect

to the flow of (5)-(7) [2,3]. The Nosé-Hoover evolution is close to the Hamil-

tonian evolution for sufficiently large systems[4], hence the computation of

dynamic observables is not severely effected. On the other hand, there are ex-

amples that show that the Nosé-Hoover thermostat is not always a sampling

method for the canonical distribution. Specifically, the crucial assumption

of ergodicity, essential in the proof that Nosé-Hoover dynamics samples the

canonical ensemble, may be violated.

Here we present a new method which combines the advantages of the

Langevin-thermostat with those of the Nosé-Hoover method. Our method is

a generalization of the Nosé-Hoover method in which the thermostat variable

is a Brownian particle. We consider the rigorous foundation of the method

for the case of a harmonic potential energy, stating a simple condition under

which the method samples the canonical ensemble. While the harmonic case

may seem special, it is in some sense the most difficult situation for obtaining

ergodicity. Many physical models contain strong harmonic components which

cause difficulty for thermostats, e.g. crystalline solids [5] and biomolecular
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models [6]. We also suggest a device which may be used to increase ergodicity

in those special cases where our non-resonance condition is violated.

We also consider via numerical experiments the issue of the perturbation

of dynamics, showing that autocorrelation functions are relatively mildly

perturbed in comparison to other schemes. Some recent articles have used

a similar combination of stochastic and deterministic dynamics. Bussi et al

[7] developed a sampling method introducing a stochastic perturbation of

velocities, while reducing the extent of random perturbation of the system

compare to the Langevin dynamics. On the other hand their method relies

on an auxiliary dynamics for kinetic energy and there is no clear case that it

can improve the ergodicity. A method related to ours was also suggested by

Quigley and Probert [8] for integration in the isothermal-isobaric ensemble.

The primary distinction between our approach and others in the literature

is that we provide not only a new method (which generalizes all the ones

of which we are aware) but also an analysis of ergodicity, making use of the

concept of hypoellipticity with respect to the operator defining the right hand

side of the Fokker-Planck equations. The technique used here for analysis of

ergodicity is motivated by recent approaches in [9–11].
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2 Equations of motion and invariant measure

Consider the following family of stochastic dynamics:

dq

dt
= M−1p, (8)

dp

dt
= −∇V (q) − A(ξ)p, (9)

dξ = 1
µ(pT M−1p − n

β ) dt − 1
2
µβσ2ξ dt + σ dW, (10)

where M is a positive definite symmetric matrix, q, p ∈ R
n, A(ξ) = ξId +

MS(t, ξ), S ∈ R
n×n is skew-symmetric (i.e., ST = −S), ξ ∈ R, W is the

standard Brownian motion, µ > 0, σ ∈ R and β = 1
kBT > 0 is the inverse

temperature. For σ = 0 and A = I, one obtains the classic Nosé-Hoover

thermostat.

The Hamiltonian takes the usual form H(q, p) = 1
2
pT M−1p+V (q) and we

assume that the potential function is bounded below (i.e., V : R
2n → (a,∞)),

the augmented Boltzmann-Gibbs distribution is defined by

ρaug

β (q, p, ξ) := 1
Z exp(−β(H(q, p) + µ

2
ξ2)), (11)

where

Z =

∫

RN

dq dp dξ exp(−β(H(q, p) + µ
2
ξ2))

is the partition function and N = 2n + 1.
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A function ρ(q, p, ξ) is invariant if it satisfies the stationary Fokker-Planck

equation L∗ρ = 0 where

L∗ρ = −∇q·
[

ρ M−1p
]

+∇p·[ρ (∇V + Ap)]− ∂

∂ξ

[(

pT M−1p − nβ−1

µ
− 1

2
µβσ2ξ

)

ρ

]

+
1

2

∂2

∂ξ

[

ρσ2
]

.

(12)

It can be checked by inspection the ρaug

β is invariant.

Indeed, since M is symmetric and S is skew-symmetric one has that

tr(MS) = 0, therefore ∇p · (Ap) = nξ. One obtains the following expressions

for the individual terms in (12):

∇q ·
[

ρaug

β p
]

=ρaug

β

[

−β∇V · M−1p
]

,

∇p ·
[

ρaug

β (∇V + Ap)
]

=ρaug

β

[

−βM−1p · ∇V − βξp · M−1p + nξ
]

,

∂

∂ξ

[

ρaug

β

(

(pT M−1p − nβ−1)/µ − µβ
)

]

=ρaug

β

[

−βξ(pT M−1p − nβ−1) + (µβ)2Σξ2 − µβΣ
]

,

∂2

∂ξ2

[

Σρaug

β

]

=ρaug

β

[

Σ(µβ)2ξ2 − µβΣ
]

,

where Σ = 1
2
σ2. Thus ρaug

β is invariant if

−βξp2 + ξ + βξp2 − ξ − (µβ)2σξ2 + ξ − (µβ)2σξ2 − µβΣ = 0 (13)

holds for all ξ, p ∈ R. Since the matrix S drops out, this is clearly the case.

Note that σ = 0 is admissible, hence we have recovered as a special case

Hoover’s classic result [3,14].

If the process generated by equations (8-10) is ergodic, then a generaliza-

tion of Birkhoff’s ergodic theorem [15–18] implies that long trajectories can

be used to sample any static observable with respect to the measure ρaug

β ,
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i.e. there exists a set U ⊂ R
N with full measure such that

lim
τ→∞

1

τ

∫ τ

0

O(q(t), p(t)) dt =

∫

RN

O(q, p) dρaug

β (q, p, ξ) =

∫

R2n

O(q, p) dρβ(q, p),

almost surely for all initial values (q(0), p(0), ξ(0)) ∈ U .

For our purposes U needs to be invariant under the flow, i.e.

(

M−1p,−∇V (q)
)

+ span {(0, Ap)} ∈ TU(q, p), (14)

where TU(q, p) is the tangent space of U at (q, p). We state a basic result

which relates ergodicity to regularity of solutions of the Fokker-Planck equa-

tion; for similar results see [9–11].

Theorem 1 Let U ⊂ R
N be open, connected and invariant under the flow

in the sense of equation (14). If all solutions ρ of L∗ρ = 0 are continuous on

U , then ρaug

β is the unique invariant measure on U .

Proof We show first that the set of ergodic invariant measures is countable.

Let ν be an ergodic invariant measure. Since ν is invariant, the Fokker-Planck

equation L∗ν = 0 is satisfied. Therefore the measure ν has a continuous

density f ∈ C(U). Define

D = {f ∈ C(U) | f is the density of an invariant ergodic measure ν}.

Birkhoff’s ergodic theorem implies for each pair f, g ∈ D that either int(supp(f))∩

int(supp(g)) = ∅ or f = g. Let Ki ⊂ U be a countable family of bounded
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open sets such that
⋃∞

i=1 Ki = U . For each i we define the set

Di = {f ∈ D | int(supp(f)) ∩ Ki 6= ∅}.

Since the interiors of the supports of the densities in D are disjoint

∑

f∈Di

meas(supp(f) ∩ Ki) ≤ meas(Ki) < ∞.

A convergent sum can have only countably many nonzero terms, thus Di is

countable for each i. This shows that D is countable.

By the decomposition theorem for invariant measures there exists a count-

able index set J , weights λj ∈ [0, 1], j ∈ J and densities fj ∈ D such that

fj 6= fl if j 6= l and ρaug

β =
∑

j∈J λjfj . Let j be such that λj > 0 and

assume that there exists z ∈ ∂supp(fj). Then, by continuity of fj for ev-

ery ε > 0 there exists δ > 0 such that fj(z
′) < ε for all |z − z′| < δ. But

this is impossible since inf |z−z′|<1 ρaug

β (z′) > 0 and ρaug

β (z′) = fj(z
′) for all

z′ ∈ int(supp(fj)).

Therefore, ∂supp(fj) = ∅ for every j, and by connectedness of U either

supp(fj) = U or supp(fj) = ∅. This implies that there exists precisely one

j ∈ J such that λj > 0. Thus we have shown that ρaug

β = fj . Since the

support of ρaug

β is U there can be no further ergodic invariant measure and

thus D = {ρaug

β }. 2
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Fig. 1 Non-ergodicity of Nosé-Hoover: the graph compares the approximated den-
sity of momentum with the exact density.

3 Ergodicity and Hypoellipticity of L
∗

It is well known that in general the Nosé-Hoover thermostat (σ = 0) is not

ergodic, see [12,3,13]. The most notorious case is given by the harmonic

oscillator, where n = M = β = µ = 1, A = ξ (see Figure 1).

When σ 6= 0, the Fokker-Planck equation L∗ρ = 0 changes type. This is

captured by the concept of hypoellipticity.

Definition 1 Let U ⊂ R
N be open. A second order differential operator L

with C∞ coefficients is hypoelliptic on U if all distributional solutions ρ of

the differential equation Lρ = 0 are C∞.

If U is connected an obvious necessary condition for hypoellipticity of L∗

on U is that U cannot be written as a union of several invariant sets. Hence,

if q is an equilibrium (i.e. ∇V (q) = 0), then (q, 0, ξ) 6∈ U for every ξ if L∗ is

U -hypoelliptic. Moreover, if V is quadratic, then the span of any collection

of eigenspaces is invariant.
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A sufficient criterion for hypoellipticity is provided by Hörmander’s con-

dition.

Definition 2 Let U ⊂ R
N be open, the vector fields X0, . . . , Xr : U → R

N

satisfy Hörmander’s condition at z ∈ U if the vector space generated by the

iterated brackets

X0(z), . . . , Xr(z), [Xi, Xj ](z), [Xi, [Xj , Xk]](z) . . .

is R
N .

Typically we will choose r = 1 and

X0 = (M−1p,−∇V −Ap, 1
µ(pT M−1p− n

β )− 1
2
µβσ2ξ), X1 = (0, 0, σ). (15)

The main application of the Hörmander’s condition is Hörmander’s theorem

[19–21].

Theorem 2 Let U ⊂ R
N be open. If X0, X1 : U → R

N are two vector fields

that satisfy Hörmander’s condition at every z ∈ U , then the operator L∗

which is defined by

L∗ρ(z) := −
N
∑

i=1

∂

∂zi
(ρ(z)X0,i(z)) +

1

2

N
∑

i,j=1

∂2

∂zi∂zj
(ρ(z)X1,i(z)X1,j(z))

is hypoelliptic.

Hypoellipticity clearly provides smoothness of solutions required for ap-

plication of Theorem 1, hence the flow induced by equations (8 - 10) is ergodic
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if we can find an open, connected set U with full measure such that the vector

fields X0 and X1 satisfy Hörmander’s condition at every z ∈ U .

A simple case where this can be done is given by quadratic Hamiltonians,

where

H(q, p) =
1

2
pT M−1p +

1

2
qT Bq.

Only a mild assumption on the spectrum of B is needed in the case where

A(ξ) = ξ.

Theorem 3 Let M, B ∈ R
n×n be two symmetric and positive definite ma-

trices such that

ωk 6= ωl for all k 6= l, (16)

where ωk = ϕT
k M−1Bϕk are the eigenvalues and ϕ1, . . . , ϕn ∈ R

n are the

normalized eigenvectors of M−1B. If H(q, p) = 1
2
pT M−1p + 1

2
qT Bq and

U =

{

(q, p)

∣

∣

∣

∣

∣

n
∏

k=1

(

(q · ϕk)2 + (p · ϕk)2
)

6= 0

}

× R, (17)

then the vector fields X0 = (p,−Bq − ξp, 1
µ(pT M−1p − nβ−1) − 1

2
µβσ2ξ)

and X1 = (0, 0, σ) satisfy the Hörmander condition at each (q, p, ξ) ∈ U . In

particular the process generated by equations (8-10) is ergodic on U .

We conjecture that if the matrix A in equation (9) is random, then Theorem 3

holds almost surely without the non-resonance assumption (16).

Conjecture 1 Let M, B be symmetric, positive definite matrices. If H(q, p) =

1
2
(pT M−1p + qT Bq), A = ξId + SM where S = G − GT and G ∈ R

n×n is a
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random matrix with iid Gaussian entries, then for almost every realization of

S the flow generated by equations (8-10) is ergodic on U (defined by (17)).

The theorem is sharp in the sense that if one of the assumption (16), (17)

is violated, then the dynamics generated by equations (8-10) is not ergodic.

Indeed, assume that B is a diagonal matrix and qi(t = 0) = pi(t = 0) = 0 for

some i. Clearly qi(t), pi(t) = 0 for all t and thus the evolution is not ergodic.

Assume next that n = 3 and M = B = Id (the identity matrix). Define

the subspace

S = span{(q0, 0), (p0, 0), (0, q0), (0, p0)} ⊂ R
6,

where q0 and p0 are the initial values of q and p. Again, it can be seen easily

that S is invariant. Since S is 4-dimensional the evolution is not ergodic.

A nontrivial quadratic Hamiltonian that satisfies (16) is a harmonic chain

with clamped end-particles where V (q) = 1
2

∑n
i=0(qi+1 − qi)

2 and q0 =

qn+1 = 0. Then ∂V (q)/∂qi = −qi−1 + 2qi − qi+1 if i ∈ {1, . . . , n}. With-

out the clamping assumption the Hamiltonian H is translation invariant

and Z =
∫

R2(n+2) dq dp exp(−βH) does not exist. Define the discrete sine-

transform as follows: (Fq)k = q̂k = 2
n+1

∑n
i=1 sin(πik/(n + 1))qi, such that

qi =
∑n

k=1 q̂k sin(πik/(n + 1)). One obtains that |q̂| = |q| and

F(−qi−1 + 2qi − qi+1)(k) = 2(1 − cos(πk/(n + 1)))q̂ = ωk q̂(k).

Since the dispersion relation ω is strictly increasing with k, inequality (16)

is satisfied.
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Proof (Proof of Theorem 3) We can assume without loss of generality that

σ = µ = 1 = β = 1 and M = Id. Furthermore, we assume that B is diagonal,

hence H(q, p) = 1
2

∑n
k=1(ωkq2

k + p2
k). This assumption does not involve any

loss of generality since it amounts to choosing the coordinate system which

is created by the eigenvectors ϕ1 . . . ϕn.

After these simplifications the vector fields X0 and X1 assume the form

X0 = (p,−Bq − ξp, p2 − n − 1
2
ξ), X1 = (0, 0, 1).

Next, we define recursively the following sequence of vector fields:

Zk = 1
2
[Yk, X3], Yk+1 = − 1

2
[Zk, X3],

where

X2 = [X1, (p
2 − n − 1

2
ξ)X1 − X0] = (0, p, 0),

X3 = X0 − (p2 − n − 1
2
ξ)X1 + ξX2 = (p,−Bq, 0),

Y1 = [X2, X3] = (p, Bq, 0).

Induction yields that

Yk = (Bk−1p, Bkq, 0), Zk = (Bkq,−Bkp, 0), k = 1, 2 . . .

After these preparations we can show that the vectors X1, Y1, Z1, . . . Yn−1, Zn−1, Yn, Zn

span R
2n+1. Clearly, it suffices to demonstrate that for each η, µ ∈ R

n there
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exist coefficients a1, b1 . . . , an, bn ∈ R such that

n
∑

k=1

(akYk + bkZk) =

n
∑

k=1

(akBk−1p + bkBkq, akBkq − bkBkp) = (η, µ). (18)

Since the matrix B is diagonal equation (18) is equivalent to











diag(B−1p) diag(q)

diag(q) −diag(p)





















Va

Vb











=











η

µ











,

where Vkl = ωl
k, k, l = 1 . . . n is a Vandermonde matrix with determinant

det(V) =
∏

k

ωk

∏

k>l

(ωk − ωl).

Set now

ã = Va, b̃ = Vb, (19)

then the k-th components of ã, b̃ solve of the linear system











ω−1
k pk qk

qk −pk











(

ãk

b̃k

)

=

(

ηk

µk

)

,

i.e.
(

ãk

b̃k

)

= 1

ω−1
k

p2
k
+q2

k

(

pk

qk

qk

−pk

)(

ηk

µk

)

.

The coefficient vectors a and b are obtained by inverting the relation (19)

which is possible since we have assumed that the eigenvalues ωi are pairwise

different from each other and bigger than zero, thus the determinant of V is

nonzero.
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4 Numerical results

In this section we run a series of tests on the system (8-10) to investigate

the validity of the invariant measure ρaug

β and its applications. We used the

following discretization for the system (8-10)

qn+1/2 = qn +
∆t

2
pn, (20)

p̄ = pn − ∆t

2
∇V (qn+1/2) − ∆t

2
ξ̄p̄, (21)

ξ̄ = ξn +
∆t

2
µ−1

(

∑ p̄2
i

mi
− n

β

)

− ∆t

4
σ2µβξ̄ +

σ

2

√
∆twn, (22)

pn+1 = 2p̄− pn, (23)

ξn+1 = 2ξ̄ − ξn, (24)

qn+1 = qn+1/2 +
∆t

2
pn+1. (25)

Alternative discretizations may be obtained by following the procedures de-

scribed in [22–24].

4.1 Harmonic oscillator

First we investigate the dynamics of (8-10) for the case where the energy of

the system is given by a Hamiltonian of the form

H(q, p) =
p2

2m
+ ω2 q2

2
.

In our experiment we chose ω = m = 1, β = 1.0, µ = 0.5, σ = 5.0 and

∆t = 0.01. The parameter µ influences the control on temperature and σ

influences the coupling between system and the heat bath. To verify that
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Fig. 2 Convergence of momentum distribution is verified for the harmonic oscil-
lator. The solid line is the exact density and the approximated density is in bar
style. The (left) column 105 steps, the (middle) column 106 of steps and the (right)
column 107 steps, each step of size ∆t = 0.01.

our dynamics generates the Boltzmann-Gibbs distribution, the distribution

of momentum is compared to
√

β
2πme−β p2

2m . This is demonstrated in Figure

2.

In order to quantify the error in the distribution generated by (8-10), we

define the following norm. For a given interval (a, b), define

Dn(x) =

(

1

M

M
∑

i=1

(

φKi
(x) −

∫

Ki

dρβ

)2
)

1
2

, (26)
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Fig. 3 The graph shows the error Dn(x) in the approximated density of momentum
against the number of samples n. The rate of convergence of the distribution of
Hoover-Langevin is similar to Nosé-Hoover chain (NHC) and Langevin dynamics
for the case of harmonic oscillator.

where x is a set of size n samples generated by the dynamics, (K1, . . . , KM )

are M partitions of (a, b) and φKi
(x) is the observed density of samples in x

which belong to the partition Ki. We postulate that the convergence of Dn(x)

toward zero implies the law of large number and the rate of convergence of

Dn(x) is related to the rates of convergence of average of observable.

In Figure 3, we compare the error norm Dn(x) for the new dynamics

(Hoover-Langevin) with other widely used sampling methods namely Nosé-

Hoover chains (NHC) [13] (an extension of Nosé-Hoover where a chain of

thermostats ξi with thermostat coefficient Qi are attached to the system) and

Langevin dynamics to investigate the rate of convergence. We chose γ = 1

for Langevin and Q1 = Q2 = 0.1 for NHC which we observed to be optimal

parameters for these methods. In order to reduce the inconsistency in the

results due to the random noise, for each method, 100 different simulations
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Table 1 Error (26) in distribution for p, p2 and p4 using Hoover-Langevin.

Error for 105 evolutions Error for 106 evolutions Error for 107 evolutions

p 0.201035 × 10−2 0.454371 × 10−3 0.167924 × 10−3

p2 0.912343 × 10−3 0.207135 × 10−3 0.444854 × 10−6

p4 0.130941 × 10−2 0.251866 × 10−3 0.487444 × 10−6

with different initial conditions have been performed and the result illustrated

in Figure 3 is the mean of the 100 different results.

We also computed the errors (26) in distribution for p2 and p4, which are

presented in Table 1.

4.2 Discrepancy in the dynamics

One important aspect of molecular dynamics (MD) is to capture macroscopic

information from the dynamics of atoms or small constituent parts that form

a material. Therefore it is essential to take care that the algorithm used in MD

is not changing the dynamics of the physical system significantly. The new

dynamics is designed to generate the canonical distribution by introducing a

minimal perturbation to the system so that the dynamics of the thermostated

system is close to the unperturbed system.

Consider a two dimensional system consisting of three particles which are

connected by springs with rest length to a fixed point at the origin (Figure 4).

The interaction between particles is modelled by Lennard-Jones potential,

ULJ(r) = 4ǫ

[

(α

r

)12

−
(α

r

)6
]

.
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Fig. 4 Three particles of mass m are connected by springs to the origin and
interacting with each other through Lennard-Jones (LJ) potential.

The Hamiltonian of the system is

H(q, p) =
3
∑

i=1

1
2mi

p2
i +

3
∑

i=1

1
2
k (L− ‖ qi ‖)2 +

2
∑

i=1

3
∑

j=i+1

ULJ(rij), (27)

where L is the spring rest length, k is the spring constant, rij =‖ qj − qi ‖

and ULJ is the Lennard-Jones potential. This is a challenging problem in

terms of equilibration due to the locking of energy in springs.

In our simulation we took α = ǫ = 1, k = 10, L = 1, mi = 1 for i = 1, 2, 3

and set the target temperature T = 1, kB = 1. In order to measure the

changes in the dynamics we look at the velocity autocorrelation function of

the radial component of velocity,

vri(t) =
q̇i · qi

‖ qi ‖
, (28)

To calculate the canonically weighted VAF function we first construct a set

of 1000 random initial conditions {zi} from a canonical distribution at the

target temperature. From each zi we run a microcanonical simulation and

calculate its VAF, the correct VAF is then obtained as a weighted average of
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Fig. 5 Autocorrelation function c1(τ ), computed using Hoover-Langevin,
Langevin, Nose-Hoover and NHC, and compared to the velocity autocorrelation
of canonically averaged microcanonical (c̄1(τ )) dynamics.

VAFs from different initial conditions:

c̄(τ) =

∑

i c(τ ; zi)ρβ(zi)
∑

i ρβ(zi)
, (29)

where

c(τ ; z) = lim
T→+∞

1

T

∫ T

0

vr1(t; z)vr1(t + τ ; z)

vr1(t; z)vr1(t; z)
dt, (30)

with vr1 representing, in this case, the radial velocity of the first particle

of the system. Figure 5 compares the radial VAF for Hoover-Langevin with

those obtained by other methods. The parameters are chosen with the criteria

to achieve a correct distribution: µ = 0.1, σ = 1 for Hoover-Langevin, γ = 1

and γ = 0.5 for Langevin, Q = 0.3 for Nosé-Hoover and Q1 = Q2 = 0.1

for NHC. We used these values of the Langevin parameter so that the error
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Table 2 Comparison of root mean square of error on [0, 4] of VAF and the error
in distribution using (26) for 106 of ∆t = 0.01 evaluations.

Method Parameters Error in distribution Error on [0, 4] of VAF

Hoover-Langevin µ = 0.1, σ = 1 0.270198× 10−3 0.0675

Hoover-Langevin µ = 0.1, σ = 10 0.232064× 10−3 0.0578

Langevin γ = 0.5 0.252864× 10−3 0.1018

Langevin γ = 1 0.228635× 10−3 0.1383

NHC Q1 = Q2 = 0.1 0.275997× 10−3 0.0807

Nos e-Hoover Q = 0.3 0.165209× 10−2 0.0603

in its distribution is of the same size of the error in the distribution for

Hoover-Langevin. Moreover, we observed that for γ < 0.5 the temperature

fails to reach its target value within the simulation time, we elaborate more

on temperature in the next subsection. As can be seen from Figure 5, Hoover-

Langevin follows the VAF of microcanonical (unperturbed dynamics) very

closely, whereas the Langevin dynamics profoundly changes the VAF, since

it perturbs every degree of freedom by adding random noise. This illustrates

that the dynamics of Hoover-Langevin has the characteristic of deterministic

thermostats of being close to the original dynamics despite the fact that it

is a stochastic method.

The error in VAF and the error in distribution for Hoover-Langevin, Nose-

Hoover, NHC and Langevin method are shown in Table. 2. It worth noting

that Langevin fails to produce the correct qualitative approximation of VAF

as is visible in Figure 5.
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Fig. 6 The (top) panel shows cumulative kinetic energy during 105 of time steps
(∆t = 0.01) simulation. K(t) computed by Hoover-Langevin dynamics reaches 1
(the target temperature) and stays close to 1, whereas it takes longer for Langevin
dynamics to reaches the target temperature and the deviation is greater. The
(lower) panel shows the slow convergence of temperature over twenty million time
steps.

4.3 Temperature control

One important feature of the new dynamics is the control feedback loop in

the dynamics which stabilizes the cumulative average kinetic energy of the

system near the target temperature. Cumulative average kinetic energy is
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defined by

K(t) =
1

t

∫ t

0

n−1pT (s)M−1p(s)ds.

In Figure 6 we compare the K(t) of the Hoover-Langevin with the Langevin

dynamics for the system (27). We used µ = 0.1, σ = 1 for Hoover-Langevin

and γ = 1 and γ = 0.5 for Langevin, both methods produce correct Gibbs

measure in the long term, but the convergence of K(t) is much slower for

Langevin dynamics.

5 Conclusion

We have presented a new thermostat for generating the canonical distribution

in molecular dynamics simulations. This thermostat is derived by combin-

ing Nosé-Hoover and Langevin dynamics together with the aim to achieve a

provable correct distribution and at the same time minimizing the effect on

the dynamics. The new method should be of interest in cases where one is

concerned with computing the average of local observables which depend on

small number of degrees of freedom. For instance for calculating free energy

of activated processes where the process occurs along a reaction coordinate

which can be described as a function of the degrees of freedom of the sys-

tem. This new thermostat is likely to be preferable for some non-equilibrium

molecular dynamics simulations than the Langevin method, since it is close

to the dynamics of the unperturbed system, and therefore interacts weakly

with a non-equilibrium force acting on the system.

The new dynamics has an invariant probability measure ρaug

β which is

proportional to the Boltzmann-Gibbs distribution and we have proved ana-
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lytically that under a non-resonance assumption, an open, connected set U

with full measure can be constructed such that ρaug

β is ergodic on U . Thus,

when the new thermostat is applied to Hamiltonians without resonances the

dynamics is ergodic. This has been checked in several simple examples.
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