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Abstract
In this paper, we draw a link between cortical intrinsic curvature and the distributions of tangential
connection lengths. We suggest that differential rates of surface expansion not only lead to
intrinsic curvature of the cortical sheet, but also to differential inter-neuronal spacing. We propose
that there follows a consequential change in the profile of neuronal connections: specifically an
enhancement of the tendency towards proportionately more short connections. Thus, the degree of
cortical intrinsic curvature may have implications for short-range connectivity.
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1. Introduction
In comparison to shrews, humans have a six-fold increase in cortical thickness, but a 1,700-
fold increase in cortical surface area.1 This expansion is driven by an increase in the number
of functional units, rather than an increase in the complexity of those units,2 and results in an
increase in the degree of folding of the cortex (gyrification) to accommodate a large surface
area within the volume of the cranium. At a cellular level, expansion is commensurate with a
decrease in neuronal density and an increase in inter-cellular spacing.3,4 In this paper we
consider the implications of this observation in terms of how differential rates of cortical
expansion lead to altered neuronal spacing and connectivity. Given that such differential
expansion inevitably leads to intrinsic curvature of the cortical surface, we suggest that, in
view of this relationship, measurements of intrinsic curvature may offer insights to small-
scale connectivity.

To start, it is worth considering certain principles of cortical connectivity. In diverse systems
from C. Elegans,5 to macaque visual cortex,6 a distance-dependent distribution of
connection lengths has been demonstrated: namely a large peak of short connections and a
flatter tail representing longer connections. This is essentially the characteristic of small-
world architecture,5,7 which has been repeatedly shown in humans using a range of
functional and morphological brain data (fMRI, EEG, cortical thickness, DTI, tract-tracing)
at many levels, from brain-wide networks,8–10 through to the wiring at a neuronal level.11

Small-world networks are characterized by densely clustered local connections, in
combination with relatively sparse longer-range projections.5,7 This type of arrangement is
highly efficient, supporting both local specialization, as well as system-wide integration.

The distribution of neurons in the cortex is not perfectly crystalline, however if this non-
uniform spatial distribution is further augmented in some way, it will lead to an additional
increase in the proportion of short-term connections beyond the default preponderance
described above, i.e. the distribution of connection lengths is additionally skewed due to the
increase in the unevenness of the spatial distribution of neurons. A non-uniform distribution
of neurons might arise either as a result of non-uniform neuronal proliferation, or differential
surface expansion.

That differential expansion may result in an increase in the proportion of short connections
may be explained by considering a simple case of points on a line. As the points undergo
first uniform, then differential expansion, we can intuit how the histogram of distances
between the points changes. In the case of the former, under uniform expansion, the distance
between points remains constant. For example, if the points on the line are evenly spaced,
the initial histogram of distances between points will consist of a single bin representing all
points. Under uniform expansion the position of the bin will increase along the length-scale,
however all points will remain in the same bin. Alternatively if we had the starting case
where 50% of points were twice as close together as the rest, the initial histogram of
distances would consist of two bins of equal sizes. Under uniform expansion, the position of
the bins would change in a consistent way, but their proportions would not be altered.

Now consider the case of non-uniform, or differential expansion. This means that some
points expand faster then others, i.e. expansion introduces a variance in to the distance
between points. Importantly this variance increases as expansion increases, such that points
that expand the fastest will increase the distance between them at a greater rate than points
that expand the slowest. For the histogram this means that at the upper-end of the length-
scale, there will be fewer and fewer points covering these longer distances. Hence even if we
start with a uniform distribution of points, under differential expansion, the histogram of
distances between points will become ever-more skewed to shorter distances.
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We note that these are general principles of differential expansion. Although we have
considered here the straightforward case of expansion of points on a line, the principle may
be equally applied to points on a surface. In the next section we consider how differential
expansion impacts on cortical morphology with the aim of showing how measures of
morphology have implications for underlying connection length distributions.

Differential expansion of a surface may give rise to intrinsic curvature. Intrinsic curvature
may be visualized thus: as the surface grows, its tangential expansion may develop in three
ways: if a surface patch grows at a uniform rate, the resultant surface will be flat; if the patch
has a differential growth component such that its edges develop more slowly than the center,
then the resultant surface will be spherical (either concave or convex), otherwise referred to
as positively curved; if the edges develop faster than the center, the resultant surface will be
saddle-shaped, otherwise referred to as negatively curved12,13 (see Fig. 1). The more
extreme the differential growth gradient, the greater the resultant intrinsic curvature.

Intrinsic curvature is, as its name suggests, an intrinsic property of the surface itself and
cannot be removed from it without tearing or deforming the surface — (think of trying to
flatten a football, the intrinsic curvature of its surface means that it cannot be mapped to a
surface with a different intrinsic curvature, e.g. a flat plane which has no intrinsic curvature).
The cerebral cortex is both intrinsically and extrinsically curved.14 Extrinsic curvature (or
mean curvature), is curvature that arises from the mechanical folding of the surface, and as
such is not a property of the surface itself, but rather of how it is embedded in three-
dimensional space. For example, a crumpled piece of paper has many curves in it, but these
curves can be removed to restore the paper to its original flat appearance. Thus we can say
that the folded paper has extrinsic, but not intrinsic curvature.

The degree of intrinsic curvature is proportional to the degree of differential expansion;
bigger differences in expansion across the surface give rise to greater degrees of intrinsic
curvature. Differential expansion, if present, increases as expansion increases, i.e. as the
magnitude surface area increases. This is analogous to changes in cortical gyrification,
which also increase as surface area increases. Importantly, differential (non-uniform) rates
of surface expansion, as we have noted above, may give rise to uneven distributions of
neurons and an increase in the proportion of short connections. Since it also gives rise to
intrinsic curvature, it follows that measures of intrinsic curvature contain information about
length distributions of tangential cortical connections. This is the essence of our hypothesis.

Although a mathematical concept,12 the connection between differential development and
intrinsic curvature has previously been established in biological studies. It has been
demonstrated that the differential growth of leaves produces intrinsic curvature,13 while a
similar effect was noted in plant roots.15 However, measurements of cortical intrinsic
curvature have not commonly been assessed in structural studies of the brain. This is likely
due, in no small part to its subtle nature compared to the rather more striking, and easily
measurable, patterns of gyrification and cortical thickness.

One of the first studies to investigate cortical intrinsic curvature was based on a cortical
reconstruction of the Talairach atlas, and implicitly confirmed the prevalence of intrinsic
curvature by demonstrating that the mean geodesic (smallest path length between two points
on a surface, a function of intrinsic curvature) was less than its total surface area would
predict.2 Other studies explicitly measured the intrinsic curvature of the cortex at a
millimeter-scale and showed that it has both negative and positive curvature.16 More
recently, the intrinsic curvature of the cortical surface, again measured at a millimeter-scale,
was explicitly rendered,17 and a qualitative examination of the surface revealed it to be
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predominantly negatively curved. The average magnitude of intrinsic curvature measure at
this scale is about 0.06 mm−2.18

Thus far we have discussed the implication of differential expansion on connectivity and
morphology separately. In order to explore the possibility of this link empirically, we
contrasted cortical intrinsic curvature between humans and chimpanzees. We hypothesized
that if morphology and connectivity are linked then there should be quantifiable differences
in intrinsic curvature between the species, over and above those attributable to differences in
surface area, and that these differences should conform to theoretical expectations of
connectivity differences between the species.

We chose humans and chimpanzees as a contrast based on the strong theoretical arguments
and empirical evidence of connectivity differences. Large brains are not simply scaled-up
versions of small brains.19 Rather, theoretical considerations predict that increasing brain
size results in proportionately fewer long-range connections.20 As discussed in Ref. 21, if a
fixed percentage of connectivity was maintained, then the volume of connections would
increase exponentially as brain size increased. Without a trend towards increasing
modularity, the overall increase in distance of all connection lengths in larger brains would
result in a conduction delay, which is inefficient.11,22 Empirical studies have supported this
and demonstrated, for example, that inter-hemispheric connectivity via the corpus callosum
is reduced in larger primate brains, while the intra-hemispheric connectivity is
augmented.23,24 In a similar manner but at a smaller scale, the proportional extent of
horizontal cortical connections in the primary visual cortex, V1, is decreased in macaque
monkeys (V1 of 1200 mm2, Ref. 25) compared to tree shrews (V1 120 mm2, Ref. 26).

In terms of cortical architecture, humans have a lower neuronal density and increased
horizontal spacing between minicolumns than chimpanzees and other primates.27,28 This
implies that, on average, in accord with the theory outlined above, there should be a greater
uneven spatial distribution in the lower density cortex (humans), and hence (as argued
above) more skew towards shorter connections. Thus, although the absolute connection
lengths in chimpanzees may be shorter, they will have proportionately more “long”
connections. The reduced neuronal density in humans will also impact on differential growth
which arises from forces internal to the surface itself. Hence differences in cortical
architecture between humans and chimpanzees will also manifest as differences in
differential growth, with the lower density cortex experiencing greater degrees of
differential growth.

We have thus far discussed two factors which we propose impact on the degree of
differential growth, namely magnitude surface area, and cortical architecture. In a
comparison between humans and chimpanzees we expect that humans will have relatively
more differential growth due to their larger surface areas, as well as reduced neuronal
density. After correction for surface area, differences in the distribution of intrinsic
curvature values (taken as a proxy for differential growth) should solely reflect differences
in underlying architecture. We believe these changes may ultimately be related to cortico-
cortical connectivity.

In summary, although the relationships between intrinsic curvature and differential
development, and between differential development and cortical connection lengths have
been independently explored, we believe that these hitherto separate strands may usefully be
brought together. We postulate that differential development simultaneously affects the
relative lengths of cortico-cortical connections, and the degree of intrinsic curvature and,
thus, intrinsic curvature, which is quantifiable, may serve as a useful marker for tangential
cortical connectivity distributions. If the degree of intrinsic curvature reflects differential
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development and is related to cortical connectivity, then humans should have higher degrees
of intrinsic curvature over and above the magnitude of cortical surface area.

2. Methods
2.1. Subjects & MR acquisition parameters

We obtained three-dimensional T1-weighted MPRAGE magnetic resonance (MR) images
for ten chimpanzees and ten humans using a Siemens 3 Tesla (T) Trio MR system.
Chimpanzee images were acquired at Yerkes National Primate Research Centre (YNPRC) in
Atlanta, Georgia, US. Human images were acquired at the Magnetic Resonance and Image
Analysis Research Centre (MARIARC) at the University of Liverpool, UK. The MR
sequences used for acquisition of images are shown in Table 1. Acquisition parameters were
made to be as similar as possible for humans and chimpanzees. The field of view was
naturally larger in humans owing to greater head size. Furthermore, we were unable to
replicate the 0.6 mm voxel resolution in the slice thickness direction in humans that was
used for the chimpanzees due to the presence of multiple artefacts. Reducing the voxel
resolution to 1.0 mm in this direction in humans resulted in an acquisition time of 12
minutes, which contrasted to the 36 minute chimpanzee scan. However, the in-plane voxel
resolution was 0.6 mm × 0.6 mm for both humans and chimpanzees, resulting in a very
similar between-tissue contrast. All humans provided written consent to participate in this
study, which had local ethics committee approval. For the chimpanzee scans, subjects were
first immobilized by ketamine injection (10 mg/kg) and subsequently anaesthetized with
propofol (40–60 mg/kg/h) following standard procedures at the YNPRC. Subjects were then
transported to the MRI facility and remained anaesthetized for the duration of the scans as
well as the time needed to transport them between their home cage and the imaging facility
(total time ~2 h). Subjects were placed in the scanner chamber in a supine position with their
head fitted inside the human-head coil.

2.2. FreeSurfer cortical reconstruction
Cortical reconstructions were generated using the software FreeSurfer (http://
surfer.nmr.mgh.harvard.edu/, see Refs. 29–32). The FreeSurfer program was specifically
developed for cortical reconstruction. In brief, raw image data voxels are subsampled to
voxels of side 1 mm3. After that the data are normalized for intensity, RF-bias field
inhomogenities are modeled and removed, followed by skull-stripping. The cerebral white
matter is identified based on a linear combination of voxel intensities and local geometric
information. After white matter segmentation, the hemispheres are separated from each
other and non-cerebral structures. Finally the white matter volume is tessellated and
deformed to produce an accurate and smooth representation of the grey-white interface.
Because the radius of curvature and the thickness of the cortex are greater than the size of
the MR voxels, trilinear interpolation of the surface is not limited by the voxel dimensions
of the original data, and hence surfaces may be computed at a sub-voxel scale.31

Although the FreeSurfer process is specifically designed for the processing of human data,
nonetheless it has previously been used to reconstruct cortical surfaces of non-human
primates.33 However, in order to ensure accurate surface reconstructions, special attention is
required to apply the process to non-human primates. FreeSurfer is optimized to work on
voxels conformed to 1 mm3, in a data matrix 256 × 256 × 256. As such the processing of
high-resolution data, such as that acquired for this study can be problematic. In order to
circumvent such problems, and ensure the most time-efficient and accurate surface
reconstructions, the data for humans and chimpanzees were conformed to the expected
FreeSurfer dimensions.
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Because data were acquired at slightly different resolutions and on different MR scan
systems, stringent quality control was applied to ensure the accuracy of the surface
reconstruction for each individual. Every slice through each volume was visually inspected
to check the accuracy of both the pial and white matter surfaces. Inaccuracies in
segmentation and reconstruction were manually corrected, and surfaces recomputed.

2.3. Measuring curvature
In talking about curvature, it is important to be specific as to what is meant. For example, in
the commonly held understanding of curvature, we may say that the surface of a sphere and
a cylinder are both curved surfaces, however investigating further we can make distinctions
between these two surfaces which demonstrate that the nature of their curvature is quite
different.

Consider how curvature is measured: curvature is defined at every point on a line or surface.
At each point on a line, the curvature is measured as the inverse of the radius of the
osculating circle (c = 1/r) (see Fig. 2). Thus if we were to slice through both a sphere and a
cylinder to create a line-profile of the shape, we would in each case measure a non-zero
curvature. Now consider measuring curvature of a surface: at every point on the surface
there is an infinite number of directions through which we can measure the curvature. Gauss
showed that, despite this, there are always two directions which produce a maximum and a
minimum value of curvature, and these directions are always orthogonal to each other
(called the principals of curvature (c1, c2)). Gauss thus described the curvature at a point on
a surface as the product of the principal curvature measured in each of these directions (K =
c1 × c2). This type of curvature is called intrinsic or Gaussian curvature, and is a function of
the surface itself.

If we return to our cylinder and sphere, we can now begin to differentiate between the
curvatures of each of these surfaces. For example, in the case of the cylinder, it is easy to
appreciate that the maximum curvature is perpendicular to the axis of the cylinder, while the
minimum curvature is parallel to it. In the case of the latter, the radius of curvature is
infinite, given that the axis is a straight line. This means that at every point on the cylinder
surface, the intrinsic curvature is zero, implying that it is homomorphic with a flat plane. We
can confirm this by considering the lack of distortion to the surface if we unfold a cylinder
to lie flat on a plane surface. In contrast, for each direction on a spherical surface, there is a
non-zero value to each of the radii of curvature (actually they are identical). This means that
the surface cannot be flattened without distortion.

The distinction between folding-based curvature (mean curvature), and intrinsic surface-
curvature is subtle and it is not always possible to appreciate visually, especially when the
two co-exist in the same surface, as is the case with the cerebral cortex, however some work
has been done to contrast these two parameters in the visual cortex.34 To illustrate the
difference between folding and intrinsic curvature, the mean curvature, H, which is a
measure of folding, and the intrinsic curvature are mapped on to a cortical reconstruction in
Fig. 2. Mean curvature is calculated as the average of the principal curvatures (formally it is
defined as the trace of the Hessian matrix, while intrinsic curvature is the determinant). Thus
depending on how they are combined, the principal curvatures can illustrate the folding of
the cortex (gyri and sulci, as convex or concave folds respectively), or the intrinsic curvature
of the cortex (both positive and negative intrinsic curvature).

Mathematically, curvature is measured at each point on a surface. In the FreeSurfer process,
this is approximated through intrinsic curvature measures at each vertex of the surface
reconstruction using the principles of the Gauss-Bonnet scheme (see Fig. 2(d)): On a flat
surface, the interior angles of a triangle sum to 180°. However, as discovered by Riemann,
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on a curved surface this does not hold, and the sum of the interior angles are greater or less
than 180° for positive or negative curvature respectively, the surfeit or deficit depending on
the degree of intrinsic curvature. These relationships are the basis for intrinsic curvature
calculations on the cortical surface: if the area of a vertex (defined as the area of triangles
which define the vertex) is convex or concave (as is the case for a positively curved surface),
then the surrounding angle is less than 360°. If the area is flat, then the angle is ±360°,
whereas if the area is saddle-shaped (negatively curved), the angle is greater than 360°. The
intrinsic curvature of the vertex is calculated as the surfeit or deficit of the vertex angle
divided by one third the sum of the vertex areas (Eq. (1)).35

1

where θi is the angle subtended by ith vertex, and Ai is the area of ith vertex (the sum of
areas of triangle surrounding the vertex). (Further details of curvature calculations per vertex
are outlined in Ref. 17.) The Gauss-Bonnet scheme has been demonstrated to be optimal for
measurements of Gaussian curvature based on surface tessellations in comparison with other
commonly applied methods.35 Intrinsic curvature values were measured on the pial surface
for each subject.

2.4. Reliability of curvature measures
2.4.1. Filtering—Despite stringent quality control measures to ensure accurate surface
reconstructions, surfaces may yet be hampered by single voxel errors. As discussed
previously,17 the limiting scale at which curvature may be reliably calculated is defined by
an osculating sphere with radius one-half the diagonal of the voxel. In the FreeSurfer
process all data are sub-sampled to a unit side of 1 mm, giving a limit of resolution of √2/2
mm, equivalent to a radius of curvature of 1.41 mm−1 (see Fig. 3). Although surfaces are
reconstructed at a sub-voxel scale (being continuous), this value represents the threshold of
curvature beyond which values are not reliable.

In order to filter out unreliable curvature values, the intrinsic and mean curvature values for
each vertex are calculated using the Gauss-Bonnet method described above. From there the
principle curvature values are derived. At this point the limiting threshold is applied to both
principal curvatures from which the intrinsic curvature value is subsequently derived.
Principal curvature values that are more extreme than the filter threshold are set to zero.
Thereafter the filtered principal curvatures for each vertex are multiplied to produce filtered
intrinsic curvature values for each vertex in the cortical reconstruction, and hence a filtered
distribution of intrinsic curvature values for each subject.

The filter level |1.41 mm−1| represents the limiting resolution by which we can rely on
principal curvature measures, however this resolution does not preclude the possibility that
data may be affected by surface reconstruction errors which are greater than the dimensions
of a single voxel and yet not removed by manual editing. Because of this, several different
filter levels are applied to principal curvature calculations, such that principal curvature
values become less extreme and hence are more likely to follow the smooth surface of the
cortex.

Four different filter levels were applied to each principal curvature calculation, i.e. c1, c2 : |
1.41 mm−1|| 1 mm−1|, |0.5mm−1| and |0.2mm−1|. At each stage, vertices with principal
curvature values exceeding these levels were set to zero and hence the intrinsic curvature
value for that vertex was excluded from further distribution analysis (see Fig. 3). Per vertex,
principal curvature values that survive each level of filtering are multiplied together to
produce a filtered Gaussian curvature for that vertex.
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Because chimpanzees have smaller brains and hence higher average curvature values
(irrespective of subtle shape differences), the same low-pass filter level applied to
unconformed human and chimpanzee data sets will remove a higher proportion of the
chimpanzee curvature distribution. To compensate for this, we applied the same filter levels
to conformed data (see Sec. 2.2). This had the effect of producing equivalent percentages of
curvature distributions for each filter level in a comparison across the species.

2.4.2. Surface decimation—Vertex-based measures of intrinsic curvature may be
susceptible to artifacts due to local surface quantization effects such as varying the number
of vertex neighbors. As an additional test of the reliability of FreeSurfer cortical curvature
values, we applied an algorithm which decimated the cortical reconstruction.36 Decimation
has the effect of down-sampling the number of vertices in the surface reconstruction, while
maintaining as far as possible fidelity to the original shape of the cortical surface. In this
experiment we decimated the reconstructions per subject to 90%, 75% and 50% of the
original number of vertices. This had the effect of increasing the size of surface triangles, as
well as varying the number of neighbors per vertex (see Fig. 3). Curvature analysis was
carried out as described above for each of these levels.

2.5. Data analysis
As discussed previously, we postulate that differential growth introduces an additional
component to the overall forces determining length. Our theory predicts that humans will
have proportionately more short-range connectivity than chimpanzees, hence we predict that
the distribution of human curvature values will be skewed towards more extreme curvature
values reflecting more short-range connectivity due to this differential surface growth
component.

Because we are interested in the shape of the curvature distribution rather than its average
value, we quantified the skew of the curvature distribution per subject, and averaged this
over species. Skew, S, is defined as follows (Eq. 2)

2

where n is the number of intrinsic curvature values (equal to the number of vertices in the
surface reconstruction), and xi is the value of Gaussian curvature for the ith vertex. The
skew of a distribution is a dimensionless measure of how far from symmetry it is. As
reported in Ref. 17, the distributions of positive and negative cortical intrinsic curvature are
weighted towards zero. Zero curvature represents an absence of differential growth (a flat
surface). As the component of differential growth increase, it affects the curvature
distribution, skewing it away from zero. In accordance with our theory, we propose that this
reflects an increase in the proportion of short connections. Thus the less skewed the
curvature distribution (the more it is weighted away from zero curvature), the greater the
influence of differential growth and the greater the proportion of short-range connections.

3. Results
3.1. Average values

The average cerebral volume for humans and chimpanzees derived from cortical
reconstructions was 723 cm3 (±76) and 421 cm3 (±37) respectively. These results are in
good experimental agreement with similar studies.37 The average surface area per
hemisphere for humans and chimpanzees was 681 cm2 (±64), and 314 cm2 (±24)
respectively.
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For humans the± average intrinsic curvature values for negative and positive curvature were
−0.038 mm−2 and 0.033 mm−2 respectively. For chimpanzees, the average curvature was
−0.018 mm−2 and 0.016 mm−2 respectively,

Finally, the average percentage of vertices with negative curvature was 55% (±0.4) and 56%
(±1.7) for humans and chimpanzees respectively. The corresponding percentage area for
negative curvature was 60% (±3) for both humans and chimpanzees, demonstrating that the
pial surface is predominantly negatively curved for both species. This result is in keeping
with previous reported findings.2,17

3.2. Cortical intrinsic curvature distributions
The spatial distributions of cortical curvature for chimpanzees and humans at the |1.41
mm−1| filter are illustrated in Fig. 4. Empirically, the distributions for both positive and
negative intrinsic curvature are weighted towards zero, and are similar to those previously
published.16,17

Skew analysis of the curvature distributions for humans and chimpanzees (corrected for
surface area) revealed significant differences between the species (Fig. 5). For positive and
negative curvature, humans are significantly less skewed (less weighted towards zero) than
chimpanzees. This finding is robust across all filter levels (Table 2).

This result is in agreement with our hypothesis stated at the outset, that humans have a
greater degree of intrinsic curvature (taken as a proxy for differential growth) than
chimpanzees, over and above surface area differences. It is our hypothesis that this result
reflects a change in the proportion of short over long connections between the species.

3.3. Reliability of measures
The effects of different curvature filter levels are reported in Table 2. For each filter level,
the percentage of vertices contributing to intrinsic curvature measures were 81%, 74%, 50%
and 12% for filters |1.41mm−1|, |1mm−1|, |0.5mm−1| and |0.2mm−1| respectively. There were
no significant differences between the species for any of the filter levels, except at the |
0.2mm−1| level, which may be due to the differences in skew of the distributions. For all
filter levels, humans are both less positively and less negatively skewed in comparison to
chimpanzees, in keeping with theoretical predictions.

The effects of surface decimation are reported in Table 3. Three different levels of surface
decimation were applied. The average vertex area was 0.98 mm−2, 1.04 mm−2, 1.16 mm−2,
and 1.45 mm−2 for the original, and 90%, 75% and 50% decimations levels respectively. For
each decimation level, humans have less curvature skew compared to chimpanzees, in
keeping with expectations. These results demonstrate the robustness of curvature values to
artifacts of surface reconstruction.

4. Discussion
4.1. Overview

This experiment examines the prediction that the human brain should show a greater degree
of intrinsic curvature than that of the chimpanzee independent of surface area. This
prediction is based on the proposed relationship between intrinsic curvature and tangential
cortical connection length distributions, a link based on the premise that differential surface
expansion has an impact on each.

The approach described unites two separate observations: on the one hand differential rates
of tangential surface development introduce intrinsic curvature, with greater rates of
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differential expansion resulting in higher degrees of curvature. Commensurate with this,
differential expansion results in greater disparity of inter-neuronal distances, skewing the
length distribution to favor proportionately more short-range cortico-cortical connections.
Thus, because differential development affects both the distribution of curvature values and
the distribution of tangential connection lengths, we suggest that it is possible to adopt
measures of the former as markers of the latter.

More specifically, in the absence of differential development, there will be a certain
distribution of connection lengths. As the influence of differential development increases,
the original length distribution will be skewed to proportionately more short connections.
Here, we compare this imposed skew across species, and make inferences about the relative
proportions of short-to-long connections. We highlight that, just as in conventional network
analysis, the current method does not quantify absolute connection lengths, but rather the
relative difference in the proportions of short connection lengths between humans and
chimpanzees. The a priori prediction was that the two species would have distinct
connection length distributions, over and above the disparity of magnitude in surface area.
We propose that this reflects a difference in cortical architecture, with the larger brains of
humans characterized by a more uneven spatial distribution and hence a preponderance of
short connections, as well as increased intrinsic curvature. The results of our analysis
demonstrate agreement with this prediction.

The interpretation of intrinsic curvature, and its impact on the cortical surface is dependent
on the scale at which it is measured. For example, at a gross scale, the shape of the whole
brain is quasi-spherical, suggesting a large-scale positive intrinsic curvature, complementing
the shape of the cranium. At lower scales, such as the centimeter-scale employed in Ref. 2,
or the millimeter-scale in Ref. 17, the majority of the cortex appears to be negatively curved.
We propose that measures of cortical intrinsic curvature at a millimeter-scale may be related
to the differential tangential development of cortical connections at that scale. Crucially,
when we refer to cortico-cortical connections we mean intrinsic (horizontal) axonal
processes that are confined to the cortical grey matter, which can extend up to several
millimeters.38 We do not mean extrinsic (white matter) connections such as U-fibers, or
intra and inter hemispheric connections. In other words, the connectivity we refer to is at a
mesoscopic scale of a few millimeters and is tangential to the cortical surface.

4.2. Reliability
It is noteworthy that two of the observations made here pertaining to intrinsic curvature are
compatible with those made in previous studies: the high-frequency pattern of intrinsic
curvature,16,17 and the predominance of negative intrinsic curvature.2,17 Further, the values
of intrinsic curvature we report are comparable to previous findings.18

One of the limitations of this study is the fact that data were not acquired on the same
scanner, however every attempt was made to match as closely as possible the scanning
parameters between centers. In addition intensive quality control was applied to the surface
reconstructions for each subject. Where errors in reconstruction were noted (e.g. due to poor
contrast between tissue classes), manual edits were carried out. Because inaccuracies are
corrected based on two-dimensional slices, and not the three-dimensional surface
representation, this type of intervention is not biased with respect to the measurement of
intrinsic curvature (which is not measurable on two-dimensional line profiles, see Sec. 2.3,
Measuring Curvature). By inspecting the cortical reconstruction of each subject, we aimed
to reduce, as far as possible, discrepancies in accuracy that may have arisen from differences
in data acquisition. As a further control, we applied a series of curvature filters to remove
values arising from single vertex errors that were not correctable with manual edits. Finally
we tested the reliability of curvature values by applying a series of surface decimation levels
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to the cortical mesh of each subject to ensure that curvature values were representative of
cortical morphology and not surface quantization effects. The results of our validity
experiments demonstrate the reliability of our data and the robustness of the methods used.

4.3. Theoretical considerations
Theoretically intrinsic curvature is very interesting and the distinction between negative and
positive intrinsic curvature is potentially useful. The possible advantages of negative and
positive curvature were originally contrasted in Ref. 2. At the heart of the discussion is the
distinct effects each shape has on angles and lengths along the surface. In the case of
spherical or positive intrinsic curvature, angles and distances are increased relative to
Euclidean geometry, whereas for negative intrinsic curvature, angles and distances on the
surface are reduced compared to Euclidean geometry. For example, consider a fixed point,
P, attached to which is a length of rope, r. If one were to walk around the fixed point, while
keeping the rope completely taut, the distance traversed would be 2πr if the surface were
flat. Now consider if the surface were spherical, the circumference traversed would be less
than that measured on the flat surface, as the rope, although taut, would now be effectively
“shortened” in reach due to the intrinsic curvature of the surface. Conversely, if the surface
were hyperbolic in shape, as if the point P were on a valley floor, the measured
circumference would be greater than 2πr as the rise and fall of the surface topology would
act to lengthen the distance required for a revolution. Thus, in order to produce an equivalent
circumference to that measured on the flat plane, the size of the spherical area would have to
be increased, whereas the size of the hyperbolic area would have to be decreased. From this
reasoning we can postulate that the predominantly negative nature of cortical intrinsic
curvature may introduce an increased level of efficiency to the cortical surface, in that, for a
given circumference of a patch of cerebral cortex, a smaller area is covered than would be
the case for a flat or spherical patch. This means that there is a greater circumference for a
given radius compared to a positively curved patch or a circle on a flat surface. The impact
of this was discussed in Ref. 2, where it was suggested that this may imply that a negatively
curved cortical patch could facilitate more inter-regional (tangential) connectivity and hence
be superior for inter-area wiring. Additionally it was suggested that because the average
geodesic on a negatively curved surface is less than on a positively curved or flat surface, it
may be more efficient for intra-area wiring also. Given these considerations, the
preponderance of negative versus positive intrinsic curvature of the cortical surface at a
millimeter-scale may be considered commensurate with the idea that the brain has adapted
its shape to be maximally energy efficient.39 It is estimated that approximately 50% of the
brain’s energy is used to drive signals,40 with higher proportions of energy required for
cortical grey matter (75%) compared to the rest of the brain reflecting the formers greater
levels of inter-connectivity. Thus it may be that the brain has evolved a shape that minimizes
the energy cost of signal transfer across its surface.

At larger scales, measurements of intrinsic curvature may prove to be very informative
regarding the organization and appearance of the cortex. Just as the smoothness of a piece of
paper is dependent on the scale at which it is measured, so too is the intrinsic curvature of
cortex. That is, the spatial frequency and values of this intrinsic curvature vary over different
scales. For example, at the millimeter-scale, the cortex has a demonstrably high spatial
frequency, independent of the larger-scale patterns of gyri and sulci, whereas at the
centimeter-scale it has a lower frequency that follows more closely cortical gyrification
features.2 Similarly the values of intrinsic curvature measured are dependent on the scale at
which they are measured. For example, in this experiment the average intrinsic curvature
values of the pial surface for humans (with minimal filtering) were −0.038 mm−2 and 0.033
mm−2, however at higher sales, we would expect to measure proportionately less sharp
intrinsic curvature values. Because intrinsic curvature values are dependent on not only the
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shape but also the size of the object being measured, it is important, as we have done here, to
use dimensionless parameters such as skew when comparing brains of different sizes (For a
more complete discussion see Ref. 17).

4.4. Future work
The hypothesis proposed here raises several testable predictions, namely that smaller brains
will have less intrinsic curvature than larger brains, and that cortices with higher neuronal
density will have less differential growth and hence less intrinsic curvature. This may prove
useful in clinical studies where higher neuronal density and decreased neuropil have been
linked to diseases such as schizophrenia.41,42 Further empirical observations of the extent of
horizontal connectivity between species, or indeed in different regions of the brain, would be
useful to correlate with our predictions for the morphology of the cortex. For example
perceptual effects such as the simultaneous tilt illusion,43 hypothesized to be a function of
horizontal connectivity, should provide an alternative method for generating strong,
directional predictions for cortical curvature.

The method proposed here, while suitable for whole brain characterization, may also be
adapted to a region-of-interest approach. In particular this may be of interest in studies of
disrupted connectivity, which is thought to play a role in diseases such as epilepsy,44 or
possibly in neurodevelopmental disorders, where deviant brain growth trajectories have been
linked to abnormalities in cortico-cortical connectivity.45

The high spatial frequency pattern of intrinsic curvature is different from that predicted by
current theories of gyrification,46 which suggest that axonal tension mediates cortical
folding, and that differential growth between layers is a consequence, rather than a driver of
sulcal/gyral formation. Under this hypothesis, intrinsic curvature should follow a spatial
pattern equivalent to the pattern of sulci and gyri, which is not the case. Differential growth
between cortical layers, and between the cortex and subcortical white matter has previously
been considered as a main component of cortical gyrification,47 and further work to
explicitly compare extrinsic folding and intrinsic curvature might help resolve the role each
plays in gyrification. In particular, analysis of intrinsic curvature at a scale on the order of
cortical folds may prove especially useful, given that intrinsic properties of a surface
actually constrain the possibly extrinsic properties.2

To date connectivity studies using EEG/fMRI/MRI-based network analysis have focused on
largescale, inter-regional (white matter-based) connectivity. However, by measuring
intrinsic curvature at the smaller, millimeter-scale, we are able to make inferences about
connection length distributions at this scale. We believe that the current approach may offer
a novel analysis that is potentially complementary analysis to larger-scale network studies.

5. Conclusions
To summarize, in this study we draw a theoretical link between two prior observations: that
differential development of the cortical sheet will have an impact on the lengths of
tangential cortical connections, and that this differential development will simultaneously
affect local cortical morphology and result in intrinsic curvature. We hypothesized that if
cortical intrinsic curvature and the length of tangential cortical connections were in fact
related, then measures of the former should be able to distinguish between species in a
predictable way, based on the theory that larger brains have proportionately more short
connections. We demonstrate that, in keeping with predictions, the human brain in
comparison to that of the chimpanzee shows a pattern of intrinsic curvature that is
commensurate with a greater preponderance of short-range connections. We believe that this
novel approach for the characterization, in vivo, of connectivity in the cortical sheet will be
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complementary to studies evaluating longer range connections, and may prove useful in
identifying and understanding functional abnormalities in patient groups.
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Fig. 1.
Differential growth produces either positive or negative curvature.
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Fig. 2.
(a) The curvature, c, at a point on a line is given as the inverse of the radius of the osculating
circle at that point. (b) For a surface, the curvature at a point is the function of the principal
curvatures at that point, where the principal curvatures are always orthogonal to each other.
The mean curvature, a function of how the surface is embedded in space, is the average of
the principal curvatures, while the Gaussian curvature, which is intrinsic to the surface, is
calculated as the product of the principal curvatures. (c) The principal curvatures for each
point on a cortical surface reconstruction may be combined to generate a map of mean
curvature or Gaussian curvature. The mean curvature clearly follows the familiar
morphology of the cortex, with convex regions (gyri) in green, and concave regions (sulci)
in red. The pattern of Gaussian curvature is of a much higher spatial frequency and does not
follow the larger-scale morphological features of cortical folds. For Gaussian curvature,
positive curvature is red and negative curvature is green. These images demonstrate how
folding is distinct from intrinsic curvature. (d) For a surface reconstruction the Gaussian
curvature is calculated per vertex based on the Gauss-Bonnet scheme (see Eq. (1)).
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Fig. 3.
(a) Single vertex errors sometimes occur in surface reconstructions despite manual editing.
These result in vertices of very high curvature. In order to remove these, Gaussian curvature
values per vertex are resolved into their constituent principal curvatures and a low-pass filter
applied. Subsequently the filtered principal curvatures are re-multiplied to produce a filtered
Gaussian curvature per vertex of the surface reconstruction. (b) Different levels of filtering
are applied. At the lowest level, the low-pass filter value is defined by the limiting scale at
which curvature may be reliably calculated. In FreeSurfer, this is defined by the inverse of
the radius of an osculating sphere half the diameter of the voxel. (c) Because the cerebral
cortex is smooth, less highly curved shapes are more likely to reflect the shape of the cortex,
thus different filter levels are applied to the curvature distribution. (d) An example of the
impact of surface decimation at the 90% and 50% level. As the surface is down-sampled, the
number of vertices and triangles are decreased.
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Fig. 4.
Gaussian curvature for humans and chimpanzees for the pial surface. In each case, the high
spatial frequency pattern of the Gaussian curvature is evident.
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Fig. 5.
Distributions of positive and negative cortical intrinsic curvature for humans (blue) and
chimpanzees (green) based on the cortical surface. In each case the magnitude of skew of
the curvature distribution is less in humans.
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Table 2

Average values of the skew of the intrinsic curvature distributions (both positive and negative), broken down
by species and curvature filter level. In agreement with theoretical predictions, for both positive and negative
curvature, chimpanzees are more skewed than humans. This pattern is consistent across all filter levels.

Humans Chimpanzees p-value

Negative |1.41mm| −4.8 −5.6 0.04

Curvature |1mm| −3.8 −4.8 0.02

Skew |0.5mm| −2.6 −3.3 <0.01

|0.2mm| −1.9 −2.3 0.03

Positive |1.41mm| 3.6 4.2 0.05

Curvature |1mm| 3.2 3.6 0.01

Skew |0.5mm| 2.7 3 <0.01

|0.2mm| 2.7 3.2 <0.01
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Table 3

Results of curvature skew analysis for different decimation levels.

Decimation
(%) Humans Chimpanzees p-value

Negative 90 −7.2 −7.6 0.07

Curvature 75 −6.9 −7.5 0.01

Skew 50 −6.2 −6.8 <0.01

Positive 90 7.5 7.6 0.44

Curvature 75 7.1 7.5 0.01

Skew 50 6 6.6 <0.01
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