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Abstract 

The measurement of short-lived 223Ra often involves a second measurement for supported 

activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 

284 values on the oceanic distribution of 227Ac, which was collected when analyzing water 

samples for short-lived radium isotopes by the radium delayed coincidence counting system. 

The present work compiles 227Ac data from coastal regions all over the northern hemisphere, 

including values from ground water, from estuaries and lagoons, and from marine end-

members. Deep-sea samples from a continental slope off Puerto Rico and from an active 

vent site near Hawaii complete the overview of 227Ac near its potential sources. 

The average 227Ac activities of nearshore marine end-members range from 0.4 dpm * m-3 at 

the Gulf of Mexico to 3.0 dpm *m-3 in the coastal waters of the Korean Strait. In analogy to 

228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac 

activities, although less pronounced than for radium, due to its weaker shelf source. Based 

on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 

1018 dpm 227Acex in the ocean, which corresponds to 37 moles, or 8.4 kg. This implies a flux 

of 127 dpm*m-2*y-1 from the deep-sea floor. For the shelf regions, we obtain a global 

inventory of 227Ac of 4.5 * 1015 dpm, which cannot be converted directly into a flux value, as 

the regional loss term of 227Ac to the open ocean would have to be included.  

Ac has so far been considered to behave similarly to Ra in the marine environment, with the 

exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of 

geochemical differences between Ac, which is retained in a warm vent system, and Ra, 

which is readily released (Moore et al., submitted). Another potential mechanism of 

producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production 

value of lithogenic material is observed at reducing environments, where enrichment in 

uranium may occur. The presented data here may serve as a reference for including 227Ac in 



circulation models, and the overview provides values for some end-members that contribute 

to the global Ac distribution. 

1. Introduction 

Actinium-227 is a naturally occurring radioisotope with a half-life of 21.77 years. It is 

generated by decay of protactinium-231, which is particularly abundant in deep-sea 

sediments. Actinium has a prominent source at the deep ocean floor, in conjunction with a 

half-life in the range of ocean mixing time scales, which makes it particularly useful as a 

tracer for deep mixing and upwelling studies (Geibert et al., 2002; Nozaki, 1984; Nozaki, 

1993). However, very few oceanic Ac profiles have been available so far because its 

measurement was relatively complex. Thus, compared to other elements, little is known 

about the marine geochemistry of actinium. Recent progress in the measurement of 227Ac  

(Shaw and Moore, 2002; Geibert and Vöge, submitted), and an increasing need for well-

constrained vertical oceanic mixing rates (Wunsch, 2000; Huisman et al., 2006) brings 227Ac 

back into the focus of recent tracer studies, and the understanding of its distribution in the 

ocean will determine how reliable the derived vertical mixing rates are. A substantial 

analytical progress is the measurement of 227Ac on comparably small sea water volumes (20-

80 L), which enables us to reduce the required sampling time and additional equipment 

drastically (Geibert and Vöge, submitted). 

Once the end-members contributing to the ocean are known, 227Ac may serve as a tool to 

validate mixing coefficients in numerical models. If a model matches the oceanic 227Ac 

distribution based on given end-member inputs, the relative contributions of lateral and 

vertical mixing are likely to be close to natural values. This work aims at providing 227Ac 

concentrations from various potential sources, enabling modellers to include this valuable 

tracer in model validations.  

So far, actinium has been mainly considered to behave in the ocean similarly to radium 

(Nozaki et al., 1990). Similar distribution coefficients of Ra and Ac in open ocean 

environments justify this assumption in many cases. However, actinium is expected to 

resemble the lanthanides in some aspects, like in its affinity for iron hydroxide, while radium 

is an alkaline earth metal that tends to be less particle reactive, but co-precipitates with 

barium sulphate. If we compare 227Ac to 228Ra (half-life 5.75 y), the different geochemical 

behaviour of the radioisotopes at the beginning of the respective decay chains may also 

introduce large differences in their distribution. Uranium may accumulate to considerable 

concentrations in sediments under anoxic conditions, and 227Ac will be generated by 235U via 

the intermediate isotope 231Pa. 228Ra, in contrast, is a decay product of 232Th, which is largely 

unaffected by redox processes. Data presented here shed light on some environments 

where dissimilarities between actinium and radium may be observed. 



228Ra and 227Ac can in  theory both be released from continental shelf and slope sediments 

(Nozaki and Yang, 1987). For 228Ra, a pronounced relationship between its oceanic 

concentration and the extension of the shelf region that is generating it was found (Rutgers 

van der Loeff et al., 1995). This effect must be less pronounced for 227Ac, because the 

activity of its sedimentary source 231Pa increases with depth (average 231Pa in deep-sea 

sediments: 2.8 dpm*g-1; 231Pa in shelf sediments: 0.1 dpm*g-1; Yang et al., 1986; Nozaki, 

1993). However, a moderate enrichment of 227Ac should be observed over extended shelf 

regions, compared to those with a narrow shelf. Once detached from their source, the activity 

of both isotopes will change due to dilution and radioactive decay, thus the changing 

228Ra/227Ac ratio could provide a tool for the dating of a water mass, or be used to determine 

mixing coefficients, on a larger scale than the short-lived radium isotopes 223Ra and 224Ra. 

The 227Ac data from a variety of locations around the globe presented here have been 

collected through indirect measurement of 227Ac, when 223Ra excess is determined by 

delayed coincidence counting (Moore and Arnold, 1996). Consequently, the sample locations 

were not chosen specifically for 227Ac distribution. However, the sample set covers some of 

the most interesting potential source areas for 227Ac to the open ocean. While the dataset 

presented here may serve as a reference for 227Ac backgrounds when 223Raex is to be 

measured, it also gives a global overview of the range of Ac activities that can be expected 

near potential sources, and it is suitable for estimating the influence of 227Ac input from 

shallow sources and hydrothermal sources onto the open ocean signal, which may be used 

to calculate vertical mixing coefficients.  

 

2. Material and Methods 

2.1. Sampling and Measurement 

Our data collection was produced with the radium delayed coincidence counting (RaDeCC) 

system  (Moore and Arnold, 1996), which is routinely operated for the radiometrical 

determination of short-lived 223Ra (half-life 11.4 days) and 224Ra (half-life 3.7 days). Sampling 

usually consists of collecting 20-100 l of seawater, which is slowly (< 1 l/min) passed through 

manganese-oxide coated acrylic fiber (Moore, 1976). Both Ra and Ac are quantitatively 

adsorbed onto the fiber (Reid et al., 1979) and can subsequently be measured by emanation 

of the Rn isotopes that are generated by the specific decays. The MnO2 may even be a more 

efficient adsorber for Ac than for Ra, because reported retention efficiencies on MnO2-coated 

polypropylene cartridges (Buesseler et al., 1992) as used for large-volume, high flow rate 

sampling of Ra and Ac are higher for Ac (average 70%, Geibert et al., 2002) than for Ra 

(typically 20-30%). Most applications of the short-lived Ra isotopes require corrections for 

supported 223Ra and 224Ra, which means subtracting the activities of their respective 

progenitors 227Ac and 228Th. Therefore, the quantification of 223Ra and 224Ra excess 



comprises two counting steps. The first counting is performed as soon as possible after 

sample collection, the second counting is performed after >5 half-lives of 223Ra, when all 

detectable 223Ra and 224Ra on the manganese fiber must be generated by 227Ac and 228Th 

decay. The second counting therefore provides a value for 227Ac. Our work is exploiting the 

collection of 227Ac data that was produced in different locations where short-lived Ra isotopes 

were measured (Figure 1). 

 

2.2. Sampling locations 

 
Figure 1: Global map of sample locations  

 

2.2.1. USA, Massachusetts and Rhode Island  

A collection of samples from different environments, including ground water, is available from 

the coast of Massachusetts and Rhode Island (Figure 2, Figure 3). The dataset comprises 

ground water from Waquoit Bay, surface and ground water from Pamet River, water from a 

seep and surface water from Quonny Pond, and surface and ground water samples from 

Plum Island. The region is characterized by a large salt-marsh at the interface between the 

land and ocean, with a gradual change from fresh to saline, and from reducing to oxidizing 

conditions. At Waquoit Bay, two comprehensive studies have investigated the subterranean 

estuary and its influence on some trace elements (Charette and Sholkovitz, 2006; Charette 

et al., 2005). The release of alkaline earth elements to surface water was shown to be not 

only controlled by salinity increases, but also by reductive dissolution of manganese oxides. 

U, the ultimate source of 227Ac, in contrast, is retained in the reducing pore water 

environment (Charette and Sholkovitz, 2006).  

 



2.2.2. Hawaii 

Two different types of samples were collected in the vicinity of Hawaii (Figure 4). A set of 

samples was taken in nearshore surface waters, at locations that are influenced by 

freshwater inputs to various degrees, as seen in the salinities of these samples. For a more 

detailed description of these sampling locations and the radium data, see (Street et al., 

submitted). Another set of samples was taken in the deep ocean near Puna ridge, a young 

volcanic ridge with active warm vents at the sea floor. Additional deep samples were 

collected away from the ridge. For a more detailed description of the location, the 

sophisticated sampling techniques, and 223Ra/224Ra data, see (Moore et al., submitted). 

 

2.2.3. Yucatan/ Mexico 

Brackish groundwater, lagoon water, and water from the shallow coastal ocean were 

collected in and around Celestun Lagoon (Figure 5), a shallow coastal lagoon about 20 km in 

length located on the north-eastern coast of the Yucatan Peninsula, Mexico.  The lagoon is 

connected to the coastal waters of the Gulf of Mexico by a narrow opening at its southern 

end, and the coastal waters are <50m deep in the area around Celestun. Most of the 

samples were collected from transects along the salinity gradient of the brackish lagoon, with 

some samples taken from the open coastal waters outside of the lagoon.  Samples were also 

collected from two brackish springs with discharge points located near the mid-point of the 

lagoon, and one sample was collected from a slightly brackish (S = 3.1) well located next to 

Celestun Harbor. For more details see (Young et al., submitted). 

2.2.4. Puerto Rico 

Off the north eastern coast of Puerto Rico, a number of Ac data from deep waters near the 

sea floor along the slope of the island are presented (Figure 6). In contrast to most other 

sites shown here, these sample locations are not influenced by release from the continental 

shelf or freshwater/groundwater mixing effects, but they are representing open ocean values 

in the vicinity of slope sediments. 

2.2.5. Israel, Gulf of Aqaba 

Samples from the Israeli coast of the Red Sea near Elat (Figure 7) were collected from a 

variety of settings. They range from sea water samples at the beach to fully marine 

conditions and include also artificial water channels that drain agricultural and industrial sites. 

The high salinity of the Red Sea that reaches 40.6 at the Gulf of Aqaba is unique. The area is 

very dry with no permanent surface runoff. The land-sea interface consists of a sandy beach 

and a narrow coastal ocean with large coral reefs. A detailed description of the sampling 

location and saline groundwater discharge estimates based on measurements of 223Ra and 

224Ra activities are provided by Shellenbarger et al. (2006). 



2.2.6. South Korea, Korean Strait 

The samples from South Korea were taken on the southern and eastern coast (Figure 8). To 

the south, countless islands in a shallow shelf ocean form the majority of the Korean coast. 

The adjacent ocean is the Korean Strait, which constitutes the connection between the 

shallow Yellow Sea in the west and the deeper Sea of Japan/Sea of Korea in the east. The 

Korean Strait is typically less than 50 m deep in the vicinity of the coast. Submarine 

groundwater discharge (SGD) has been shown to be an important discharge component for 

terrestrial runoff at this location (Hwang et al., 2005; Lee and Kim, 2007).  

 

2.2.7. German Bight of the North Sea 

The North Sea is a shallow part of the Atlantic Ocean. Its boundaries are Great Britain to the 

west, France, Belgium, Netherlands, and Germany in the South, and Denmark in the East. 

The North Sea extends northwards approximately to an imaginary line from the Shetland 

Islands to the Southern tip of Norway, covering an area of approximately 540.000 km2. Its 

average depth is less than 100 m, and in the German Bight, it is not deeper than 50 m, and 

mostly even less than 25 m. A unique feature of the southern North Sea coast is the so-

called Wadden Sea, which is characterized by extensive mud flats that extend several 

kilometres towards the open ocean, and are exposed to air with each tidal cycle. 

Consequently, large current speeds, intense sediment redistribution and an extreme 

variability in time and space are affecting the distribution of radionuclides at this site. Several 

large estuary-forming rivers discharge into the North Sea, including the river Weser, which is 

part of our study. Samples were taken in the Weser estuary, and on a transect to the open 

North Sea (Figure 9).  

 

2.3. Errors 

The errors reported for the different locations vary considerably, depending on the original 

intention of the respective projects. For some of the samples, appropriate error calculations 

based on counting statistics and error propagation exist (e.g., the errors for the deep water 

samples are mostly <10 %). However, as not all samples were measured with the intention of 

quantifying 227Ac, thus not all data were available with a complete calculation of the 

associated errors. In order to discard the least precise values, we have excluded from our 

investigation samples from surface waters with less than 12 counts. Twelve counts imply a 

relative counting error of  

 

29.0=
12

12
=

n

n

 



 

It should be noted that the background in the 219 channel used to calculate 227Ac is typically 

less than 1 count per day, so even a few counts per day in this channel indicate the presence 

of 227Ac. Taking into account the contributions of other parameters to the statistical error 

(counting efficiencies, background, moisture content of fiber), the error of the data reported 

here should be considered to be <35%. Consequently, we report a constant error of 35 % if 

no error calculations were available. On the one hand, 35% seems to be a large value, 

compared to error estimates for more abundant elements. On the other hand, the reported 

Ac values vary by almost four orders of magnitude between the different locations, which 

makes a comparison of the data meaningful in spite of the considerable counting error.  

 

3. Results 

3.1. Massachusetts and Rhode Island 

The highest 227Ac activities of all samples investigated were found in ground water samples 

from Plum Island (PI), with values from 22 ±2.4 to 99 ±28 dpm*m-3. Similarly high values 

were observed in ground water at Waquoit Bay (WB). They ranged from zero to 65 ±6.4 

dpm*m-3. Ground water at Pamet River (PR), and water from a seep at Quonny Pond (QP) 

did not reach such extreme 227Ac concentrations (PR: 0.0 - 7.1 ±2.4 dpm*m-3; QP: 1.5 ±0.7- 

6.3 ±1.8 dpm*m-3). At Waquoit Bay, the salinity-227Ac relationship illustrates the non-

conservative release of actinium (Figure 3). 227Ac is low when salinity approaches the 

freshwater end-member, and it is low when salinity approaches the marine end-member. The 

release of Ac to the dissolved phase takes place when saline water meets solid material 

containing Ac. Figure 3 illustrates this effect by showing the release of 227Ac after the 

penetration of saline water into the freshwater aquifer, after a very dry period. 

The brackish surface water from PI displays highly variable 227Ac contents (0.6 ±0.1 dpm*m-3 

- 24.2 ±3.9 dpm*m-3). The high variability however is not directly related to changes in 

salinity. At PR, surface water values range from 0 to 10.9 dpm*m-3. At QP, 227Ac in surface 

water is lower (0.09 ±0.02 - 1.7 ±0.3 dpm*m-3) and quite constant (average 0.86 ± 0.46 dpm 

*m-3, n=13). 

Summarizing our observations, the 227Ac data from Massachusetts and Rhode Island salt 

marsh area cover a range of conditions from freshwater to fully saline conditions, and from 

groundwater end-members to surface waters. The extremely high values >10 dpm*m-3 

remain in most cases restricted to groundwater. However, some high 227Ac activities >2 

dpm*m-3 are observed in surface water data, in particular at PI, which points to the possibility 

that 227Ac from this source might reach the open ocean in detectable amounts.  



 

Figure 2: Sample locations and salinity-actinium relationship for the data collection from Massachusetts 

and Rhode Island. The solid line in the map designates the 100 m isobath.  
 

 

 

Figure 3: 
227

Ac in pore water at Waquoit Bay  for August and September 2006, shown with its relationship 

to salinity.  During each time period, samples were collected over ~1 hour from fixed well points at mid-

tide. Sampling was performed during the same phase of the tide in each month. The period between the 

two samplings was extremely dry, leading to seawater intrusion into the aquifer, which resulted in a large 

Ac release from the aquifer sediments. 

 

3.2. Hawaii 

3.2.1. Coastal waters 
227Ac activities in the samples collected from Hawaii are relatively low (<2 dpm*m-3) 

compared to the marshes mentioned above. Five nearshore samples, all with a clear 

freshwater influence as seen in their salinities, reveal moderate activities of 227Ac, ranging 

from 0.4 – 1.4 dpm*m-3. Three samples from enclosed systems (Honokohau Harbor, 



Keauhou Bay) are not substantially higher in 227Ac (0.5-1.9 dpm *m-3). For comparison with 

Ra activities see Street et al., submitted. 

 

Figure 4: Sample locations and salinity-actinium relationship for the data collection from Hawaii. Deep 

water samples can be identified by their constantly high salinities. Note the different scale for 
227

Ac. 
 

3.2.2. Vent sites 
227Ac activities in samples collected above the volcanic Puna Ridge, where active warm 

vents occur, are not elevated compared to samples collected away from the ridge and 

common deep-sea values. While the effect of bedrock-seawater exchange is clearly seen in 

short-lived Ra isotopes (Moore et al., submitted), 227Ac ranging from 0.21-1.66 dpm*m-3 

(1099 m to 3458 m) does not indicate any impact of water percolating in the volcanic bedrock 

on 227Ac concentrations.  

 

3.3. Yucatan 

The samples from Celestun were mostly taken in a semi-enclosed lagoon that is connected 

to the shallow coastal ocean by a narrow opening.  Both fresh and brackish groundwater 

discharges directly into the lagoon, and salinities within the lagoon range from 14 to 36.  

Salinities range from 30 to 38 in the coastal waters outside the lagoon.  The highest actinium 

activities are measured in the brackish groundwater springs (4 to 41.2 dpm*m-3) and brackish 

well (11 dpm*m-3).  Actinium activities within the lagoon water range from 0.4 to 7 dpm*m-3.  

Outside the lagoon, in coastal waters, the activity is low, ranging from 0.2 to 0.6 dpm*m-3 

indicating that the high activities from the lagoon do not impact the oceanic 227Ac 

concentrations significantly.  



 

Figure 5: Map of sample locations at the north western shore of Yucatan, Mexico, and the corresponding 

salinity-actinium relationship. 

3.4. Puerto Rico 

From the northern slope of Puerto Rico, a set of open ocean samples from various depths is 

available. The activities of 227Ac in three samples from the sea surface range from 0.13-0.25 

dpm*m-3. Eight deep water samples (700- 3289 m depth) close to the slope display very low 

activities that are slightly increasing with depth (0.16-0.45 dpm*m-3). 

 

Figure 6: Map of sample locations off Puerto Rico, and the corresponding salinity-actinium relationship. 

The scales of both salinity and actinium were adapted to fit the small variations in the deep sea.  

3.5. Israel, Gulf of Aqaba 

Most samples from the coast of the Red Sea near Elat were taken close to the beach. The 

desert area surrounding Elat is characterised by a lack of precipitation throughout most of the 

year. Seawater salinities exceed 40, values below that threshold must be considered to have 

a freshwater influence, which is most likely of anthropogenic origin. Excluding the data with 

anthropogenic influence, the 227Ac values range from 0.0 to 10.2 dpm*m-3, with a mean of 1.3 

±1.9 dpm*m-3 (n=77). The values in the artificial water channels reach up to 18.9 dpm *m-3. 

They were also found to contain very high radium activities (Shellenbarger et al., 2006). A 



possible explanation could be the influence of phosphorous containing fertilizer, which is 

known to carry elevated activities of uranium and thorium series isotopes. 

 

Figure 7: Map of sample locations in the Gulf of Aqaba, Red Sea, and the corresponding salinity-actinium 

relationship.  
 

3.6. South Korea, Korean Strait 

The salinities of the samples from the South Korean coast range from 7.69 to 33.51, 

representing brackish to fully marine conditions. Highest 227Ac (17 ±1.8 dpm*m-3) is found 

here with the lowest salinity at a location with riverine input, while the lowest value is 2 ± 0.3 

dpm *m-3. The average of all samples is 5.8 ± 4.8 dpm *m-3 (n=17), which is considerably 

higher that in other coastal regions. 

 

Figure 8: Map of sample locations off South Korea, and the corresponding salinity-actinium diagram.  

3.7. North Sea 

In the North Sea region, samples from two different regimes are available. Values from fully 

marine conditions decrease from the tidally flooded mud flat with 1.77 dpm *m-3 to 0.17 dpm 

*m-3 in the open North Sea. In a nearby estuary that discharges into the North Sea, higher 

activities are observed, which vary with the tide from 0.43 to 4.86 dpm * m-3. 



 

Figure 9: Sample locations in the German Bight of the North Sea, and the corresponding salinity-actinium 

diagram. Salinities <20 indicate values from an estuary. 

3.8. Global 

From a global perspective, 227Ac values range from below 0.1 dpm*m-3 in shallow open 

ocean conditions to 99 ± 28 dpm*m-3 in ground water. Typical coastal values, as compiled in 

Table 1, are in the range from 0.1 to 1.5 dpm * m-3. In the Korean Strait, with a large 

neighbouring shelf region, average coastal activities reach 3.0 dpm*m-3 (Table 1). Under 

special conditions (enclosed locations, estuaries, seeps, pronounced SGD), up to 50 dpm* 

m-3 can be expected. 

 

4. Discussion 

4.1. Deep sea 

In order to assess the observed 227Ac values near some potential sources in a global context, 

we first need to estimate the concentration, the inventory and the flux of 227Ac from the deep-

sea floor in the open ocean. For that purpose, we provide here a compilation of four selected 

227Ac profiles from Nozaki (1984) and Geibert et al. (2002) that we believe to represent 

average open ocean conditions. Based on this distribution, as shown in Figure 10, we 

calculate an inventory of 227Ac for the ocean, and a corresponding flux. Mean 227Acex 

activities for 1000 m-intervals are shown in  

 

 

Table 1: Overview of average 
227

Ac activities of the coastal marine end member. Included are all 
near shore, near surface values for which salinity values were available and >30, and where no 
obvious anthropogenic influence was observed. The average at the bottom of the table was 
calculated from the regional averages, in order to avoid over-representation of areas with 
intense sampling.  
Location Average 

227Ac [dpm*m-

3] 

Standard 

Deviation 

n 



Massachusetts 

and Rhode 

Island, QP 

0.9 0.46 13 

Massachusetts 

and Rhode 

Island, PR 

1.4 - 1 

Hawaii 1.0 - 1 

Yucatan, 

Celestun 

0.4 0.2 8 

Israel, Elat 1.4 2.2 34 

South Korea, 

Korean Strait 

3.0 0.6 12 

Germany, 

North Sea 

0.5 0.3 4 

Average 1.2 0.8 7 (regions) 

 

 

 

Table 2, where the index "ex" denotes excess activities, which are corrected for 

contributions from 231Pa in the water column. This correction is less obligatory for coastal and 

surface values, where dissolved 231Pa can be expected to contribute only a negligible fraction 

of 227Ac. For deep ocean values, however, only 227Acex can be considered to be supplied from 

the seafloor.  
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Figure 10: The relationship between 227Acex in open ocean regions, and the distance from the deep-sea 

floor, illustrated with four typical profiles.  



 

Assuming an average depth of the oceans of approximately 4000 m, we obtain an average 

227Ac activity of 1.0 dpm*m-3 ( 

 

 

Table 1: Overview of average 
227

Ac activities of the coastal marine end member. Included are all 
near shore, near surface values for which salinity values were available and >30, and where no 
obvious anthropogenic influence was observed. The average at the bottom of the table was 
calculated from the regional averages, in order to avoid over-representation of areas with 
intense sampling.  
Location Average 

227Ac [dpm*m-

3] 

Standard 

Deviation 

n 

Massachusetts 

and Rhode 

Island, QP 

0.9 0.46 13 

Massachusetts 

and Rhode 

Island, PR 

1.4 - 1 

Hawaii 1.0 - 1 

Yucatan, 

Celestun 

0.4 0.2 8 

Israel, Elat 1.4 2.2 34 

South Korea, 

Korean Strait 

3.0 0.6 12 

Germany, 

North Sea 

0.5 0.3 4 

Average 1.2 0.8 7 (regions) 

 

 

 

Table 2). We do not take into account here the lower volume of the deepest 1000 m interval 

compared to the uppermost intervals, as our deepest interval has to include all 227Ac from 

>4000 m water depth. The total inventory of 227Ac can be calculated by multiplying the activity 

with an approximate volume of the oceans of 1.35*109 km3 (4000 m * ocean surface, 

according to Gierloff-Emden, 1980). We obtain a total activity of 1.35 * 1018 dpm 227Acex in the 

ocean, which corresponds to 37 moles or 8.4 kg. Given the decay constant of 227Ac, we can 

convert the inventory into a steady state flux, with the equation 

J = I * � , 



where J designates the flux, I the inventory, and � represents the decay constant. Based on 

an inventory of 4000 dpm*m-2, we obtain a vertical flux of 227Ac from the deep sea floor of 

127 dpm*m-2*y-1. 

4.2. Coastal ocean 

A similar calculation can be performed for the continental shelf areas, based on the 227Ac 

activities in coastal waters (Table 1). With an average activity on the shelf of 1.5 dpm *m-3 , 

and assuming an extension of the shelves of approximately 0.228 *1014 m2  with an average 

water depth of 132 m (Gierloff-Emden, 1980), the inventory amounts to 4.5 * 1015 dpm 

(157 dpm*m-2). This rough estimate implies a flux of 5.0 dpm*m-2*y-1. However, this value 

must constitute the lower boundary for actual 227Ac fluxes, as we neglect 227Ac losses to the 

open ocean in this calculation. For example if the average residence time of coastal waters 

with respect to exchange with the deep ocean is 0.1 years, the shelf flux must be increased a 

factor of 10. Exchange with the open ocean must be an important loss term in the budget of 

227Ac, as illustrated by the elevated activities in the Korean Strait. This region, connected to 

the Yellow Sea, which is a shallow shelf ocean, accumulates five-fold 227Ac higher activities 

compared to areas that exchange more readily with the open ocean. While the actual fraction 

of Yellow Sea water (YSW) in the samples off South Korea is small, the 227Ac contribution 

from this source may be significant. For 228Ra, which is well known to accumulate in shelf 

waters, Kim et al., 2005 report activities of about 500 dpm*m-3. If the actinium content in 

YSW was only 1/30th of the 228Ra value (assuming 232Th/238U = 1.5 and 238U /235U = 20), 

227Ac in YSW could reach 17 dpm*m-3, which would explain elevated 227Ac even in waters 

that obtain just a small fraction of YSW.    

While the open ocean constitutes an important loss term for 227Ac on the shelf, the flux from 

the shelf will most likely not have a large effect on open ocean concentrations because the 

global volume of the shelf ocean is very small compared to the open ocean regions. 

Exceptions might occur where surface waters come from a shallow coastal ocean with long 

residence times, like e.g. the Siberian shelves (Rutgers van der Loeff et al., 1995). 

 

 

4.3. 227Ac in ground water and pore water 

Nozaki et al. (1990) were the first to report pore water activities of 227Ac. They analyzed 

samples from a box core taken in the Northwest Pacific at 5270 m depth. They could show a 

227Ac depletion at the surface of the sediment, which corresponds to its release to the deep 

ocean. At sediment depths >10 cm, they observed 227Ac pore water values in equilibrium with 

the surrounding solid phase of about 100 dpm*m-3 (57-131 dpm * m-3), at 231Pa activities in 



the solid phase of 1.4 dpm/g. These concentrations closely resemble our data from saline 

groundwater at Waquoit Bay.  

This fact is surprising, as 227Ac concentrations must be expected to be controlled by the 

activity of its progenitor, 231Pa. For shelf sediments, we can typically expect 231Pa activities of 

0.1 dpm/g (Nozaki, 1993), while deep-sea sediments have an average activity of 2.8 dpm/g 

(Yang et al., 1986). The actual release of 227Ac to the pore water is further affected by the 

location of 231Pa atoms in the mineral structure upon decay, in analogy to 226Ra release by 

230Th (Cochran and Krishnaswami, 1980). 231Paex, bound to sediment grains by sorption, 

constitutes the main 231Pa fraction in deep-sea sediments. It is released more readily than 

231Pa in shelf sediments, which will mostly be found within the crystal lattice (Geibert et al., 

2002) . If we observe 227Ac activities in coastal saline groundwater that are comparable to 

deep-sea sediments with a 231Pa content of 1.4 dpm/g, this requires either unusually high 

231Pa activities in shelf sediments, or far lower distribution coefficient between solution and 

particles than reported from other locations. Indeed, there is a mechanism that could explain 

very high 231Pa in the coastal aquifers in Massachusetts. Charette et al. (2005) report a 

mechanism of uranium enrichment in the reducing pore water environment at Waquoit Bay. 

235U, as the ultimate source of 227Ac, is enriched in the sediment grains that surround the 

pore water or ground water at Waquoit Bay and neighbouring locations. This leads to an 

increased concentration of 231Pa, which must be comparable to deep-sea values. If this 

explanation holds true, anomalously high 227Ac/228Ra in the pore water would be expected, 

because 228Ra is a decay product of the 232Th series, and 232Th should be much less affected 

by the local redox conditions. Alternatively, the values observed in Waquoit Bay groundwater 

may not be elevated year round, but rather part of a seasonal cycle whereby Ac is loaded 

onto freshwater sediments during wet periods, then desorbed to brackish groundwater when 

seawater intrudes into the aquifer during dry periods (Figure 3;Gonneea et al., 2007). 

Regardless, the high concentrations of 227Ac in the ground water samples do not necessarily 

imply high 227Ac fluxes to the surrounding environment. Our present data do not allow 

quantitative conclusions on the importance of this mechanism for 227Ac fluxes. 

4.4. Release from slope sediments and vent sites 

Nozaki and Yang (1987) reported some evidence for 227Ac release from a continental slope 

in the Western North Pacific. They found elevated 227Ac, measured as 227Th of up to 1.0 

dpm*m-3 even in depths <2000 m in some of their samples, which they considered to be 

unaffected by upwelling. Our eight deep water samples from Puerto Rico (700- 3289 m 

depth) do not support the hypothesis that slope sediments serve as a 227Ac source 

everywhere. Total 227Ac activities are 0.16-0.45 dpm *m-3, and 227Acex will be close to zero, as 

231Pa in deep waters (not measured here) contributes typically 0.1-0.5 dpm*m-3 to the 227Ac 



signal. This means that continental slopes are not releasing 227Ac to the deep ocean 

everywhere.  

From the systems near Hawaii, where sea-water circulates in recently formed basalt, just a 

few values are available. Combining these observations with the observations of Moore et al. 

(submitted), we can learn about the specific geochemical properties of 227Ac. The chemical 

composition of seawater, including isotopes of the U-Th series, is known to be altered 

considerably when interacting with basaltic bedrock. The resulting radioactive disequilibrium 

has been shown to be a powerful tool to gain insight into this hardly accessible system by 

selective retention or release of isotopes with different half-lives (Kadko, 1996). 227Ac is found 

to display the activities of ambient seawater near the vent sites, while short-lived Ra 

isotopes, especially 223Ra, are strongly enriched (Moore et al., submitted). This observation 

points to a pronounced difference in the behaviour of actinium and radium during water 

circulation in the bedrock. Moore et al. (submitted) conclude from the elevated 223Ra 

concentrations that 231Pa is retained in the volcanic bedrock when the seawater percolates 

through the basaltic seafloor. This 231Pa decays to 227Ac, which is obviously also retained in 

the system. Otherwise, the decay chain would break here and no 223Ra could be produced. 

223Ra, in contrast, is released to the warm circulating fluids. If the bedrock was accumulating 

230Th in the same way as 231Pa, exchange between the solid seafloor and the water column 

could also contribute to the oceanic 226Ra inventory. This applies especially to mid-ocean 

ridge systems that have been active for longer periods than the Puna ridge (700-2500 years, 

Moore et al., submitted), allowing the build-up of substantial 231Pa and 230Th activities. The 

observations at Puna ridge imply that such vent systems can retain 231Pa and 227Ac, and that 

they are more likely to be a moderate 227Ac sink than a source.  

 

5. Conclusions 

In the deep ocean, 227Ac is mainly supplied by diffusion from the deep-sea sediments, as 

indicated by its vertical distribution, with a clear maximum near the bottom (on average 2.8 

dpm*m-3 in the bottommost 1000 m), decreasing to virtually 0 in the uppermost 1000 m for 

most oceanic regions. Data from some outlets of saline water from basaltic bedrock near 

Hawaii indicate that no 227Ac is supplied from seawater by such vent locations, in contrast to 

223Ra. Samples from a continental slope near Puerto Rico are very low in actinium. This 

observation does not support the idea that continental slopes are a significant 227Ac source. 

Consequently, the sea floor should be the only significant actinium source for the deep 

ocean, and the 227Ac flux from the sea-floor (about 127 dpm *m-2 *y-1) must support the entire 

227Ac inventory (on average 4000 dpm*m-2) in the water column of open ocean regions.  

In the coastal ocean, average 227Ac activities range from 0.4 dpm*m-3 (Celestun) to 3.0 

dpm*m-3 (Korean strait). The higher activities in the Korean Strait are associated with a 



contribution from a large shelf region (Yellow Sea), which is consistent with similar 

observations for 228Ra (Rutgers van der Loeff et al., 1995). The average 227Ac inventory for 

the shelf region is 157 dpm*m-2. However, this value can not readily be converted into a 

realistic flux estimate. Horizontal exchange with the open ocean may permanently remove 

227Ac from the shelf system. 

Locally, 227Ac values can be found that greatly exceed the average open ocean 

concentrations, up to several tens of dpm*m-3. They remain restricted to the immediate 

neighbourhood of end-members like estuaries or lagoons. Away from the source, activities 

decrease to the local coastal value. 

The ground water data from Massachusetts point to a role of uranium enrichment combined 

with salinity changes for 227Ac release in this reducing environment. Such an enrichment of a 

progenitor of 227Ac (235U or 231Pa) may lead to unusually high 227Ac/228Ra or 223Ra/224Ra ratios, 

as was observed at the Puna ridge (Moore et al., submitted). 
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Figure captions 
 
Figure 1: Global map of sample locations 
 
Figure 2: Sample locations and salinity-actinium relationship for the data collection from 
Massachusetts and Rhode Island. The solid line in the map designates the 100 m isobath. 
 
Figure 3: 227Ac in pore water at Waquoit Bay  for August and September 2006, shown with its 
relationship to salinity.  During each time period, samples were collected over ~1 hour from 
fixed well points at mid-tide. Sampling was performed during the same phase of the tide in 
each month. The period between the two samplings was extremely dry, leading to seawater 
intrusion into the aquifer, which resulted in a large Ac release from the aquifer sediments. 
 
Figure 4: Sample locations and salinity-actinium relationship for the data collection from 
Hawaii. Deep water samples can be identified by their constantly high salinities. Note the 
different scale for 227Ac. 
 
Figure 5: Map of sample locations at the north western shore of Yucatan, Mexico, and the 
corresponding salinity-actinium relationship. 
 
Figure 6: Map of sample locations off Puerto Rico, and the corresponding salinity-actinium 
relationship. The scales of both salinity and actinium were adapted to fit the small variations 
in the deep sea. 
 
Figure 7: Map of sample locations in the Gulf of Aqaba, Red Sea, and the corresponding 
salinity-actinium relationship. 
 
Figure 8: Map of sample locations off South Korea, and the corresponding salinity-actinium 
diagram. 
 
Figure 9: Sample locations in the German Bight of the North Sea, and the corresponding 
salinity-actinium diagram. Salinities <20 indicate values from an estuary. 
 
Figure 10: The relationship between 227Acex in open ocean regions, and the distance from the 
deep-sea floor, illustrated with four typical profiles. 



Tables  
 
 
Table 1: Overview of average 

227
Ac activities of the coastal marine end member. Included are all 

near shore, near surface values for which salinity values were available and >30, and where no 
obvious anthropogenic influence was observed. The average at the bottom of the table was 
calculated from the regional averages, in order to avoid over-representation of areas with 
intense sampling.  
Location Average 

227Ac [dpm*m-

3] 

Standard 

Deviation 

n 

Massachusetts 

and Rhode 

Island, QP 

0.9 0.46 13 

Massachusetts 

and Rhode 

Island, PR 

1.4 - 1 

Hawaii 1.0 - 1 

Yucatan, 

Celestun 

0.4 0.2 8 

Israel, Elat 1.4 2.2 34 

South Korea, 

Korean Strait 

3.0 0.6 12 

Germany, 

North Sea 

0.5 0.3 4 

Average 1.2 0.8 7 (regions) 

 

 

 

Table 2: Average 
227

Acex activity in the open ocean, as derived from four typical profiles 
((Nozaki, 1984), (Geibert et al., 2002). 

distance to seafloor [m] 227Acex [dpm*m-3] 

<1000 2.8 

1000 to <2000 1.0 

2000 to < 3000 0.3 

3000 to 4000 0.0 

Average activity in water column 1.0 

 
 


