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Abstract 

227Ac is a naturally occurring radioisotope with a unique combination of properties that make 

it suitable for the determination of deep ocean mixing and upwelling rates. Here, we present 

a method for the determination of 227Ac in sea water on sample sizes of 20-80 l. The 

measurement is based on co-precipitation of 227Ac with MnO2, followed by chemical isolation 

of actinium in presence of an artificial Ac isotope. Actinium is then electrodeposited onto 

silver discs. In two alpha-spectrometric counting periods, first the artificial 225Ac isotope is 

counted, then after >100 days five daughters of 227Ac. The first counting period gives a total 

yield for the procedure, integrating chemical recovery and detector efficiency. The total yield 

was found here to be on average 15 ± 5 %, the chemical yield on average about 50%. The 

counting of five decay products of 227Ac in the second period makes the method particularly 

sensitive. Using appropriate decay corrections, the initial 227Ac activity can be determined to 

better than 10% relative error for concentrations <10000 atoms/L. We compare data acquired 

mailto:wgeibert@awi-bremerhaven.de


 2 

by the new method to a data set from in-situ pumps, from a parallel sampling campaign in 

the Eastern Weddell Gyre, and we can show excellent agreement. Repeated determinations 

of 227Ac in a uranium reference material (UREM-11) demonstrate the accuracy of the 

method. 

 

Keywords: actinium, upwelling, vertical mixing, diapycnal mixing, alpha spectrometry, ocean 

 

1. Introduction 

The distribution of the naturally occurring radioisotope 227Ac in the ocean is of particular 

interest for studies on deep water mixing and upwelling (Nozaki, 1984). A fraction of the total 

227Ac activity found in the ocean is supported by the presence of 231Pa in sea water, which 

continuously produces 227Ac until a secular equilibrium is reached. Another variable fraction 

of 227Ac, called 227Acexcess or 227Acex, is exceeding this supported value. It originates from 

231Pa in sediments, and it is distributed in the ocean by mixing (Nozaki, 1993). The source 

term of 227Acex is dominated by release from the deep-sea floor (Nozaki and Yang, 1987; 

Nozaki et al., 1990;  Geibert et al., submitted;). Once in the water column, the activity of 

227Acex is controlled by radioactive decay with a half-life of 21.77 years, and mixing. This 

combination of properties makes it ideally suited for the calculation of deep-sea diapycnal 

mixing coefficients (Nozaki, 1993), and, under certain circumstances, the estimation of 

upwelling rates (Geibert et al., 2002).  

This exclusive information is available naturally, which offers advantages compared to 

studies with artificial tracers like SF6 (e.g. Ledwell et al., 2000), because no addition of 

tracers to the ocean is required. However, 227Ac has never been measured routinely, which 

has to do with the fact that no simple measurement technique was available so far. Several 

hundred litres of sea water had to be processed for each measurement. The applied 

methods were either based on counting of the 227Ac daughter 227Th (Nozaki and co-workers; 

Geibert and co-workers), or on counting of the grand-daughter isotope  219Rn by the delayed 

coincidence counting system, as described by Moore and Arnold (1996), Shaw and Moore 

(2002), or Geibert et al. (submitted). The actual use of 227Ac as a tracer in marine science 



 3 

depends on a possibility to reliably measure it on samples that can be taken by bottles, like 

e.g. a Niskin system. 

The concentrations of 227Ac in seawater are extremely low for a reliable measurement, even 

for most advanced techniques of trace element measurements. So far, only radiometrically 

determined values of 227Ac in seawater have been reported in the literature. The reported 

activities in seawater range from about 5 dpm/m3 (83 µBq/l) close to the sea-floor in the 

Southern Ocean to 0.05 dpm/m3 (0.83 µBq/l) at the sea surface far off shore (Geibert et al., 

2002). Converting the activities to concentrations, this means that about 830 to 83000 

atoms/l have to be detected in a reliable manner. Secondly, its detection via radiation is not 

straightforward because of the weak energy of the beta and -radiation of 227Ac itself. 

Therefore, daughter nuclides of 227Ac have to be detected in order to draw conclusions on 

227Ac activities.  

The only isotope of actinium available to be used as a tracer for chemical recovery during the 

separation and purification steps is 225Ac, with a half-live of 10 days. This requires either a 

quick separation of actinium from other nuclides in order to avoid unacceptable losses of the 

yield tracer by decay, or assumptions on quantitative recovery of actinium when working 

without a yield tracer. Additionally, the short half-live of 225Ac also would represent a problem 

when trying to measure actinium by mass spectrometric techniques. 

Here, we propose a radiometric method to measure 227Ac on about 50 l of sea water, which 

opens the possibility to get data from oceanographic bottle samples, and we report first 

results that show the consistency of our method with previous techniques. 

 

2. Sampling 

The amount of seawater needed for 227Ac analysis obviously depends on the expected 

activity, but also on the chemical recovery, the background of the alpha-detectors to be used, 

and the available time for measurement. In the reported case, the amount was ranging from 

about 20 L for samples close to the seafloor to 80 L for samples near the surface. The 

samples are filled into the required number of pre-cleaned 20 L containers made from 

polycarbonate or polyethylene. Cleaning includes a step with a dilute HCl/H2O2 mixture in 



 4 

order to remove all traces of MnO2 present, followed by repeated (at least 3x) rinsing with 

18.2 M water in order to avoid losses due to MnO2 dissolution in the following steps. The 

sample containers should additionally be rinsed with some sample immediately before 

sampling.  

 

2.1. Preparing a MnO2 precipitate carrying 227Ac 

Quantitative recovery of actinium from the sea water samples can be attained by the 

precipitation of MnO2 (comproportionation of manganese in alkaline solution). Briefly, to each 

20 L subsample, six drops of an aqueous ammonia solution (25 %), 250 µl of a solution of 

KMnO4 (60 g/l), and 100 µl of a solution of MnCl2 (400 g/L MnCl2 · 4 H2O/l) are added, 

shaked vigourously, and set aside overnight, as described by Rutgers van der Loeff and 

Moore (1999) for 234Th. Although we apply here a different approach to determine recoveries 

of MnO2 via 234Th during sampling (see below), we suggest adding 229Th spike in equilibrium 

with 225Ac before performing the precipitation.  

The precipitate containing the actinium can then be recovered by filtration onto 142 mm 

diameter nucleopore polycarbonate filters. In our case, the filters were folded twice, dried, 

and then folded to a small square covered by cling film, which was directly beta-counted for 

234Th in order to check for losses of manganese during filtration (for details of the filter 

geometry see Rutgers van der Loeff and Moore, 1999). This step could be omitted if the 

sample had already been spiked with 229Th. A loss of MnO2 would also mean a loss of Ac, 

which therefore has to be quantified, either by directly measuring the recovery for Mn, or by 

measuring another element that is known to be retained quantitatively by MnO2, like a 

thorium isotope. We chose 234Th, for which we knew the actual value either by measurement 

on independent samples (surface waters), or we could assume an equilibrium value with 238U 

for deep water samples. The method for quantitative recovery of the MnO2 precipitate has 

been used for years in the analysis of 234Th.  

The addition of 229Th directly after sampling would also offer the advantage to contain 225Ac, 

which can later be used to control the chemical recovery of the actinium separation. If the 

recovery is determined by 234Th, a second beta counting has to be carried out to correct for 
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background events after complete decay of 234Th.  

The filtrate of six samples (1000 m) was retained after a first MnO2-precipitation step, and a 

second MnO2-precipitate was formed. This precipitate was used as a verification that the first 

precipitation was quantitative, and the samples were processed as procedural blanks. The 

blank contribution was found to be insignificant.  

 

2.2. Dissolving the MnO2 precipitate 

The dry precipitate must be redissolved in presence of the filters. For that purpose, the cling 

film is removed by means of tweezers, and the folded filter is cut into 3-5 pieces. The cutting 

procedure is performed in a 50 mL teflon beaker, and all corresponding subsamples (dry 

filters), each representing one 20 L container from one depth, are put together into one 

beaker. The MnO2 forms a very fine dust that tends to stick to the walls of the beaker. It is 

advisable to make sure that the teflon beakers are not charged electrostatically, as far as 

possible. The beakers are placed under a fume hood onto magnetic stirrers. Ten mL 

hydrochloric acid (2 M) are added, and if not yet present, 229Th in equilibrium with 225Ac 

should be added as well, as a yield tracer. In our case, we used 1-2 dpm of 229Th, where 2 

dpm turned out to be the better choice. It is not advisable to use much higher amounts than 5 

dpm, as traces of 229Th escaping into the Ac fraction might then lead to interferences in the 

227Ac spectra. The samples are dissolved overnight, under permanent stirring. The next day, 

the acid is decanted into a centrifuge vial, keeping the filter fragments back in the teflon 

beaker. The residual filter parts are filled up with another 10 mL HCl and kept stirring for 

another hour. The above procedure is repeated with another 10 mL of HCl. A total of 25 -30 

mL of HCl with the sample are now contained in the centrifuge tube. About 100 µL of an iron 

chloride solution (50 g/L in 0.1 N HCl) are added. 

 

2.3. Chemical purification and separation of actinium 

The next purification step of actinium is achieved by co-precipitation with iron as hydroxide, 

which is quantitative for actinium as well as for thorium and uranium, while radium is less well 

retained. The precipitate forms when ammonia (25%) is added to the sample until pH 8.5 to 9 
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is reached. The samples can be filled up with 18.2 M water to 50 mL and centrifuged for 6 

minutes @ 4000 rpm. The supernatant can be discarded, and the precipitate of Fe(OH)3 is 

re-dissolved with a few drops of 9 N HCl, filled up to 45 mL and precipitated again with 

ammonia, and centrifuged again. This step is repeated twice. Then, pure water is added, and 

the precipitate is washed and centrifuged again, the supernatant discarded again. The iron 

hydroxide is dissolved with concentrated HCl (1:1 by volume) and filled up to 15 mL with 9 N 

HCl. It is now ready for the first column separation.  

The final purification of actinium is done by anion exchange chromatography with three 

sequential columns. The scheme of column separations is given in form of a table (Table 1). 

While the first two column types have been introduced to marine radiochemical research by 

(Anderson and Fleer, 1982), the separation of actinium from radium with Eichrom TRU resin 

was first described by (Burnett et al., 1995). Please note that the complete conversion of the 

sample to HNO3 form is an essential step in the procedure. It is accomplished by carefully 

evaporating the sample to dryness, adding HNO3 conc., and evaporating it (repeat two 

times). In the third step, add some HNO3 conc. one last time, evaporate it to a small drop, 

place a drop of water of the same size next to it (in the case of 8 N HNO3 -if 2 N HNO3 is 

desired, add approx. 8 times the volume of the drop), and fill up to the desired volume with 

the appropriate acid. If some MnO2 remains in insoluble form at the bottom of the beaker, 

one may add traces of H2O2 (30%) in order to dissolve it.  

Table 1 

 
2.4. Electroplating of actinium 

Several methods for electroplating of actinium are available in the literature (Bojanowski et 

al., 1987; Martin et al., 1995; Alhassanieh et al., 1999). The method that we propose here is 

not especially designed for actinium, but the very same than previously used for alpha-

spectrometric determination of 230Th or 231Pa (modified after Anderson and Fleer, 1982). We 

observed satisfactory electroplating efficiencies for this method, as proven by average total 

(chemical and counting) yields of the reference samples of 15 ± 5%, which corresponds to 

chemical recoveries of about 50%. Briefly, the spot in the teflon beaker containing the 
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actinium is covered with 1 mL of 0.01 N HNO3. A custom made electroplating cell made from 

teflon, with an anode made of platinum wire and a cathode consisting of a 25 mm diameter 

silver disc is used for the electroplating. The spot in the beaker with the acid is scratched 

carefully off the beaker with a pipette tip and filled into the plating cell. The procedure is 

repeated twice, replacing the dilute nitric acid with a solution of NH4Cl @ pH 2. Then, it is 

repeated with one mL of a saturated solution of ammonium oxalate. The electroplating cell 

containing the mixture is placed on a magnetic stirrer. Electrolysis is performed for exactly 

one hour with a voltage of 6 V and a starting current of 0.8 A. After a while, the current drops 

to about 0.1 A, indicating that the electroplating is approaching its end. After one hour, the 

supernatant is collected in the original teflon beaker (can be discarded when measurement of 

the yield tracer indicates that the recovery is sufficient). The cell is rinsed twice with pure 

water, and the silver disc is carefully heated in a blue flame, avoiding partial melting of the 

silver, but oxidizing the deposited film. The sample is now ready for the first counting. 

3. Measurement 

3.1. Counting for determination of the total yield 

If Ac is electroplated directly, each sample has to be measured twice. First, it is measured for 

the yield tracer 225Ac and its daughters as soon as possible. A second measurement must be 

performed when the yield tracer has decayed completely, and when the daughters of 227Ac 

have approached their maximum activity. The two cases will result in completely different 

spectra, which are discussed in detail below, because their understanding is the key to the 

measurement of 227Ac. 

Figure 1 

 

Counting for 225Ac should take place as soon as possible after separation of Ac from Th and 

subsequent electroplating. It is necessary that all Th and Ra have been removed from the 

sample by the column separation. If this is not the case, 225Ac is not a reliable yield tracer 

because it might be produced after the separation of Ac by decay of 225Ra (half-life 14.8 d). 

Such contributions may be discovered if peaks from the 229Th decay chain are found during 
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the second counting, or if excessive 226Ra contributions are observed. The activity ratio of 

226Ra to 227Ac in sea water samples may be very high (>1000), so minor 226Ra peaks may 

sometimes occur without implying substantial problems in Ra/Ac separation. Although 225Ra 

will be lost in the electroplating procedure at the proposed voltages, its presence before 

electroplating might lead to an overestimation of the chemical yield. A typical spectrum of 

225Ac is shown in Figure 1. 

225Ac itself has a relatively broad peak which is composed of multiple energies. Additionally, 

its peak is in a region that is also occupied by 224Ra and 223Ra (a daughter of 227Ac), as can 

be seen on the decay charts of the two involved decay series (Figure 2a and 2b). This peak 

can therefore not be used for the determination of 225Ac. The next daughter of 225Ac is 221Fr. 

The main peak of 221Fr (83% of its decays) is observed at 6.341 MeV, a smaller fraction is 

found near 6 MeV (various energies), disturbing (and disturbed by) the main peak of 227Th. 

The granddaughter of 225Ac, 217At, is best suited for the indirect measurement of 225Ac or 

225Ra (Martin et al., 1995; Purkl and Eisenhauer, 2004). Virtually all of its decays are 

observed at a single energy (7.067 MeV), which is not affected by other nuclides. We 

therefore recommend determining 225Ac by measurement of 217At. Losses in the decay chain 

by recoil effects do not seem to take place, because a comparison of the observed activities 

of 225Ac, 221Fr and 217At in undisturbed spectra (no contribution from 226Ra and daughters) 

showed good agreement with the values expected for a secular equilibrium. 

The obtained value can be expressed as a count rate, and calculated back to the time of 

separation from 225Ra, which will be the iron precipitation in case of rapid processing, or the 

last column if the iron precipitation was stored long enough to allow 225Ra for ingrowth from 

229Th. The ratio of the count rate to the known disintegrations per minute (dpm) of the spike is 

an expression of the overall yield of the procedure, including chemical losses and detector 

efficiencies (Equation 1). If the same detector is used for the second counting, this value can 

be used to correct for all losses (except MnO2 during sampling) in one single step. If the 

spike is added upon sampling, even the MnO2 losses are included in the calculated recovery. 

Figure 2  
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3.2. Growth of the daughters of 227Ac 

A characteristic of 227Ac in the radioactive decay of its daughter nuclides is a sequence of two 

nuclides with relatively similar half-lives (227Th with a half-live of 18.72 days, and 223Ra with a 

half-life of 11.435 d). Because of this similarity of the half-lives, the establishment of a full 

equilibrium between 227Th and 223Ra (and its short lived daughters) takes about ten half-lives 

of 227Th (see Figure 3). As a compromise between equilibrium conditions, complete decay of 

the 225Ac yield tracer, and the wish to obtain data as soon as possible, we recommend the 

measurement of the 227Ac daughters 100 days after electroplating. 

Figure 3 

3.3. Counting the daughters of 227Ac 

Figure 4 

The sensitivity of the method that we propose here is based on the counting of a number of 

227Ac decay products, which allows detecting multiple events for a single 227Ac atom present 

at the time of electroplating. The decay events of 227Th, 223Ra, 219Rn, 215Po, and 211Bi can all 

be included in the calculation of 227Ac activity. The actual spectra for individual nuclides are 

relatively complex, with the exception of 215Po. However, three regions of interest can be 

found in the spectrum (see Figure 4), each of them representing two nuclides or less. In the 

region from 5.4-6.1 MeV, we find 223Ra and 227Th. In the region from 6.2-6.9 MeV, the decays 

of 219Rn and 211Bi are observed. And the region from 7.3-7.5 MeV is reflecting the decays of 

215Po. The separate acquisition of the three regions is useful for later control of the data for 

losses due to 219Rn, or for disturbing contributions from the 232Th chain, which would be seen 

in unusually high ratios of group 1 (227Th, 223Ra) and 2 (219Rn, 211Bi). 215Po is largely 

undisturbed by other nuclides and would still give a reliable value if the other energies are 

influenced by some other isotopes. 

 

3.4. Losses in the decay chain due to 219Rn diffusion 

Another topic to be discussed is the presence of an intermediate product in gas form, 219Rn. 

While one might expect that the short half-live of 219Rn (3.96 s) is preventing the loss of a 
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significant proportion of the atoms, this is not quite the case. There is some debate in the 

literature about the degree of Rn loss on an electroplated source (Jurado Vargas and 

Fernandez de Soto, 1996; Hancock and Martin, 1996; Vargas, 2001). We chose an empirical 

approach to quantify the loss for our specific sample type. In our spectra of 227Ac, we 

consider three groups of energies, each representing one or two nuclides (for an example 

see Figure 4). The loss due to 219Rn was calculated as the sum of events for the groups 2 

and 3 (219Rn, 215Po and 211Bi) divided by three, divided by the sum of events for group 1 

(227Th and 223Ra) divided by two. For a total of 21 clean spectra, we obtained a loss of 2 % ± 

3 %, which means that the occurrence of any loss due to 219Rn is not significant.  

 

3.5. Converting the counts to concentrations 

Table 2 

The first counting period, immediately after electroplating, serves to calculate the counting 

yield for actinium from 225Ac. The counting rate as obtained from 217At during the first 

counting period is calculated back to the separation from 229Th, and then compared to the 

actual 225Ac activity, as known from the addition of the 229Th/225Ac spike: 

(1) 
ActtAtAc Aetny

Ac 225

1

217 12
225

/)/)/(( )(*  
 

y: overall yield of the separation and measurement procedure, includes chemical losses and 

detection efficiency- dimensionless, detector specific 

n: number of detected disintegration events (counts) 

λ: decay constant (unit 1/t, t must be in same unit as t1 and t2) 

A: known activity of the 225Ac spike 

t1, t2: see table 2 

 

Given the yield of the separation and counting steps, the results of the second counting 

period can be converted into an activity of 227Ac. In a first step, the counts of the three energy 

groups, representing the disintegrations of 227Th, 223Ra (group 1), 219Rn, 211Bi (group 2), and  

215Po (group 3) are added and divided by five to give a count rate that represents 223Ra or 

one of its daughters. 
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(2)  2

321

2

223

5
333

3
t

nnn
tn

group
t

group
t

group
tRa

t 


/  

Equation (2) can be modified if the ratio group 1/group 2 indicates contributions from other 

nuclides in group1, or significant losses of 219Rn from the source. If the count rate is 

sufficient, the counts of 215Po (group 3) can also be taken as representing 223Ra, not applying 

equation (2). After a count rate for 223Ra has been obtained, it can be converted into the 

number of atoms present in the sample at the time of measurement. 

(3) 
Ra

Ra
tRa

t

tn
N

223

2

223

223 3

3 




/
 

 

N: Number of atoms 

223Ra never reaches a secular equilibrium with 227Th because their decay constants are too 

similar (Figure 3). Therefore, the calculation of 227Ac from the activities of its daughters is not 

straightforward. Based on the laws of radioactive decay series as taken from (Faure, 1986), 

the number of 227Ac atoms can be calculated from the number of 223Ra atoms: 

(4) 






















001419830000867860002232420

3
223

3
227

3
227

3

3

227227

223

227

...
**

*** ttt
ThAc

Ra
tAc

t RaThAc

eee

N
N





 

This number can then be converted into a "virtual" alpha count rate of 227Ac: 

(5) 
AcAc

t
Ac

t Ntn 227227

2

227

33
*/    

Using the overall yield from equation (1), the count rate can be converted into the actual 

227Ac activity at the time of the second measurement (t3) 

(6) 
Ac

Ac
tAc

t
y

tn
A

2

227

227 3

3




/
 

If storage between sampling and measurement is significant in regard to the half-life of 227Ac, 

a further decay correction becomes necessary: 

 

(7) 
)(*

/ 03
227

30

227227 ttAc
t

Ac
t

Ac

eAA 



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Obviously, the propagation of the counting error is rather complicated and prone to error, as 

some requirements are not met (e.g., the detected counts are not stochastically independent 

events). Such a problem can be addressed either in a mathematical way (Kragten, 1994), or 

the external reproducibility of the results can be checked on a reference material.  

Here, we chose the uranium ore reference material UREM-11 (Hansen and Ring, 1983), 

which is certified for uranium. It contains uranium in the natural 238U /235U atom ratio of 

137.88. Its 238U activity reference value is 44.0 dpm/g, and the derived 235U (=231Pa =227Ac) 

value is 2.02 dpm/g. The 227Ac activity of this material was repeatedly measured (three sets 

of 6 samples each) by the method described above. The only difference was the preparation 

of the sample by a full digestion instead of MnO2 precipitate, and the absence of the last 

decay correction, because no time elapsed since sampling. The results are presented in 

Table 3. They suggest an error associated with the method of <10% (1 σ). This is the 

constant error that we give with the results. Another means of testing the validity of the 

results is the comparison with other methods, as shown in the following section. 

 

4. Results and comparison with sampling via in situ pumps 

Some first results from the Eastern Weddell Gyre are depicted in Figure 5. The data show 

the typical 227Ac pattern, an increase with depth. A feature that is unique to the Southern 

Ocean is the occurrence of comparably high values up to the sea surface, which are due to 

deep upwelling (Geibert et al., 2002). As everywhere in the ocean, a fraction of 227Ac is in 

secular equilibrium with 231Pa in the water column (supported 227Ac) and is not originating 

from the deep sea floor. Only the 227Ac activity that is exceeding the value of 231Pa (227Acex) is 

of actual significance for the calculation of mixing coefficients or upwelling rates. This 227Acex 

is released almost exclusively from deep sea sediments, with only minor contributions from 

shallow regions (Geibert et al., submitted). 

Figure 5 

 

A comparison of the method with values obtained by large-volume sampling by in situ pumps 
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(see Figure 6) reveals an excellent agreement between the methods. A linear regression 

yields a slope of almost 1:1 with a small constant offset (y = 0.96 x + 0.20). Table 4 illustrates 

the sample sizes required for each method, together with some important parameters. The 

total yield (average 17%, comparable to the reference material) expresses the decay-

corrected counts of the 225Ac spike divided by its initial activity. This yield value integrates the 

detector efficiency (typically 30%) and the chemical yield. A total yield value of 15% therefore 

implies a chemical yield of approximately 50%. In addition, we provide information about the 

total counts (sum of all five measured 227Ac daughters) for the new method. For the in-situ 

pump samples, sampling was done according to Geibert et al. (2002), while the chemical 

separation and measurement was done as described here for obtaining the best possible 

results. Here, we also provide a value for the sorption efficiency of the MnO2-impregnated 

cartridges, which is an important term in the calculation of the final 227Ac activities from in situ 

pumps. Failures of the pumps and very poor chemical yields in a few cases led to missing 

values in the final table.  

 

Table 4 

 

Figure 6 

 

5. Concluding remarks 

The determination of diapycnal mixing coefficients is of crucial importance for the 

understanding of oceanic circulation (Egbert and Ray, 2000; Wunsch, 2000), and 227Ac may 

serve here as a tracer. The proposed method is a development of 227Ac measurement 

techniques for the specific needs of marine science. Comparing it to the measurement of 

227Ac on Mn-fiber by a RaDeCC-system (Moore and Arnold, 1996), we see three main 

advantages: 

 Compared to Shaw and Moore (2002), smaller sample volumes are required  

 Compared to Geibert et al. (submitted), the uncertainty of individual measurements is 
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much lower 

 The same sample can be used to measure 231Pa for 227Acex calculations. MnO2, our 

carrier of 227Ac for sampling, is just as efficient for some other U-Th-series 

radioisotopes (e.g. Reid et al., 1979).  

Especially needful would be the measurement of 231Pa on the same sample by mass 

spectrometry, combined with 226Ra, 228Ra, and 230Th. This set of tracers is expected to be 

exceptionally powerful for disentangling the effects of water mass residence times and 

particle cycling in marine tracer signatures. 
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Figure 1:  

The spectrum of α-decays obtained from the first counting. The main peaks are due 

to the yield tracer 225Ac and its daughter nuclides, some very small peaks indicate the 

beginning ingrowth of the daughters of 227Ac in the electroplated sample. 
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Figure 7 a: The 235U decay chain with additional information about the energies of the 

emitted α-particles 
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Figure 8 b: The 237Np decay chain with additional information about the energies of 

the emitted α-particles 
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Figure 9:  

The growth of 227Th and 223Ra activity from a 227Ac source vs. time. The upper panel 

depicts the development of the relative activities during 200 days after the initial 

separation. The middle panel displays the relative activities from 100 to 200 days 

after separation, which is the foreseen time frame of the second measurement. The 

activity of all daughters is exceeding 93.5% of the initial 227Ac activity after 100 days. 

The lower panel is expressing the activity ratio of 223Ra, 219Rn, 215Po and 211Bi to 
227Ac 
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Figure 4: 

The spectrum of the same source as in figure 1, after the growth of the 227Ac decay 

chain (>100 days). The yield tracer has disappeared. The thick lines indicate the 

energy intervals of the "groups" mentioned in the text. Left: group 1; middle: group 2; 

right: group 3.   
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Figure 5: 
227Ac activities at a station in the Eastern Weddell Gyre as obtained with the new 

method. The open symbol at 500 m depth indicates a value from the corresponding 

in situ pump sample, because the CTD sample was lost (poor Ac recoveries). The 

given error is constantly 10%, which is an estimate based on repeated measurement 

of a reference material (see text). The actual error is composed of several counting 

errors (234Th for MnO2 recovery, 225Ac yield tracer, and 227Ac daughters, that amount 

individually to less than 5%). Some minor error sources (weighing of the sample on 

board, spiking with yield tracer, calibration of counting efficiencies for 234Th on the 

MnO2 source) also contribute to the final error value. 
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Figure 6:  

A comparison of the measurement of 227Ac in large-volume samples from in situ 

pumps and in samples taken from the CTD. 
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