The Commodification of Emergence

Citation for published version:

Digital Object Identifier (DOI):
10.1017/S1745855208006303

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
BioSocieties

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Commodification of Emergence: Systems Biology, Synthetic Biology and Intellectual Property

Jane Calvert
Email: Jane.Calvert@ed.ac.uk

Abstract
In this paper I address the interactions between biological knowledge and ideas about the kinds of entity that are suited to appropriation. I start by arguing that commodification and reductionism are closely linked, and that patenting suits entities that are discrete and isolable, such as those that are the focus of molecular biology. I then turn to the new field of systems biology, which recognises that traditional reductionist approaches to biology are no longer adequate, and attempts to provide a more integrative understanding of biological systems. In doing this, systems biology has to deal with emergent phenomena. But patenting does not suit the dynamic and interactive complexity that is the object of study in systems biology. If systems biology rejects reductionism where does that leave commodification? I examine attempts to commodify predictive computational models in systems biology. I then turn to systems biology’s sister discipline, synthetic biology, which deals with emergence by reducing the complexity of biological systems. By factoring out messy contingencies, synthetic biology is, in theory, well suited to commodification. Drawing on both these examples I explore how ideas about appropriation, including open source, are influencing the nature and course of research in biology.

Keywords: systems biology, synthetic biology, intellectual property, emergence, commodification, disentanglement
Introduction

My concern in this paper is with the relationship between the regulatory and the epistemic. My focus is on the two new fields of systems biology and synthetic biology, fields which aim to integrate high-throughput molecular data to provide a more complete understanding of the operation of biological systems. Both fields have to deal with emergent biological phenomena. My interest is in how ideas about the kinds of entity that are suited to appropriation affect the nature and production of biological knowledge, and I pay particular attention to attempts to commodify the emergent objects of the biological sciences to make them fit with intellectual property regimes.

There has been a substantial amount of previous discussion of how commercialisation pressures may be influencing scientific research (see Etzkowitz and Leydesdorff 2001, Gibbons and Wittrock 1985, Gibbons et al. 1994, Hellström and Jacob 2005, Mirowski and Sent 2002, Nowotny et al. 2001, Slaughter and Rhoades 1996 and Thackray 1998). Some of this work has looked at the effects of commercialisation on research practices (e.g. Blumenthal et al. 1996, Behrens and Gray 2001 and Packer and Webster 1996), but there are very few actual examples of how the content of the research itself is affected by these pressures, such as Balmer’s (1996) discussion of the influence of patent policies in the choice of a particular DNA mapping strategy. This paper aims to contribute to this relatively neglected area of investigation.

To outline the paper, I start by discussing commodification, and how it requires that a commodity be objectified and isolable, which means that it must be reduced or fragmented. I draw on Callon’s ideas about ‘disentanglement’ to make sense of how a commodity becomes extracted from the context in which it was previously embedded. Arguing that there are close links between commodification and reductionism, I then turn to reductionism in molecular biology. Patenting is heavily influenced by the molecular-biological view of the world, and molecular biology, in turn, is well-suited to commodification. Systems biology, in contrast, attempts to integrate molecular level data and produce new understandings of biological systems. A key feature of systems biology is its readiness to embrace emergence, a concept which can be understood in various ways (e.g. in terms of unpredictability arising from interactions or contextual influences). Because of its inherently unbounded and unpredictable nature, emergence would seem to be particularly difficult to commodify. Actual patents in systems biology show how the ‘commodification of emergence’ has operated in practice. After highlighting potential problems with the ‘anti-commons’ that could arise in systems biology patents, because of the interconnectedness of biological systems, I show that most systems biology patents relate to computational models, which are predictive and delimit the number of entities that need to be taken into account. I then turn to synthetic biology, a related field which attempts to construct biological systems. Synthetic biology aims to develop components which are standardized and interchangeable by reducing biological complexity and ‘disentangling’ phenomena from their biological context. In this way it fits well with the requirements of commodification. I argue that in synthetic biology our ideas about appropriation may (albeit subtly and gradually) shape our ideas about the nature of living things. I conclude that systems biology and synthetic biology deal with emergence in...
different ways, and that the approach of synthetic biology is the one that is most likely to be taken up in public and policy debates.

This paper grew out of a project focused on systems biology. This project involved 35 in-depth interviews with scientists working in systems biology institutes in the US and the UK (referred to with code names throughout), and extended visits to three systems biology laboratories. The comparison with synthetic biology was brought up during the interviews and was explored further in an epistemological analysis and survey of this emerging field (see O’Malley et al. 2008). The synthetic biology material is also based on attendance at workshops and conferences on synthetic biology, membership of a UK synthetic biology network, and discussions with synthetic biologists. With the empirical material as background, this paper primarily draws on commentaries on these two fields from scientists, philosophers, lawyers and other theorists.

Commodification

At a very simple level, a commodity is something that can be bought or sold. For something to be a commodity it must be objectified (Sharp 2000), i.e. made into a ‘thing’ (Mirowski and Sent 2007). As Marx (1887) famously said, a commodity is ‘an object outside us’. For something to be a ‘thing’ it must be fragmented, or, as Jacob puts it, ‘reduced to a format that makes it possible to make an exclusive package or artefact for which an exchange value may be established’ (Jacob 2003:127). The use of the word ‘reduced’ here is interesting, and hints of the links between reductionism and commodification.

Since a commodity is a ‘thing’ or a ‘package’ which must be fungible, i.e. interchangeable with other objects (Lind and Barham 2004:51), it must have clear boundaries: it must be obvious where it ends and where the rest of the world begins. Here it is helpful to draw on the idea, which can be found in Adam Smith (see Schaffer 2003), that ‘disentanglement’ is necessary for commodification. Callon (2007) has provided helpful elaboration of ‘disentanglement’, which he describes as a process ‘through which, with growing force and clarity, a world exists in which entities are transformed (and retransformed) into things and then goods…that can circulate’ (p.343). The notion of disentanglement makes it clear that commodities do not come ready-made, ‘decontextualized, dissociated and detached’ (Callon 1998:19), but instead that they must be first extracted from the network of relationships in which they are already embedded (Holm 2007). This process of disentanglement requires the mobilisation of resources, social and economic actors, and institutions (see Parry 2008). It is only after these complex negotiations and iterations that we are left with a commodity, an apparently stable object. I will show how these ideas of disentanglement can be very helpful, particularly when it comes to understanding the practices of synthetic biology. But before turning to these issues, it is necessary to focus on the links between commodification and reductionism.

Reductionism is important for my argument, because the two new forms of biology that are my focus here – systems biology and synthetic biology – are both based on a belief that traditional reductionist approaches to biology are no longer adequate. If
biomass reduces reductionism where does that leave commodification? To help make sense of the issue, and to put the two new fields in context, it is useful to discuss reductionism in traditional molecular biology, and its links to commodification.

Reductionism and molecular biology

Reductionism in biology is the view that ‘all complex entities (including proteins, cells, organisms, ecosystems) can be completely explained by the properties of their component parts’ (Gilbert and Sarkar 2000:1). Molecular biology, as its name suggests, focuses on the molecular level and ‘encourages the belief that a detailed understanding of individual molecular properties may be sufficient to account fully for cellular and organismic phenomena’ (Powell and Dupré forthcoming p.6). The aspiration is that biology will ultimately be explainable in terms of physics and chemistry (Crick 1966).

Molecular biology became consolidated as the dominant perspective in biology after the discovery of the structure of DNA in 1953 (Powell et al 2007), and still holds a huge amount of institutional and epistemic power. This is demonstrated by the fact that patenting is heavily influenced by the molecular biological view of the world. We see this in the understanding of the gene that is adopted in patent practice, where it is considered that ‘[a] gene is but a chemical, albeit a complex one’ (Amgen Inc. v. Chugai Pharmaceutical Co. 1989). In patenting it is seen as perfectly appropriate to think of a gene in this reductionist way as entirely explicable in terms of its chemical constituents. This approach to understanding genes becomes problematic, however, in the context of research which shows that genes are highly interactive, have many different biological functions and operate in diverse biological processes (Pearson 2006). DNA’s chemical nature seems insufficient to account for all the consequences of gene action, which depend on the biological context in which the gene is operating and on the presence of a large cast of supporting mechanisms, without which genes are impotent (Moss 2003).

Reductionist understandings of the nature of biological phenomena fit very well with intellectual property regimes. McAfee (2003) argues that molecular-genetic reductionism supports certain kinds of economic reductionist arguments, and that this ‘double reductionism’, as she calls it, ‘furthers the extension of the commodity realm to the molecular level.’ (p.203). She maintains that seeing genes as ‘unitary objects with stable, predictable properties provides conceptual support for treating genetic constructs as tradable commodities which are subject to market exchange and to the assumptions of neoclassical economics’ (p.204). In this way reductionism and patenting are mutually supportive.

But this reductionist perspective has limitations, and these limitations are being confronted in systems biology, which attempts to integrate diverse sources of molecular data and generate a more complete understanding of biological phenomena, an understanding which introduces the notion of emergence.
THE COMMODIFICATION OF EMERGENCE

Systems biology

In brief, systems biology is an approach to biology that uses complex computational and mathematical tools to make sense of the vast amounts of data generated by genome sequencing projects and other molecular data-gathering exercises (Auffray et al., 2003). It is based on the realisation that the interactions between biological molecules and the networks that result are far too complex to be analysed without computational techniques. A key aim of the field is to produce dynamic *in silico* models of biological systems.

As with most new fields there is no consensus on the definition of systems biology. One derogatory way of describing it is ‘physiology with advertising’ (Interview34). And it has been pointed out that the field fits conveniently into current fashions for network thinking (Bonneuil and Gaudillièrè 2007). Systems biologists argue, however, that what makes the field new is the kinds of technologies that are being used to study biological systems, the accumulated molecular data, and, perhaps most importantly, the integration of many different types of data.

Systems biology and molecular biology

It is helpful to compare systems biology with molecular biology, to draw out some of the key differences. Systems biology is often portrayed as being the biological revolution that will replace molecular biology. For example, a scientist working in one of the new institutes for systems biology says ‘we’re now going to have to create a new way of thinking about biology that’s going to be as great a revolution as the molecular revolution was’ (Interview11).

Commentators such as Keller (2005) note that ‘the reductionist phase of genetic research is now over’ (p.103), and one of the central claims made by many systems biologists is that their field is not reductionist, and in fact is a reaction to ‘the essential failure of the reductionist agenda’ (Interview20). One scientist says revealingly that systems biology is ‘the name of the crisis; it’s the name of the fright that everyone’s gone into about having all the pieces and still not knowing how biology works’ (Interview34).

Some see molecular biology as a detour in the history of biology, and they portray it as the antithesis of systems biology (Interview11 and Interview34). A systems biologist, for example, says ‘it’s still very much an ‘us and them’ thing between the molecular and the systems people’ (Interview20). This can even influence scientific work, since ‘practicing systems biologists are often hindered by paradigm battles with molecular biologists’ (Boogerd et al. 2007:5). Others, however, argue for more of a continuation between the two: ‘systems biology is based on the progress of molecular biology because we need to know components, but knowing components is not knowing life’ (Interview33).
Emergence in systems biology
According to some interpretations, a key feature of systems biology is emergence. Van Regenmortel (2004) says that ‘emergence’ has appeared as a new concept that complements ‘reduction’ when reduction fails’ (p.1016). Some commentators ‘maintain that the concept of emergence is destined to be associated with systems thinking in much the same way that reductionism has come to be regarded as molecular biology’s philosophical counterpart’ (Powell and Dupré forthcoming p.9).

Emergence is a concept that is notoriously hard to pin down, and the brief attempt I make here will, I hope, serve my purposes of understanding the implications of emergence for intellectual property. The traditional idea of emergence is that something is more than the sum of its parts (which explains the comment of one systems biologist: ‘is the sum greater than the parts? If it’s not, it’s not systems biology’ Interview34). Another way of explaining this is to say that the characteristic properties of the whole cannot be deduced from the most complete knowledge of the properties of the constituents (see Broad 1925). In this way unpredictability is a key feature of emergence (Hodgson 2000). An example of an emergent property is ‘wetness’; a single molecule alone cannot be wet, only a collection of molecules can (Gilbert and Sarkar 2000). Another evocative example of emergence is given in respect to systems biology:

‘What is the difference between a live cat and a dead one? One scientific answer is ‘systems biology’. A dead cat is a collection of its component parts. A live cat is the emergent behaviour of the system incorporating those parts’ (Nature 2005:1).

This example is interesting not only for its colour but also because it links emergence to the idea of something being alive. Emergence is closely connected to notions of life, since ‘Living systems being nonlinear dynamical systems, have properties different from their constituents in isolation’ (Boogerd et al. 2007:12). This point will become important in respect to the discussion of synthetic biology below.

Some commentators distinguish between weak and strong emergence (Boogerd et al. 2007). Weak emergence is where it is not possible to explain or predict the properties of an emergent object, because the components work differently together than they do apart, but such an explanation may be possible in the future, with increased knowledge and understanding of the phenomena. Strong emergence is where ‘system behaviour cannot be inferred or predicted from the behavior of components in isolation’ (Boogerd et al. 2007:330). In this case it is not possible in principle to predict emergent properties from first principles (Richardson and Stephan 2007).

There is much discussion of the nature of emergence, which is not, of course, only found in biological contexts, but is also present in social life, and in law (Hodgson 2000). But what is of immediate concern to me here is how the concept is used in scientific practice. Many biologists treat emergence as if it simply involves taking context into account (Powell and Dupré forthcoming). If context is important in understanding a biological phenomenon then it makes sense to assume that an understanding of constituent parts
isolated from their context will never lead to a complete explanation of this phenomenon (Gilbert and Sarkar 2000). A corollary of this point is that environment, or context, becomes more important in systems biology than it was in reductionist molecular biology. As the boundaries of a biological system become looser and more permeable, and less causally decoupled from the environment, so the system becomes less amenable to commodification. Another factor which decreases the ‘boundability’ of biological systems is the fact that they are open: ‘they exchange matter and energy with their environment’ (Van Regenmortel 2004: 1017).

It may be counter-productive to attempt to provide a precise definition of emergence. As Powell and Dupré show, ‘emergence concepts remain relatively undeveloped, and it may even be that some of their contemporary utility stems from their ambiguity’ (p.18). What I am calling emergence others may prefer to call wholism, interactionism, or organicism (see Gilbert and Sarkar 2000). The concept of emergence is sufficiently ambiguous and vague to incorporate these different ideas.

Having emphasized the connections between emergence and systems biology it is necessary to note that some commentators argue that systems biology is not genuinely concerned with emergence, but is just reductionism writ large. For example, one critic says of certain varieties of systems biology: ‘This is brute-force, geno-centric reductionism in the guise of entireness, rather than a novel integrative approach devoted to wholeness’ (Huang 2000: 471). Although this statement is intended as a criticism of the whole enterprise of systems biology, some systems biologists themselves are explicit about their own reductionist objectives, and do not see the label ‘reductionist’ as a slur (Interview7). One, for example, thinks that ‘the systems stuff’s really a starting point for the reductionist biology’ (Interview24). Another says ‘what we have got to emphasize is a molecular level analysis, so we need to be able to trace back emergent properties or life or biology, phenotypes, whatever we’re looking at, to the molecular underpinnings’ (Interview9). There is a truism underlying these points that ‘science cannot proceed without some dissection and some analysis of parts’ (Hodgson 2000:73), and no one I interviewed would have denied this. It would be overly simplistic to imply that systems biology is only concerned with wholes and that there is no place for reductionist analysis in this field.

It remains the case, however, that the dominant discourse of systems biology is one of anti-reductionism, and this is something that systems biologists often draw upon when defining their work in opposition to previous molecular biology. This discourse is so pervasive that the BBSRC, the UK’s largest funder of systems biology, recently felt the need to reassure the UK’s scientific community that ‘BBSRC has not become anti-reductionist as a result of encouraging the uptake of systems biology approaches. BBSRC maintains a neutral position here…It acknowledges that the molecular-level research it has funded – and continues to fund – is an important part of the picture’ (BBSRC 2006).
Patenting in systems biology

Attempts have been made to commodify systems biology, and it is helpful to examine the patents that have been granted in the field. As we have seen in the discussion of commodification above, patenting suits entities that are fixed, static and excluded from external intervention. This is far from the dynamic and interactive complexity that is the object of study in systems biology.

One systems biologist makes an important point about interactivity and its implications for patenting in systems biology. He says that since that the most important biological properties come from the operation of systems and not from the operation of individual genes ‘if you want to acquire intellectual property…you can’t do so by patenting individual genes, you’ve got to patent a system or a collection of genes’ (Interview3).

This is one strategy in systems biology patenting, and already there are patents on networks of interacting molecules, which Allarakhia and Wensley (2005) identify as systems biology patents. These patents have given rise to concern that patenting a whole system or network could have negative consequences for further research, since ‘actions that result in the enclosing of large research terrains are more likely to have significant impact on technological opportunities available for follow-on developers’ (Allarakhia and Wensley 2005:1485). The patent model is based on the idea that innovations are discrete and separable from their context. As we have seen, this is not the case with interconnected biological systems. The danger of ‘enclosing of large research terrains’ is an example of the ‘tragedy of the anti-commons’ (Heller and Eisenberg 1998), which is the situation where the existence of patents leads to the neglect of large areas of research which would otherwise be ripe for innovation and exploitation.

There are dissenters to the ‘tragedy of the anti-commons’ argument (see Caulfield et al 2006). Adelman (2005), for example, argues that the redundancies of biological systems mean that ‘work-arounds’ will actually be easier in biology than they would be in other fields, and research questions will be approachable from several different directions. However, I think that Adelman underestimates the interactivity and complexity of biological systems. A ‘work around’ in biology is very likely to have unintended and unforeseen knock-on effects on other parts of a biological system, and as a result it is unlikely that totally separate lines of research could be pursued.

Because of this interconnectedness of biological systems, there do appear to be some immediate difficulties with patents on interacting biological networks, which could be thought of as systems biology patents. It is necessary to note here that in attempting to identify systems biology patents there is a definitional problem. There is no class for patents in systems biology per se, so those that other sources have identified as systems biology patents (e.g. Allarakhia and Wensley 2005, Nature Biotechnology 2005 and Russell 2006) are based on assumptions about the kinds of patents that they think are representative of the field.

Apart from patents on biological networks, other examples given of systems biology patents are on computer-based models of biological systems. This is because most
systems biology companies are attempting to simulate disease and drug action \textit{in silico} (Mack 2004). For example, the company Optimata has been granted a patent which allows ‘virtual trials’ of drugs on a computer (Russell 2006). Other patents are on biosimulation tools with names like ‘virtual patient’, ‘virtual human’ or ‘visual cell’ (Uehling 2003). There are similar patent applications pending on computer models, including a method of constructing a gene network from quantitative data, a biological network model, and a system for simulating the operation of biochemical systems (Nature Biotechnology 2005). As well as bringing up issues about the legitimacy of patenting computer software (issues that I do not have space to discuss here), these patents raise interesting questions about what constitutes a model in systems biology.

A model is not simply a description of a biological system, because it is necessarily a simplification of the system (without this simplification it would not be a model, it would just be a representation of the system), and it also incorporates hypotheses about how the system is thought to work (Interview23). Both of these features could be argued to make biological models amenable to commodification. Because a model limits what it is included within it, it becomes more bounded than the actual biological system. Furthermore, the incorporation of hypotheses about how the system is thought to work gives the model the facility to be predictive. Boogerd et al. (2007) explain how in systems biology ‘emergent properties are predicted by calculating how the model behaves \textit{in silico} and compared to observations made on the system level’ (p.6). We also saw above that commodification requires ‘unitary objects with stable, predictable properties’ (McAfee 2003:204 emphasis added). If models give us the facility to be predictive, then they may lend themselves to commodification.

One of the key features of emergent phenomena, however, is that it is not possible to predict their properties from the properties of the component parts. Here we see that the ‘commodification of emergence’ in the case of predictive computational models is actually the commodification of weak, rather than strong, emergence, because the definition of strong emergence is that prediction is not possible in principle, however advanced our knowledge of the phenomena. Wynne argues that this emphasis on predictive modelling in systems biology ‘effectively deletes the issues of emergence’ (Wynne 2005:76). This is the case if we think in terms of strong emergence, but not if we are concerned with weak emergence. We may want to conclude, however, along with Wynne, that in terms of strong emergence, the successful predictive modelling of a biological system means that it will come to be understood as something which does not possess emergent properties. According to systems biologists Westerhoff and Kell (2007), systems biology does not embrace strong emergence because it is guided by the hope that ‘life is calculable and can therefore be captured in a computer model’ (p.64). The research programme that is grounded in this hope that ‘life is calculable’, and that it is possible to eliminate the unpredictable characteristics of biological phenomena, is systems biology’s sister discipline: synthetic biology.
Synthetic biology

The objectives of synthetic biology are to construct novel biological systems and to redesign existing ones. Some see synthetic biology as providing an empirical test of the models in systems biology by trying to build them as functioning biological systems (Barrett et al 2006). Others see synthetic biology as a distinct field with autonomous aims (Endy 2005). Nevertheless, synthetic biology and systems biology have much in common. They both developed in the 2000s and they are both concerned with understanding the operation of biological systems by making use of modelling and systems design (Brent 2004). Both frequently draw analogies between biological systems and electronic circuits, and endorse approaches which draw on engineering and the physical sciences. Synthetic biology can be conceived of as ‘the other side of the coin of systems biology’ (Victor de Lorenzo in Breithaupt 2006:21), or ‘systems biology in reverse’ (Interview30), because rather than learning about a biological system, going on to model it in silico, and then perhaps attempting to build it, synthetic biology starts with the construction of the biological system. Most importantly for my purposes, synthetic biology has been called ‘a reductionist approach to systems biology’ (James Collins in Ferber 2004:158).

Synthetic biology is a disparate field and incorporates a range of different activities, from attempts to create protocells (by inserting molecular components into lipid vesicles), to attempts to strip away excess DNA from existing genomes. The disparate nature of the field means that it would be inappropriate to generalize about its approach to emergence (see O’Malley et al 2008). Some strands of synthetic biology, for example the protocell school, make the complexity and emergence of biological systems explicit topics of investigation. Benner and Sismour (2005), scientists who engage in DNA synthesis, also embrace emergent properties, saying that the aim of synthetic biology is ‘to create in unnatural chemical systems the emergent properties of living systems’ (p.533). But here I will focus on the most well-known and well-funded strand of synthetic biology which aims to make biology into an engineering discipline (Endy 2005). To this end, these synthetic biologists draw on the engineering principles of standardisation, decoupling and abstraction (Brent 2004) with the objective of developing biological components which are interchangeable, functionally discrete and capable of being combined easily in a modular fashion (i.e. ‘plug and play’, see Isaacs and Collins 2005). My argument here is that the attempt to reduce complexity conveniently makes this flavour of synthetic biology well-suited to commodification and to existing appropriation regimes. This is because:

‘the more dramatically researchers can reduce the complexity of biological organisms, the better they can turn these organisms into instrumentalizable media and simultaneously reduce the difficulties…of the encounter between biotechnologies and patent law’ (Pottage 2007: 330).

If a biological entity is made into one that it is discrete then it becomes amenable to patenting, and also to open source. My point is that ideas about appropriation, including open source approaches, are influencing the course of research in this branch of synthetic biology. Franklin (2003) observes a similar phenomenon in cloning, a technique which
makes reproduction more exact and replicable than it would be otherwise. Drawing on Franklin’s (2003) work, Hoeyer (2007) notes that it was developments in patenting which made animal cloning into a viable industry because ‘cloning circumvents the heterogeneity introduced by sexual reproduction and thus stabilizes the object of ownership in accordance with the rules of the property regime’ (p.341, emphasis added). As in synthetic biology, in cloning scientific and technological developments make the biological entity more stable, less heterogeneous and more suitable for commodification.

Intellectual property in synthetic biology

It is not yet clear how the intellectual property issues in the dominant strand of synthetic biology will play out. At the moment the information needed to build the functional and interchangeable parts (called ‘biobricks’) that are the focus of much current effort in systems biology is freely available on the web, although there is much discussion about whether it should remain so (see Henkel and Maurer 2007, Rai and Boyle 2007, Kumar and Rai 2007, and Maurer 2006). More complicated constructed networks and systems are the subject of patent applications (e.g. Keasling et al 2007), and patents on the technology for gene synthesis have recently been the focus of litigation battles between companies (see GenomeWeb Daily News 2008). In contrast to these proprietary strands, the ‘biobricks’ school often make a point of articulating their open source aspirations (e.g. Keasling 2005), not least because they explicitly attempt to make synthetic biology more similar to software code which is modular, standardized and re-useable (explaining why some people think a better name for the field would be ‘modular biology’, see De Vriend 2006:25). Modular entities are ideal for open source because they can be worked on simultaneously by a large community of both users and producers, and this can speed the development of the field.

We should not be lulled into thinking that because this field models itself on open source it is removed from the pressures of intellectual property. Although there are several different understandings of open source in circulation (Stallman 2007), in its most familiar incarnation – open source software – it relies on copyright and uses open source licenses (such as copyleft) to compel inventors to share their intellectual property. A self-consciously open source initiative in the biosciences (Biological Innovation for Open Society) produces biological licences where members agree not to assert their IP rights against one another (BIOS 2008). In these cases open source itself depends on the existence of prior property rights. Rather than being a substitute for intellectual property, open source is perhaps more correctly conceived of as a mosaic of private property (Biagioli 2007). For this reason appropriation is just as important in open source as it is in more conventional property rights (Rai and Boyle 2007, Kumar and Rai 2007).

In forcing biology into the mould of engineering, by developing discrete and substitutable parts, synthetic biology is simultaneously making biology better fit intellectual property regimes. This is not a coincidence, because patent law developed in the context of industrial manufacturing (see Pottage and Sherman 2007). It is also consistent with the direction of biotechnology more generally, which can be seen as ‘relentlessly pursuing the program of making every element of the world programmable or susceptible to engineering’ (Pottage 2007:340).
The reduction of complexity
For some, the reduction of complexity needed to make biology into an engineering discipline is not merely an instrumental aim, but is based on a faith that synthetic biology will ultimately lead to ‘the elucidation of the underlying simplicity’ of nature (Palsson 2000:1149). Many synthetic biologists hope that the complexity of biological systems, a key concern in systems biology, might be an eliminable accident of historical accumulations over evolutionary time (Balaram 2003). Programmatic statements along these lines are common. For example, Heinemann and Panke (2006) say: ‘As the complexity of existing biological systems is the major problem in implementing synthetic biology’s engineering vision, it is desirable to reduce this complexity’ (p.2793)

The reduction of complexity may not be achievable, however. Synthetic biologists such as those in Ron Weiss’s group advise that ‘it may be prudent to treat some biological uncertainties as fundamental properties of individual cell behavior’ (Andrianantoandro et al 2006:13). They continue in a way that reminds us of the understanding of emergence as dependence on context:

‘A biological device has no meaning isolated from a module; a module has no meaning isolated from a cell; a cell has no meaning isolated from a population of cells. This contextual dependence is an essential feature of living systems’ (p.13)

The concern here is that by attempting to eliminate complexity and contingency, synthetic biologists might end up losing sight of the emergent properties that define living systems, which are themselves historical accumulations, being the result of billions of years of evolution (Balaram 2003 and Dupré 2007). Andrianantoandro et al. (2006) stress that a recognition of the contextual dependence of living systems is necessary to engineer them successfully, and that the ‘notions of standardization, decoupling, and abstraction must therefore be recast to better reflect the complexity of the cellular contexts’ (p.12). In this way they acknowledge that biological systems may not be fully susceptible to engineering goals. Marguet et al. (2007) also worry that if synthetic biology’s standardization agenda is pushed too far this will remove the flexibility that is needed for engineered systems to be useful, which will result in the design of synthetic systems that will ultimately fail. Wimmer (quoted in Breithaupt, 2006) predicts this in saying that ‘the engineers will find out that the bacteria are just laughing at them’ (p.23).

If the complexity of biological systems is inescapable, then commercialisation will have to adapt to this. Andrianantoandro et al (2006) suggest that rather than producing standardized parts, synthetic biologists could take into account uncertainty and context-dependence and engage in ‘on demand, just-in-time customization of biological devices and components, which need not behave perfectly’ (p.13). But this goes against the grain of the field overall which is optimistic that it will succeed in making biology more like engineering, and hence more easily commodifiable.

Perhaps the most (in)famous synthetic biology patent application is Craig Venter’s application filed in May 2007 for the smallest genome needed for a living organism
(Glass et al 2007). On a superficial level, this patent could be seen to be founded on reductionist assumptions, because it is a patent on DNA as the essential constituent of a living organism. However, closer analysis of the patent shows that the context is a crucial constituent. The genome will only work if implanted into a 'rich bacterial medium', which possesses properties that are undefined in the patent. Since the environment is a crucial part of the patent, there is scope for emergence in this ‘patent on life’.

Synthetic biology tries to avoid the problems associated with emergence by eliminating all the messy contingencies and complexities of biological systems, in this way making them amenable to certain reductionist visions of commodification (perhaps sneaking in some context by the back door, as in the Venter patent). Whether attempts to reduce biological complexity and commodify emergence will succeed is an empirical question, but it is one where the answer will have important implications for intellectual property. If biological systems can be shaped into the form necessary for them to be exchanged in the market economy we may have to change our understanding of what ‘life’ is in the process.

This point brings us back to the issues of ‘disentanglement’ raised at the start of the paper. In attempting to reduce the complexity of biological systems, and shape them into exchangeable parts, well-suited to commodification, synthetic biology is itself engaged in ‘disentanglement’. Furthermore, this process of disentanglement is contaminated with pre-existing ideas about which forms of intellectual property would be most appropriate for the developing technology. This is particularly important because synthetic biology does not simply aim to describe or to represent life; it aims to create it. We do not merely have an example of ‘intervening’ here, where scientific effects are found only in the context of a certain experimental situation (see Hacking 1983). In synthetic biology the intervention into nature is more profound, because synthetic biology is the deliberate attempt to design living organisms. Synthetic biology, like other biotechnologies that have preceded it, works by ‘extending the reach of human manufactures into the texture of life itself’ (Pottage 2007:324). The fact that our creations of potentially new life forms are heavily influenced by certain preconceptions about appropriation may be worrying to some.

Concerns have been expressed for many decades about the potential influence of commercialisation pressures on the content of scientific research, but it has proved difficult to give specific examples of how the content of the research is itself influenced by commercial pressures. In the case of synthetic biology we can see economic considerations about the nature of property influencing the direction of the development of the field, and influencing it in a way which could have profound future implications.

This is not to argue for some kind of economic determinism, where intellectual property concerns dictate the course of scientific research. We clearly have a case of ‘co-production’ of the scientific and the social/legal here (Jasnaoff 2004). For examples of influence in the other direction, we have seen how gene patenting has been heavily influenced by the molecular biological idea that genes are a kind of chemical molecule, and how patenting as an institution was itself strongly influenced by the engineering and
manufacturing paradigm of the early nineteenth century (Pottage 2007). It is also likely
that intellectual property regimes will be further influenced by the developments in
systems and synthetic biology that I have been addressing here. But being aware of the
interactions between biological and patenting spheres is not to take force away from the
point that our ideas about appropriation may come to shape our ideas about the nature of
living things.

Emergence in policy debates and public discourses
My examples of synthetic and systems biology show that there are two different
regulatory paths that could be taken in response to the integrative life sciences. On the
one hand, as discussed in respect to synthetic biology above, effort may go into shutting
down the unpredictabilities and complexities associated with emergence so that life fits
better into existing ownership regimes. On the other hand, the problems with
commodifying the emergent objects of systems biology, as well as the views of those
synthetic biologists who doubt that biological complexity can ever be successfully
‘reduced’, may lead us to acknowledge that it is not possible to commodify emergent
phenomena. This could lead to new ways of thinking about appropriation in the life
sciences in general and could take regulation in new directions.

For example, we saw above how the appropriation of interconnected and networked
biological systems could lead to the tragedy of the anti-commons. In situations such as
this, an argument which is often made is that it is more economically efficient to keep
these biological systems in the public domain (Allaharia and Wensley 2006) and ‘outside
the world of property’ (Rai and Boyle 2007). Doing this would involve giving up on the
attempt to commodify emergence. There is also Andrianantoandro et al’s (2006)
suggestion that with emergent systems all we can aspire to is bespoke customisation of
biological components, the results of which would be imperfect and retain elements of
unpredictability. This just-in time customization would not demand the reductionism
associated with commodification.

A recognition of the irreducibility of biological systems could perhaps have broader
consequences. Thinking of the objects of biology in this way could lead to a shift in
mind-set to incorporate context and indeterminacy. It could even be the case that the
discourses of emergence and complexity we find in systems biology will be taken up
more broadly (perhaps tying into popular forms of holistic thinking). This may lead to the
development of new and as yet unimagined forms of regulation more aligned with these
ways of thinking in the biological sciences. This, in turn, could change the tone of
discussions about the implications of new biotechnologies.

Alternatively, and probably more realistically, the pressures to reduce complexity may
dominate, and the route taken by synthetic biology may come to dictate regulatory
thinking. We saw above how the engineering approach that synthetic biology adopts is
historically tied to intellectual property regimes, and the combination of the instrumental
power of engineering approaches and the economic pressures to commodify may prove
irresistible. Additionally, in comparison to systems biology, synthetic biology’s
reductionist agenda may relate more easily to culturally pervasive notions of the
importance of DNA (Ashcroft 2003). Even though it is a newer and less cohesive field, synthetic biology is already receiving much more public, media and policy attention than systems biology. Nature’s subtlety and recalcitrance may appear to be an obstacle at the moment, but in the future we may see life being reshaped in a way that fits better with economic imperatives.

References

Powell, A. and Dupré J.A. (forthcoming 2009). From molecules to systems: the importance of looking both ways. *Studies in the History and Philosophy of the Biological and Biomedical Sciences*

