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Abstract 

On initially applying pressure to ZIF-8 to 0.18 GPa, solvent can be squeezed into the porous cavity of 

ZIF-8, initially increasing the pore size and unit cell volume. On increasing pressure further to 1.47 

GPa, a phase transition takes place. This transition allows more solvent to not only enter the original 

nanopore, but increases the size of the narrow channels which connect these pores, resulting in an 

overall increase in porous volume and content. 

 

Main text 

Recent interest in gas storage materials has led to a plethora of papers on the synthesis of novel metal 

organic framework materials (MOFs).
[1-4]

 To date, structural variation in MOFs has been achieved 

through chemical modification, with accompanying changes in pore size and shape (and therefore 

internal surface area) giving rise to an increasingly diverse array of sorption properties. Such sorption 

measurements are performed at pressures up to 0.01GPa, though what effect higher pressures have on 

the framework is relatively unknown
[5]

, though the mechanical stability of some MOFs at high-

temperatures have been discussed previously.
[6]

 The only structural data available as a function of 

pressure above 0.01 GPa on any MOF is on [Zn(C3H3N2)2] (ZnIm),
[7]

 a dense zeolitic imidazolate 

framework (ZIF) material
[8]

 (a subfamily of MOFs). ZIFs, related to zeolites through the 145˚ angle 

subtended at the bridging imidazolate ligand, are of increasing interest. Their tuneable pore size, 

chemical robustness and thermal stability combine the most desirable features of conventional MOF 

and zeolite structures, making them ideal candidates for gas storage applications. 

In the previous study of ZnIm (which crystallises in the tetragonal space group I41cd), the structure 

was found to undergo a phase transition at 0.8 GPa to a previously unknown phase (space group I41) 

involving a cooperative rearrangement of the framework which was then recovered at ambient 

pressure. Although this material is a ZIF in terms of its topology, it contains no accessible pore 

volume. Here we present the first high-pressure study on a porous ZIF, ZIF-8 (Zn(MeIM)2, MeIM = 

2-methylimidazolate) with a sodalite (SOD) zeolite-type structure and a large accessible pore volume 

(2000Å³ per unit cell).  

Prior to our pressure experiment, an ambient pressure and temperature X-ray data set was collected on 

a crystal of ZIF-8 (0.1 x 0.2 x 0.2 mm) in order to provide data for comparison with the high pressure 

studies (which were also performed at ambient temperature, see below). The same crystal was then 

loaded into a modified Merrill-Bassett diamond anvil cell (DAC) equipped with 600μm culet 

diamonds and a tungsten gasket (Figure 1a).
[9]

 The sample and a chip of ruby (as a pressure calibrant) 

were loaded into the DAC with a 4:1 (v/v) mixture of methanol and ethanol as a hydrostatic medium. 
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The ruby fluorescence method was utilised to measure the pressure.
[10]

 High pressure diffraction data 

were then collected at 0.18, 0.52, 0.96 and 1.47 GPa. Data were also collected on decreasing pressure 

at 0.82 and 0.39 GPa. The sample was then downloaded from the pressure cell and an ambient 

temperature and pressure data collection was obtained following the pressure experiments. The pore 

volume and solvent content were calculated using the SQUEEZE algorithm within PLATON.
[11]

 Void 

analysis was carried out using the program MERCURY
[12]

 using a probe radius and grid spacing of 

1.2 and 1.0 Å respectively. 

 

 

Figure 1. Optical image of single crystal of ZIF-8 at (a) ambient pressure and (b) ZIF-8-II at 1.47 

GPa in a diamond-anvil cell.  

 

ZIF-8 (phase-I) crystallises in the cubic space group I-43m (a = 16.9856(16) Å, Vol. = 4900.5(8) Å³, 

Figure 2a). Under ambient pressure and temperature conditions, ZIF-8 contains one nano-sized pore 

per unit cell located at the centre of the cell with a volume of 2465 Å³. Connecting these large 

nanopores are eight smaller channels (Figure 3a). From our ambient pressure single crystal data, it 

was clear that some solvent was still in the pore, with the electron count within the pore (calculated 

using the SQUEEZE algorithm within PLATON) measuring 219 e
-
/cell equating to 12 molecules of 

methanol per unit cell (Table 1). On increasing pressure initially to 0.18 GPa, the sample actually 

increased in volume (from 4900.5(8) to 4999.6(2) Å³), with an associated increase in pore volume 

(2465 to 2556 Å³). This result is counterintuitive, as an increase in pressure usually results in a 

decrease in volume. Interestingly, the electron density within the pore also increased to 283 e
-
/cell, 

indicating that the hydrostatic media surrounding the sample (used to apply pressure evenly) was 

being squeezed into the large nanopore, increasing the pore content and size, as well as the cell 

volume. A broadly similar effect has been seen in zeolite-rho,
[13]

 though less dramatically than in the 

present case. On increasing the pressure further to 0.96 GPa, the cell and pore volume began to 

decrease, with the cell volume at 0.96 GPa remarkably being just below that measured at ambient 

pressure. The electron density within the pore however continued to rise, measuring 421 e
-
/cell at 0.96 
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GPa. On increasing the pressure further to 1.47 GPa the sample underwent a single crystal to single 

crystal phase transition. 

 

During the transition, the crystal appeared to ‘jump’ in the pressure cell. This can be seen in Figure 

1a&b, where the crystal has re-orientated itself in a different location within the gasket chamber on 

undergoing the transition. There have been occasional reports of crystals that jump on undergoing 

phase transitions on application of temperature (referred to as the thermosalient effect); however, we 

could not find any reference to examples on application of pressure (barosalient). Further study, 

however, is required in order to truly establish if this barosalient transition occurs here.  

The transition was also accompanied by a change in appearance of the crystal (note the rippled effect 

in Figure 1b). The new high-pressure phase (ZIF-8-II) still maintains the I-43m space group 

symmetry, but the imidazolate ligands twist, re-orientating in order to increase the accessible pore 

volume (Figures 2a&b). In particular, this re-orientation increases the size of the eight narrow 

channels which link the nanopores throughout the framework (Figures 3a&b). Although the volume 

of the nanopore decreases in size on undergoing the transition (from 2485 to 2439 Å³ at 0.96 and 1.47 

GPa respectively), the overall effect is to increase the pore volume due to the increase in size of the 

linking channels. Remarkably, the cell volume increases on undergoing the transition and has a larger 

volume than that measured under ambient pressure conditions. The total solvent in the pores at 1.47 

GPa measures 738e
-
/cell, equating to 41 methanol molecules per unit cell, which is significantly 

higher than at ambient pressure (12 per unit cell). On decreasing the pressure, the transition was found 

to be reversible, reverting back to phase-I at 0.82 GPa. On removing the sample from the DAC, the 

cell volume reverted back to its ambient pressure value; however, the pore volume and contents were 

found to decrease compared to the same sample measured prior to the pressure experiment (Table 1). 

 

 

 

← Figure 2. Packing arrangement of 

ZIF-8 at (a) ambient pressure and (b) 

ZIF-8-II at 1.47 GPa.  ZnN4 

tetrahedron are drawn as rigid 

polyhedra. H-atoms have been 

excluded for clarity. Note the change 

in orientation of the imidazolate 

groups on undergoing the transition 

from (a) to (b). 
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Figure 3. Packing arrangement of ZIF-8 at (a) ambient pressure and (b) ZIF-8-II at 1.47 GPa.  ZnN4 

tetrahedron are drawn as rigid polyhedra. H-atoms have been excluded for clarity. Note the change in 

orientation of the imidazolate groups on undergoing the transition from (a) to (b). 

 

Pressure 

 (GPa) a (Å) 

Cell 

Volume  

(Å
3
) 

Total Pore  

Volume 

(Å
3
) 

Electron 

Count 

MeOH  

Molecules 

0 16.9856(16) 4900.5(8) 2465 219 12 

0.18 17.0993(4) 4999.6(2) 2556 283 16 

0.52 17.0630(4) 4967.8(2) 2529 381 21 

0.96 16.9775(4) 4893.5(2) 2485 421 23 

1.47
#
 17.0710(17) 4974.8(9) 2439 636 41 

0.82* 17.042(5) 4950(3) 2525 425 24 

0.39* 17.093(5) 4994(3) 2541 337 19 

0* 16.9920(8) 4906.1(4) 2447 41 2 

 

Table 1. Crystallographic and pore data for ZIF-8 as a function of pressure. Phase-II is indicated with 

a 
#
 at 1.47 GPa. Pore volume, electron count, and number of MeOH molecules are calculated per unit 

cell. * refers to those values on decreasing pressure. 

 

Completely de-solvating porous materials can often be difficult and may require heating the sample 

under high or low vacuum. Here, by applying pressure we have removed the guest material from the 

compound, providing a new route by which to remove guest solvent from porous MOFs. 

In summary, we have shown that by applying pressure to ZIF-8 we can force the hydrostatic medium 

to enter the pore, initially increasing the volume of both the nanopore and unit cell. On increasing 

pressure further, more solvent can be forced into the nanopore even though the nanopore volume 

decreases, until the sample undergoes a phase transition. This transition allows more solvent to enter 

not only the original nanopore, but increases the size of the narrow channels which connect these 
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pores, resulting in an overall increase in porous volume and content. Modification of the pore volume, 

size, shape and therefore selectivity has therefore been achieved on application of pressure. Pressure 

could therefore be used as a means of inserting larger molecules into the pores which would otherwise 

not fit.  

This could be used to increase the accessible surface area for gas storage materials. MOF-177 for 

example has a pore large enough to include a C60 molecule which may provide additional sites for 

sorption of H2 or other gases.
[14]

 

The hydrostatic media that are used for pressure experiments are selected so as to apply pressure 

evenly to the sample. They are chosen based on a number of factors, including the solubility and 

reactivity of the sample, but they also limit the highest pressures obtainable during the experiment 

(hydrostatic media become non-hydrostatic at elevated pressures and crush the sample). Here, the 

hydrostatic medium (a 4:1 mixture of methanol and ethanol) is interacting dynamically with the large 

accessible pore volume in ZIF-8. The compressibility of MOFs has been shown to be hydrostatic 

media selective;
[15]

 however, this is the first detailed example showing what happens to the structure 

of a porous MOF on increasing pressure. Effects include an unprecedented increase in volume on 

increasing pressure, a pressure induced phase transition (modifying the pore size, shape and volume), 

and an unexpected removal of guest solvent molecules from the framework, without structural 

degradation. 

 

Experimental Section 

A solid mixture of zinc nitrate hexahydrate Zn(NO3)2.6H2O (0.525g, 1.76 x 10
-4 

mol) and 2-

methylimidazole (m-IM) (0.015g, 1.83 x 10
-4

 mol) was dissolved in 9ml DMF in a 12ml Teflon-

capped vial. The vial was heated at a rate of 200˚C/hr to 130˚C, held at this temperature for 24hrs then 

cooled at a rate of 5˚C/hr to room temperature. Colourless polyhedral crystals were filtered from the 

reaction mixture, washed with chloroform (5ml x 3) and dried in air (30 min). The yield obtained was 

0.0064g, 11% based on 2-methylimidazole. The product was formulated using elemental analysis as 

Zn(MeIM)2,(DMF)(H2O) (C11H19N5O2Zn; Calcd. C, 41.51; H, 5.97; N, 22.01. Found. C, 42.04; H, 

5.46; N, 21.83). The sample was immersed in methanol for 48hrs at ambient temperature to effect 

solvent exchange, this being confirmed by TGA. 

X-ray diffraction data were collected with Mo-Kα radiation (λ = 0.71073 Å) at room temperature and 

pressure on a Bruker Smart Apex diffractometer. Refinement was carried out against |F|
2
 in 

CRYSTALS
[16]

 starting from the low temperature coordinates of Wu et al., 2007.
[17]

 High pressure 

diffraction data were collected on the same sample (0.2 × 0.2 × 0.1 mm
3
) on a Bruker APEX II 
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diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). Data were collected 

in -scans in twelve settings of 2 and  with a frame and step size of 40 seconds and 0.3° 

respectively. This data collection strategy was based on that described by Dawson et al., 2004.
[18]

 The 

data were integrated using the program SAINT
[19]

 using 'dynamic masks' to avoid integration of 

regions of the detector shaded by the body of the pressure cell.
[18]

 Absorption corrections for the DAC 

and sample were carried out with the programs SHADE
[20]

 and SADABS
[21]

 respectively. High 

pressure refinements of ZIF-8 were carried out against |F|
2
 using the program CRYSTALS.

[16]
 All 1,2 

and 1,3 distances of the 2-methylimidazolate ligand were restrained to the values observed from our 

ambient pressure structure. All torsion angles and metal to ligand distances were refined freely. 

Hydrogen atoms attached to carbon were placed geometrically based on the neutron data from ref 
[17]

.  

The structure of phase II at 1.47 GPa was solved by SIR92.
[22]

  The numbering scheme used is the 

same as CSD refcode OFERUN. Data from the downloaded sample (after the pressure experiment) 

were collected at room temperature. The same experimental procedure was carried out as for the room 

temperature collection above. Detailed crystallographic data are summarised in Electronic 

Supplementary Information (ESI), and are also available from the CSD quoting deposition numbers 

CCDC 739161 – 739168. 
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