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THE GEOMETRY OF SOLUTIONS TO A SEGREGATION PROBLEM
FOR NON-DIVERGENCE SYSTEMS

L. A. CAFFARELLI, A. L. KARAKHANYAN, AND FANG-HUA LIN

Abstract. Segregation systems and their singular perturbations arise in different areas: particle an-
nihilation, population dynamics, material sciences. In this article we study the elliptic and parabolic
limits of a non variational singularly perturbed problem. Existence and regularity properties of solutions
and their limits are obtained.

One of the simplest models for the segregation of species (or systems of particles that annihilate

on contact) consists of setting a system of equations for the (vector) of nonnegative species densities

~uε = (uε
1, . . . , u

ε
k), of the form

Lj(uε
j) =

1
ε
Fj(~uε )

where Lj is a second order differential operator, Fj vanishes if uε
ju

ε
k = 0 for k 6= j and it is strictly

positive otherwise, forcing uε
j to segregate (uε

ju
ε
k converge to zero) as ε goes to zero.

In some applications, the system has a variational (or divergence) structure. For instance: (see

[CLLL], [CTV])

∆uε
j =

∑

k 6=j

1
ε
uε

j(u
ε
k)2 ,

the Euler-Lagrange equations for vectors ~u, stationary points of the functional

E(~u ) =
∫ ∑

j

(∇uj)2 +
1
ε

∑

j,k

[u2
ju

2
k] .

In others, i.e., the case in this article, (and of particle annihilation) the system is symmetric,

∆uε
j =

∑

k 6=j

1
ε
uε

ju
ε
k

and although it may appear to be a minimal change, its lack of variational structure imposes a different

approach.

The final result is, though, very similar to those attained in [CL2], [CL1] for the variational case,

mainly that the interphase between each two components is smooth (the level set of a harmonic function),

1991 Mathematics Subject Classification. 35B25, 35K55, 35B65, 35K55.
Key words and phrases. segregation system, singular perturbation, parabolic.

1

Karakhanyan, A, Caffarelli, L & Lin, F 2009, 'The Geometry of solutions to a segregation problem for nondivergence systems' 
Journal of Fixed Point Theory and Applications, vol 5, no. 2, pp. 319-351.



except in a “filament” (a set of Hausdorff dimension n − 2), where three or more species may concur,

mirroring the basic two dimensional example given by

w(x) = r3/2
∣∣∣ cos

3
2
θ
∣∣∣

where each connected component of {w > 0} represents the support of a different species, and the three

components concur at the origin.

This problem has received a considerable attention. See [CTV], [CTV2], [CTV3] and [CTV4] for

the discussion of the variational solutions and [CL1], [CL2] and [CLLL] for optimal partition problems.

The system with a singular limit also appears in the combustion theory related to flame propagations

[CR],[BS].

The parabolic version is not treated in the literature. In this paper we give a full description of the

problem for the heat equation as a model case.

For the elliptic case we prove an improvement of the regularity result. We discuss the elliptic and

parabolic versions separately. The paper is organized as follows: in the first section we show that the

solutions uε are uniformly Hölder continuous in ε, giving rise to a Hölder continuous vector ~u as a

uniform limit as ε goes to zero. Our approach works for more general classes of nonlinear uniformly

elliptic and parabolic equations.

The vector ~u inherits several properties from ~uε that compose the starting hypotheses of the regularity

theory. In the next section we prove several properties of the limit function ~u = limε→0 ~uε, such as the

harmonicity across the free boundary, the regularity of |∇u|2 across interphases, and the Lipschitz

regularity. The latter one is an application of a monotonicity formula introduced in [ACF].

The third section contains the geometric description of free boundary and the proof of the clean-up

lemma which states that a “flatness” implies the regularity property of the free boundary near a point

where only two components concur.

Next we introduce Almgren’s monotonicity formula [A] in order to find out the structure of the free

boundary near a singular point. The proof of Almgren’s monotonicity formula for the heat equation is

given in the Appendix.

2



1. Uniform Hölder continuity for the system uε

We consider, in the ball B1 of Rn, a nonnegative solution, uε
j ≥ 0, of the system

∆uε
i =

uε
i

ε

∑

k 6=i

uε
k.

For this section we may replace ∆u by a uniformly elliptic operator Lu = Di(aijDju) with bounded

measurable coefficients aij .

We will assume that the uε
i are bounded (0 ≤ uε

i ≤ M), and that ~uε = (uε
1, u

ε
2, . . . , u

ε
m) is in L1 or

L2, since being subharmonic (or a-subharmonic i.e. Luε
i ≥ 0) the mean value theorem implies that the

uε
i are bounded in B1−h for any sufficiently small h > 0.

Of course uε
i are smooth, with bounds depending on ε. Our first theorem is

Theorem 1. In B1/2, for any ε, ~uε is Cα for some α > 0 independent of ε, and

‖ ~uε‖Cα(B1/2) ≤ C(M) ,

with C(M) also independent of ε.

Remark. For this first theorem we may replace the Laplacian by any other operator Lu, linear elliptic

or parabolic with the following three properties:

Let w satisfy Lw = f ≥ 0 and

osc
B2

w = sup
B2

w − inf
B2

w = 1.

Then for a positive constant µ(γ0) depending on γ0 one has

a) If |{f ≥ γ0 > 0}| ≥ γ0 > 0 then

sup
B1

w ≤ sup
B2

w − µ(γ0).

b) If |{w ≤ sup w − γ0}| ≥ γ0 then

sup
B1

w ≤ sup
B2

w − µ(γ0).

c) If |f | ¿ osc
B2

w = 1, then

osc
B1

w ≤ osc
B2

w − γ0.
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This is true for uniformly elliptic or parabolic equations with bounded measurable coefficients from

DeGiorgi-Nash-Moser (and the Littman-Stampacchia-Weinberger estimate [LSW]) for divergence equa-

tions, and the Alexandrov-Backelman-Pucci and Krylov-Safanov theory for non-divergence equations.

In the parabolic case we must take consecutive parabolic cylinders.

In order to prove Theorem 1 we first state the following

Lemma 2. Let mi(R) = minBR
uε

i ,Mi(R) = maxBR
uε

i , and Oi(R) = osc
BR

uε
i . Suppose that either of the

following is satisfied for some positive constant γ0:

a) |{x ∈ B1/4, u
ε
i (x) ≤ Mi − γ0Oi}| ≥ γ0 where mi = mi(1),Mi = Mi(1),Oi = Oi(1),

b) |{x ∈ B1/4, ∆uε
i (x) ≥ γ0Oi}| ≥ γ0,

c) |{x ∈ B1/4, ∆uε
i ≥ γ0u

ε
i}| ≥ γ0.

Then there exists a small positive constant c0 = c0(γ0) such that the following decay estimate

is valid

Mi(
1
4
) ≤ Mi − c0Oi.

Proof. It is well-known that if Lu ≥ 0 in D ⊂ BR where u ≥ K in D and u = K on ∂D∩BR then

sup
D∩BR/4

u ≤ 1

1 + C |BR∩Dc|
Rn

· sup
D

u.

This estimate is classical (see [La]) and as an application to our problem

∆uε
i =

uε
i

∑
j 6=i uε

j

ε
, in B1

with u = uε
i we have that

Mi

(
1
4

)
= sup

B1/4

uε
i ≤ max

(
Mi

1 + Cγ0
, Mi − γ0(Mi −mi)

)

= c0Mi c0 < 1.

In particular osc
BR

uε
i = Oi(R) decays

Oi

(
1
4

)
= Mi

(
1
4

)
−mi

(
1
4

)
≤ c0Mi −mi

(
1
4

)

≤ c0(Mi −mi) = c0Oi(1)

since mi(1/4) ≥ mi(1) ≥ c0mi, c0 < 1 so part a) follows.
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To prove part b) we use Green’s representation formula

uε
i (x) = vε

i (x)−
∫

B1

G(x, y)∆uε
i (y) dy, G(x, y) ≥ 0

where vε
i is the harmonic replacement of uε

i in B1 and G(x, y) is the Green’s function of B1.

Then we have

0 ≤ vε
i (x)− uε

i (x) =
∫

B1

G(x, y)∆uε
i (y) dy ≥

∫

B1/4∩{∆uε
i≥γ0Oi}

G(x, y)∆uε
i (y) dy

≥ γ0Oi

∫

B1/4∩{∆uε
i≥γ0Oi}

G(x, y)

≥ Cγ2
0Oi

that is uε
i (x) ≤ vε

i (x)− Cγ0Oi(1) and Mi(1/4) ≤ c0Mi for c0 < 1.

Now consider Ai = {x ∈ B1/4,∆uε
i ≥ γ0u

ε
i} and Hi =

{
x ∈ Ai, u

ε
i (x) < Mi

2

}
. First let us assume

that

(1.1) |Ai \Hi| ≥ 1
2
|Ai|.

Then
{

x ∈ Ai, uε
i (x) ≥ Mi

2

}
⊂

{
∆uε

i ≥ γ0
Mi

2

}
.

Therefore ∣∣∣∣
{

∆uε
i ≥

γ0Mi

2

}∣∣∣∣ ≥
∣∣∣∣
{

x ∈ Ai, uε
i (x) ≥ Mi

2

}∣∣∣∣ =

= |Ai \Hi| ≥ 1
2
|Ai| ≥ 1

2
γ0 by (1.1).

So part b) applies and we have that

Mi

(
1
4

)
≤ c0Mi(1) c0 < 1 .

Now assume that

(1.2) |Ai \Hi| ≤ 1
2
|Ai|.

Then

|Hi| = |Ai \ (Ai \H)| = |Ai| − |Ai \Hi| ≥ 1
2
|Ai| ≥ 1

2
γ0 by (1.2).

This implies
∣∣∣∣
{

x ∈ B1/4, uε
i (x) ≥ Mi

2

}∣∣∣∣ ≥ |Hi| ≥ γ0

2

and from part a) the result follows. ¤
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We now return to the proof of the Hölder regularity. To simplify the notations we shall denote ~uε by

u.

Proof. The proof is inductive, based on reducing the oscillation of the vector u in consecutive balls Bλk

by a fixed constant µ < 1, for some (fixed) λ < 1. Since we can always renormalize the system to the

unit ball by

u∗(x) =
1
M

u(λkx) ,

with M = supj,x uj where x ∈ Bλk into the same system (with a different ε), it is enough to show that

the largest of the individual oscillations decays from B1 to Bλ, for a system u, with maxj,x uj(x) = 1 on

B1. Let Oi = osc
B1

uj and without loss of generality we assume that osc(uj) = Oj , 1 ≥ O1 ≥ O2, . . . ,Ok.

We start with several simple cases in which the oscillation of a given component decreases by a fixed

proportion (see Lemma 2)

a) If mi ≤ ui ≤ Mi and |{ui ≤ Mi−γ0(Mi−mi)}| ≥ γ0 then in B1/2, Mi decays to Mi−µ(γ0)(Mi−

mi) and Oi decays to [1− µ(γ0)]Oi.

b) If |{Lui ≥ γ0(Mi −mi)}| ≥ γ0 > 0, then again Mi and Oi decay by amount proportional to Oi.

c) If |A| = |{Lui ≥ γ0ui}| ≥ γ0 then, either ui ≥ Mi/2 half of the time in A (and Mi decays

from b) or ui ≤ Mi/2 and Mi decays from a) (in both cases the amounts of decays in Mi are

proportional to Oi).

d) If
∑

j>1Oj ≤ δO1, δ > 0, then we let w be the solution of Lw = 0, w|∂B1 = u1.

Since u1 +
∑

j>1(Mj − uj) is a super solution, we have

u1 ≤ w ≤ u1 +
∑

j>1

(Mj − uj) ≤ u1 + δO1 .

But

osc
B1/2

w ≤ (1− µ) osc
B1

w ≤ µ1O1

hence

osc
B1/2

u1 ≤ ((1− µ) + δ)O1 ≤ O1

and osc u1 decreases proportionally to O1.

Therefore, to establish our basic iterative decay estimate for oscillations, it is sufficient to prove that

either

6



a) Among those Oj ’s with Oj ≥ δO1 there is at least one that decays by a factor whenever the

sizes of balls shrink by a half;

or

b) All Oj ’s with possible exception of (O1), decay by a factor.

Indeed, applying a) or b) a finite number of times we will force all Oj bigger than δO1 to decrease.

Case 1: We first discuss the case ε > 1, i.e., for θ = 1/ε:




0 ≤ uj ≤ 1
∆ui = θui

∑
j 6=i uj with θ < 1

max uj0 = 1 for some j0 .

Consider two sub-cases: i) O1 ∼ 1, i.e., O1 ≥ δ0 and ii) O1 ¿ 1.

We consider first the subcase that O1 ∼ 1. If osc
B1/2

u1 = O1 has not decreased, i.e., O1 ≥ (1− γ0)O1,

then

m̄1 = min
B1/2

u1 ≤ M1 −O1 ≤ M1 − (1− γ0)O1.

Note that there is a point x0, in B1/2, such that u1(x0) = m̄1.

Since the right hand side of the equation is < 1, u1(x) ≤ m̄1 + 1
2δ0 in a neighborhood of size δ0, i.e.,

for x in Bδ0(x0) one has

u1(x) ≤ M1 − (1− γ0)O1 +
1
2
δ0 ≤ M1(1− δ0).

From observation a), Oi(1/2) has decreased proportionally to Oi. We thus obtain a contradiction.

The second subcase is then: ii) O1 ¿ 1.

Again we divide it into two subcases. Assume first that all Oj ≤ 1
2Mj (i.e., 1

2Mj ≤ uj ≤ Mj for all

j). Then the right hand side of ∆uj ∼ θMj for j 6= j0, (uj0 ∼ 1).

If θMj ≥ γ0Oj for some γ0 small, we have decay from observation b).

If θMj ≤ γ0Oj , we have decay from regularity (the right hand side is much smaller than the oscilla-

tion).

On the other hand if for some j (j 6= j0), Oj ≥ 1
2Mj , we have

Luj ∼ θuj ≤ 2θOj .

If θ ¿ 1 we have decay of Oj from regularity since the right hand side ¿ Oj .

If θ ∼ 1, we have it from observation c).

7



Case 2: We go now to the case ε < 1.

We consider two subcases: i) M1 ≥ ε and ii) M1 < ε.

i) M1 ≥ ε.

If O1 does not decay, we must have (from observation a) Lemma 2)

∣∣∣
{

u1 ≥ ε

2

}∣∣∣ ≥ 1
2

.

Then, for i 6= 1
∣∣∣
{

Lui ≥ ui

2

}∣∣∣ ≥ 1
2

.

Thus all Mi decay for i 6= 1.

ii) M1 and hence all Oj are smaller than ε (since Oj ≤ O1 ≤ M1).

Since Mj0 = 1, uj0 ≥ 1− ε, so

Lu1 ≥ 1
ε
u1,

and b) applies.

The proof is complete. ¤

Corollary 3. Given a family of solutions (~u )εk , with εk going to zero, there is a subsequence that

converges uniformly to a Cα function ~u.

2. General properties of the limit u

We now restrict ourselves to the Laplace operator.

Lemma 4. Let ~u(x) = (u1(x), u2(x), . . . , um(x)) be the limit function from Corollary 3. Then we have

i) ∆ui is a positive measure and

∆ui ≤
∑

j 6=i

∆uj ,

ii) ∆ui = 0 whenever ui > 0.

Proof. i) follows from the fact that all uε
i are subharmonic and for each ε, and a nonnegative function

ϕ ∈ C∞0 (Ω)
∫

(∆ϕ)uε
i =

∫
ϕ∆uε

i ≤
∫

ϕ
( ∑

j 6=i

∆uε
j

)
=

∫
(∆ϕ)

∑

j 6=i

uε
j .

8



To prove ii) we will use the formula
∫
�

∂Br(x)

[u(y)− u(x0)] =
∫ r

0

(∫

Bρ

∆u

)
dρ

ρn−1
≥ r2

∫
�

Br

∆u.

By Hölder continuity, if uε
1(x0) = α0 > 0, then |uε

1(y)−uε
1(x0)| ≤ α0/2 in a neighborhood Bh(x0). Then

∫
�

Bh

uε
1

(1
ε

∑

j 6=1

uε
j

)
=

∫
�

Bh

∆uε
1 ≤

α0

2h2

for ε small, from the uniform convergence. Since in Bh uε
1 ≥ α0/2 we get

∫
�

Bh

1
ε

( ∑

j 6=1

uε
j

)
≤ 1

h2
.

As ε → 0,
∑

j 6=1 uε
j goes to zero. ¤

Corollary 5. The Hölder continuous functions uj have disjoint supports and are harmonic when positive.

In order to show the linear decay of ui away from the boundary of its support, we recall the mono-

tonicity formula introduced in [ACF] (see [CSa] for details).

Corollary 6. Let v1 and v2 be defined as

v1 =
j0∑
1

uj , v2 =
k∑

j0+1

uj

and x0 is a point on the boundary of supp uj0 . Then we have that J(R) = D(v1, R)D(v2, R) ↗ as R ↗,

where D(v, R) denotes the Dirichlet average D(v, R) = 1
R2

∫
BR(x0)

(∇v)2

|x−x0|n−2 dx, furthermore

(2.1)
(

1
R

∫
�

∂BR

vi

)2

≤ CD(vi, R) ≤ C

R2

∫
�

B2R\BR

v2
i , i = 1, 2.

Proof. The second inequality in (2.1) follows from (12.16) [CSa]. For the proof of the first inequality we

refer to [ACF]. ¤

Lemma 7 (Linear decay of u at the boundary of its support). Let x0 ∈ B1/2 ∩ ∂ supp(u1). Then

a)
1
R

∫
�

BR(x0)

u1 ≤ CJR

(
u1,

∑

j 6=1

uj

)
≤ ‖u‖L2(B1/2),

b) sup
BR

u1 ≤ CR.

Proof. u1 −
∑

j 6=1 uj is super harmonic. Since uj(x0) = 0 for all j

∫
�

∂BR

u1 ≤
∫
�

∂BR

∑

j 6=1

uj .
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Thus

θR =
1
R

∫
�

∂BR

u1 ≤ C[D(u1, R)]1/2

and also

θR ≤ 1
R

∫
�

∂BR

∑

j 6=1

uj ≤ C[D(
∑

j 6=1

uj , R)]1/2.

Hence

θ4
R ≤ JR(u1,

∑

j 6=1

uj) ≤ J1/2 ≤ C‖u‖2L2(B1/2)
‖

∑

j 6=1

uj‖2L2(B1/2)
.

Now part b) follows from subharmonicity. For y in BR(x0),

u1(y) ≤
∫
�

BR(y)

u1 ≤ C

∫
�

B2R(x0)

u1 ≤ 2R‖u‖L2(B1/2(x0)).

¤

Corollary 8. u1 is Lipschitz in B1/4(x0) and

‖u1‖Lip(B1/4) ≤ C‖u‖L2(B1/2).

Proof. Let y ∈ B1/4 ∩ sup u1 and d(y, ∂ supu1) = h (h < 1/4). Then, in Bh(y), u1 is positive, harmonic

and sup(uj) ≤ Ch. Therefore |∇u1(y)| ≤ C
h h = C. ¤

3. Geometric description of the interphase

In this section we start to analyze the geometric properties of the free boundary. First, a simple

Lemma 9. If in Bρ(x0),
∑

j>2 uj ≡ 0, then u1 − u2 is harmonic.

Proof. u1 −
∑

j≥2 uj and u2 −
∑

j 6=2 uj are superharmonic. ¤

This is not a very interesting result, since it is not clear when this hypothesis will hold.

To reach a reasonable description of the interphase, we will complement it with two lemmas:

a) A “clean-up” lemma that asserts that if in Bρ the “density” of the components “of uj” is very

small, for j 6= 1, 2, then in Bρ/2,
∑

j 6=1,2 uj ≡ 0

and

b) “Almgren” monotonicity formula, that says that in the complementary situation ~u has a tangent

“cone” of homogeneity strictly bigger than one.

10



We start with the “clean-up” lemma. The clean-up lemma consists of two parts.

The first part, a consequence of the monotonicity formula, says that if one of the components, u1,

goes to zero at a point x0 in a “non-degenerate” fashion, i.e.,

1
r

∫
�

Br(x0)

u1 ≥ θ > 0 as r goes to zero,

the whole configuration is a “small perturbation” of a linear function.

Lemma 10. (See [CSa].) Assume that at x0

D(u1, u2, 0) = lim
R→0

D(u1, u2, R) = α0 > 0.

Then

a) any convergent sequence of dilations

1
λk

u(λkx) , for λk → 0

converges to

ū1 = α1x
+
1 , ū2 = α2x

−
1 , ūj ≡ 0 for j > 2.

b) Further (ū1 − ū2) must be harmonic. So

α1 = α2 = (α0)1/4 .

Proof. Property a) is proven in [CSa], note that 1
λk

uj(λkx) is Lipschitz and supported in narrower and

narrower domains, so ūj ≡ 0.

b) follows from the fact that ui −
∑

j 6=i uj is superharmonic. ¤

In this circumstance, the “clean-up” lemma says that the components uj , for j 6= 1, 2 disappear before

reaching x0.

Theorem 11. Assume hypotheses of the previous lemma. Then, in a neighborhood of x0,
∑

j>2 uj ≡ 0.

Before going into the proof, we need some preliminaries: after a large dilation, we can start with a

configuration satisfying the following hypothesis.

11



Let ūi, i = 1, 2 be the λ-dilatation of ui at the origin, i.e. ūi(x) = ui(λx)/λ and let us write ū1 − ū2

as

ū1 − ū2 = v0 +
∫

G(x, y)∆(ū1 − ū2)

= v0 + v1

with v0 harmonic, v0|∂B1 = ū1 − ū2, v1 is the part that comes from the presence of uj , j 6= 1, 2 and is

supposed to be small.

From the previous lemma, we may renormalize α0 = 1, and assume that

(3.1) |(ū1 − ū2)− x1| ≤ h,

in particular suppj 6=1,2 ūj ⊂ |{|x1| ≤ h}|, and each ūj has Lipschitz norm less than ch.

We also recall a decay property of harmonic functions in narrow domains.

Lemma 12. Let w be continuous in B1, supported in Ω and harmonic in its support. Assume that Ω

is “narrow” in the sense that any ball of radius h, Bh(y), contained in B1, intersects the complement of

Ω, CΩ, say, half of the time, i.e.,

|Bh ∩ CΩ|
|Bh| >

1
2

.

Then

w(x) ≤ sup
∂B1

w · e−C
(1−|x|)

h .

Proof. We prove that in the ball B1−kh, k = 1, 2, . . . , N , where N ∼ h−1

w(x) ≤ 1
2

sup
B1−(k−1)h

w .

Indeed, by the mean value theorem

w(x) ≤
∫
�

Bh(x)

w

But w ≡ 0 “half of the time in such a ball.” Hence the estimate follows. ¤

Before going back to the proof of the theorem, we slightly transform (3.1) into a convenient inductive

hypothesis. Mainly, in a) we change the x1 to the harmonic replacement v0 of u1 − u2 in B1, i.e., v0 is

harmonic and

v0|∂B1 = u1 − u2 .

12



Since v0 − x1 is harmonic in B1 and (v0 − x1)|∂B1 = h, we have that |v0 − (u1 − u2)| ≤ 2h and in B1/2,

|∇(v0 − x1)| = |(∇v0)− e1| ≤ ch.

Therefore, for a small number h, to be chosen, we have the starting hypothesis:

Decompose (u1 − u2) = v0 + v1, with v0 the harmonic replacement in B1, then

a) |v0 − (u1 − u2)| ≤ h

b) |∇v0 − e| ≤ h

c) support of (uj) for j ≥ 2 is contained in the Nh neighborhood of the Lipschitz level surface

v0 = 0.

Note also that
∑

j 6=1,2(supB1
uj − uj) = β provides a barrier for v1 since β ≥ 0 and ∆β ≤ ∆(u1 − u2).

Hence −β ≤ v1 ≤ β ≤ Ch.

Let us see now what kind of improvement we can gain by going from B1 to B1−s. We note that uj

has decreased from h = h0, to h1 = he−Cs/h ≤ h2
0 whenever s ∼ h1/2/2.

In particular if we decompose u1 − u2 = ṽ0 + ṽ1, now in B1−s, ṽ1 ≤ h2
0. Therefore

|u1 − u2 − ṽ0| ≤ h2
0

while |v0 − ṽ0| ≤ |v0 − u1 − u2| ≤ h0.

To see how v1 decays, we first estimate the total mass of measure ∆uj , j 6= 1, 2 in B1−s. If B2ρ ⊂ B1

then

∫
�

Bρ

∆uj ≤ C

ρ2

∫
�

B2ρ

uj , j 6= 1, 2

implying

µBρ(∆uj) ≤ C

ρ2
osc
B2ρ

uj |Bρ|.

Choosing a family of balls Bk = Bρk
, ρk ≤ h1/2 which covers supp uj and using exponential decay we

conclude that µB1−s ≤
∑

k ρ−2
k osc

B2ρk

uj |Bρk
| ≤ h2n−1|B1−s|, provided we take osc

B2ρ

uj ≤ h2n. Now for

x ∈ B1,dist(x, suppuj) ≥ h
1
2n we see from Green’s representation formula that

ṽ1(x) ≤ h2n−1.

Thus we have on B1−2s the estimate |∇ṽ0 −∇v0| ≤ h
1/2
0 .

13



B

0

h

r Bk+1 r
k

k

This suggests the following iterative scheme: Start with h0 small. Consider the inductive sequence

hk = (hk−1)2 (that converges to zero very fast) and the sequence

rk, with r1 = 1, rk+1 = rk − h
1/2
k

that converges to 1− µ with µ ≤ 1/2 if h0 is small. Then:

Lemma 13. In Brk
there is a harmonic function vk such that

a) |vk − (u1 − u2)| ≤ hk

b) |∇(vk − vk−1)| ≤ h2
k−1

c) |∇vk − e1| ≤
∑k−1

0 (h`)1/2 ≤ 1
4

d) The level surface vk = 0 is Lipschitz with the Lipschitz constant less than one for every k.

The proof is exactly the discussion above.

Note that we take as vk the harmonic replacement of u1−u2 half way between rk and rk+1, so it does

not coincide with u1− u2 on ∂Brk+1 , but still satisfies a) and this allows us to establish the estimate b).

4. Almgren monotonicity formula and control of the singular set

We will now prove, at the points of the interphases, a monotonicity formula due to Almgren that shows

that at each such point ~u is asymptotically homogeneous and bounds this homogeneity from below.

First we note that

Lemma 14. (∇u)2 is a continuous function across the interphase.

14



Proof. If J0(x0) = limR→0+ JR(x0) 6= 0, then according to the clean-up lemma, (u1 − u2) is harmonic.

If J0(x0) = 0 for every pair, then |∇u(x)|2 goes to zero as x goes to x0.

Indeed from semicontinuity, given ε > 0, there exist a δ and τ such that

Jδ(x) ≤ ε for x ∈ Bτ (x0).

If y ∈ Bτ/2(x0)∩{u1 > 0} and Bs(y) is the largest ball around y contained in {u1 > 0}, (s < τ/2), then

Bs(y) has a point x1 ∈ ∂Bs(y) ∩ {u1 = 0}.

From earlier discussions, we have

1
2s

∫
�

B2s(x1)

(u1)2 ≤ ε1/2

and |∇u1(y)| ≤ ε1/2. ¤

We can prove now the Almgren’s monotonicity theorem [A] adapted to our setting.

Theorem 15. For x0 in the interphase let us define

F (u,R, x0) =
R

∫

BR(x0)

|∇u|2
∫

∂BR(x0)

u2
.

Then, F ′(R) ≥ 0.

Proof. By scale invariance it suffices to show that (log F )′ ≥ 0 for R = 1

(log F )′(1) = 1 +

∫

∂B1

|∇u|2
∫

B1

|∇u|2
−

(n− 1)
∫

∂B1

u2 + 2
∫

∂B1

uur

∫

∂B1

u2
.

Assume for a moment that ∆u2

2 = (∇u)2 as measures. Then
∫

B1

|∇u|2 =
∫

B1

∆
u2

2
=

∫

∂B1

uuν .

Since u2 is subharmonic, ∆u2 is a positive measure, and the identity is correct except on the interface.

At a regular point of the interphase, where ∇u 6= 0, this is also true. So we need to prove that ∆u2 is

absolutely continuous with respect to the Lebesgue measure and that it vanishes in the Lebesgue sense

at every point where |∇u|2 = 0 and u = 0.

At those points x0 where |∇u| goes to zero, u2(x) ≤ o(|x− x0|2) we have:
∫
�∆u = o(1).(4.1)
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We go on with the formal computation

(log F )′ = −(n− 2) +

∫

∂B1

|∇u|2
∫

∂B1

uur

−
2

∫

∂B1

uur

∫

∂B1

u2
.

We need to transform
∫

∂B1
(∇u)2 into integrals involving u and ur.

We use the following Rellich identity (see [GL])

div (x|∇u|2) = n|∇u|2 + 2xiujuij

and

div 〈x,∇u〉∇u = |∇u|2 + 〈x,∇u〉∆u + xiujuij

or

div(x|∇u|2 − 2〈x,∇u〉∇u) = (n− 2)|∇u|2 − 2〈x,∇u〉∆u .

We now integrate (assuming that 2〈x,∇u〉∆u = 0)

∫

B1

(n− 2)|∇u|2 =
∫

B1

div (x|∇u|2 − 2〈x,∇u〉∇u) =
∫

∂B1

|∇u|2 − 2(uν)2

or

∫

∂B1

|∇u|2 = 2
∫

(uν)2 +
∫

B1

(n− 2)|∇u|2.

Substituting in

(log F )′ = 2




∫

∂B1

(u)2

∫

∂B1

uur

−

∫

∂B1

uur

∫

∂B1

u2


 ≥ 0.

To complete the proof we have to make sense of

∫

B1

〈x,∇u〉∆u = 0.

We start by separating B1 into two parts: first one is Sε, an epsilon neighborhood of S = {x : ~u(x) =

0 }, and second one is Gε = B1 \ Sε.
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Next we truncate each one of the uj by taking uδ
j = (uj − δ)+. Each of the uδ

j has now separated

support

and we apply the previous calculation in each domain Dδ
j which is the interior of supp uδ

j . Then we are

left with the extra boundary term
∫
〈x · ν〉|∇u|2dAδ − 2〈x,∇u〉〈∇u, ν〉dA

along the analytic surfaces uj = δ. Since these are level surfaces of ui, we have that 〈ui, ν〉 = −|∇ui|,

and, also, |∇ui|dA = dµiδ where µiδ is the primitive measure ∆uδ
i . The integrals above are then equal

to ∫
〈x, ν〉|∇ui|dµiδ − 2〈x,∇u〉dµiδ = −

∫
〈x,∇ui〉dµiδ.

For ε fixed we now let δ go to zero.

Outside of Sε, we have a sequence of smooth level surfaces and the integrals cancel in the limit. Inside

Sε, |∇ui| = o(1) therefore the integrals inside Sε are all bounded by

(Total mass µj) · o(1).

We then let ε go to zero and the formula is complete. ¤

5. The singular set

At this point, we have verified all the hypotheses necessary to develop the interphase regularity theory,

as in [CL2]. Therefore, we obtain the same final theorem: (Theorem 4.7).

Theorem 16. The set of interphases S = {x : ~u(x) = 0 } consists of two parts:

a) A singular set, Σ = {|∇uj |2 = 0} of Hausdorff dimension n− 2 and

b) A family of analytic surfaces, level surfaces of harmonic functions.

(Note that in our case, the proof of the part b) immediately follows from the “clean up” lemma.)
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6. A final remark on the regularity of the ε-system

From the Lipschitz continuity of the limiting solutions we can deduce the following regularity theorem.

Theorem 17. Let ~uε(x) = (uε
1(x), . . . , uε

k(x)) be a solution of the ε-problem in B1 of Rn, such that

‖u‖ ≤ 1 .

Then, for any α < 1, and any 1 < p < ∞, u is in Cα(B1/2) and W 1,p(B1/2) with

‖u‖Cα ≤ C(α) ,

‖u‖W 1,p ≤ C(p)

independently of ε.

Proof. The proof follows from the techniques described in [CP], using the following approximation

lemma.

Lemma 18. Given δ, ∃ ε0 > 0 so that if ε ≤ ε0, and uε is a solution as in Theorem 17 above, there

exists a solution u of the limiting problem that satisfies

‖uε − u‖L∞(B3/4) ≤ δ

‖∇(uε − u)‖L2(B3/4) ≤ δ .

Proof. The first bound follows from equicontinuity and compactness. For the L2 norm estimate we first

point out that the total mass
∑

i

∫

B3/4

∆uε
i

and
∫

B3/4

(∇uε)2

are uniformly bounded since
∫

B3/4

∆uε
i ≤ C

∫

B1

uε
i

and the gradient bound follows from Caccioppoli’s inequality.

Next, notice that

∆u2 = 2(u∆u + (∇u)2 ).
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Then for a cut-off function ϕ we write
∫

B1

ϕ|∇(uε − u)|2 = −
∫

ϕ(u− uε)∆(u− uε) +
∫

ϕ∆
(u− uε)2

2
.

The first integral on the right-hand side goes to zero since (u−uε) goes to zero uniformly. The second

integral, after integration by parts, takes the form
∫

∆ϕ
(u− uε)2

2

which goes to zero. ¤
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The parabolic case

We will now extend our results to the evolution system

(6.1)





∆uε
i − (uε

i )t =
uε

i

ε

∑

j 6=i

uε
j in Ω× (−T, 0)

uε
i (x, 0) = fi(x) x ∈ Ω

uε
i (x, t) = hi(x, t) on ∂Ω× (−T, 0)

with T > 0. It models a problem from population dynamics: the configuration of competing species

which cannot coexist on the same region (competition rate is ∞). We assume that ∂Ω, the initial a

boundary data are sufficiently smooth so that for every ε > 0 we have a smooth solution.

More generally one can consider the Fisher’s equation: logistic growth equation supplemented by an

extra diffusion term ∆

∆uε
i (x, t)− (uε

i (x, t))t =
1
ε
uε

i (x, t)
∑

j 6=i

uε
j(x, t) + gi(x, t, ui

ε)

where ∆uε
i is the spatial diffusion, (uε

i (t, x))t is the instantaneous rate of change of the i-th population’s

density, 1
εuε

i (t, x)
∑

j 6=i uε
j(t, x) describes the interaction between different species with competition rate

1
ε , and gi(t, x, ui

ε) is the growth rate.

As the competition rate 1
ε becomes larger and larger the populations undergo a segregation and this

process leads to a final configuration where the populations are separated.

As we pointed out above, the Hölder regularity theory for the elliptic ε-system extends to the parabolic

case.

Lemma 19. If ‖u‖L∞(B1) ≤ 1, then u|B1/2 ∈ Cα and ‖u‖Cα(B1/2) ≤ C with α and C independent of ε.

As before we will consider limits u of a convergent sequence of solutions uε as ε goes to zero. We

start with the Lipschitz regularity of the limit function u.

Lipschitz regularity. Since we have uniform Hölder estimate for uε the limit function u is also Hölder

continuous. Following the elliptic theory we start by proving the following:
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Lemma 20. Let u = (u1, . . . , um) be the limit function as ε → 0, then ui and uj have disjoint supports

(i 6= j) and H(ui) ≡ ∆ui −Dtui = 0 on the interior of the support of ui.

Proof. Note that

H(uε
i ) = ∆uε

i −Dtu
ε
i =

1
ε
uε

i

∑

k 6=i

uε
k

then

H(uε
1) ≤

∑

k 6=1

H(uε
k) .

Indeed
∑

k 6=1

H(uε
k) =

uε
2

ε

∑

i 6=2

uε
i +

uε
3

ε

∑

i6=3

uε
i + · · ·+ uε

m

ε

∑

i6=m

uε
i =

=
uε

1

ε

∑

k 6=1

uε
k + positive terms ≥

≥ H(uε
1) .

Now let us assume that (x0, t0) ∈ Q = Ω× (−T, 0) and uε
1(x0, t0) = α0 > 0. From Hölder continuity

of uε
1 we conclude that

uε
1(x, t) ≥ α0

2
in Qh(x0, t0)

with Qh(x0, t0) = Bh(x0) × (t0 − h2

2 , t0 + h2

2 ) for some small h > 0. Let ϕ(x) be the standard cut-off

function of B2h(x0), ϕ ≡ 1 in Bh(x0). Then in Qh = Qh(x0, t0)
∫∫

Qh

H(uε
1) ≤

∫∫

Q2h

ϕ(x)H(uε
1) =

=
∫∫

Q2h

∆ϕ(x)uε
1(x, t) +

∫

B2h(x0)

ϕ(x)
[
uε

1(x, t0 + 2h2)− uε
1(x, t0 − 2h2)

]

≤ C(h).

On the other hand, H(uε
1) = uε

1
ε

∑
k 6=1 uε

k, and then we have
∫∫

Qh

H(uε
1) dx dt ≤ C(h) and

∫∫

Qh

uε
1

ε

∑

k 6=1

uε
k ≥

α0

2ε

∫∫

Qh

∑

k 6=1

uε
k.

So we conclude that
∫∫

Qh(x0,t0)

∑

k 6=1

uε
k dx dt ≤ 2

α0
C(h)ε .

Since uε
k’s are subsolutions, this implies that

∑
k 6=1 uε

k → 0 uniformly in Qh/2. ¤
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To prove that ui is caloric in the interior of its support we use our observation

H(uε
1) ≤

∑

k 6=1

H(uε
k) .

Therefore∫∫

Qh/2(x0,t0)

H(uε
1) ≤

∫∫

Qh/2(x0,t0)

∑

k 6=1

H(uε
k) ≤

≤
∑

k 6=1

( ∫∫

Qh(x0,t0)

∆ηuε
k(x, t) +

∫

Bh(x0)

η(x)
[
u
(
x, t0 +

h2

2

)
− u

(
x, t0 − h2

2

)]

≤ C(h)ε .

Here η(x) is the standard cut-off function for Bh(x0). ¤

Now we are ready to prove the Lipschitz regularity. We use a parabolic version of the monotonicity

formula [CSa].

Theorem 21. Let u = (u1, . . . , um) be a solution in Q1. Then

‖u‖Lip(Q1/2) ≤ ‖u‖L2(Q1)

Proof. Recall the monotonicity formula for a pair of disjoint nonnegative subcaloric functions [CSa]: let

u1, u2 verify

a) ∆ui −Dtui ≥ 0 i = 1, 2,

b) u1u2 ≡ 0,

c) u1(0, 0) = u2(0, 0) = 0.

Let ϕ(x) be a cut-off function in x, such that ϕ ≡ 0 outside B2/3 and ϕ ≡ 1 in B1/2. Define

J(t) = J(w1, w2, t) =
1
t2

( ∫

Rn

∫ 0

−t

|∇w1|2G(x,−s) dx ds×
∫

Rn

∫ 0

−t

|∇w2|2G(x,−s) dx ds

)

where G(x, t) = 1
tn/2 e−|x|

2/4t, wi = uiϕ. Then

J(0+)− J(t) ≤ Ae−c/t‖u1‖2L2(Q1)
‖u2‖L2(Q1) .

We divide the proof of the Lipschitz continuity into several steps. We start by observing that in all

the estimates below there are underlying Lipschitz homogeneities.

In the first step we show that J(t) controls the (weighted) product of the L2 norm of wi in some strip.
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Next we show that, due to the inequality Hu1 ≤
∑

j 6=1 Huj the w2 factor controls the w1 factor

implying its boundedness at every scale. Finally we show that this implies spatial Lipschitz continuity

for u1.

Step 1. L2 bound on wi.

Let w(x, t) = u(x, t)ϕ(x) then by direct computation

H(w2) = ∆(w2)−Dtw
2 = 2w∆w + 2|∇w|2 − 2wwt .

Hence

|∇w|2 =
1
2
H(w2)− w∆w + wwt =

=
1
2
H(w2)− w[∆uϕ + 2∇u∇ϕ + u∆ϕ] + wutϕ.

Integrating this identity with respect to the measure dµ = G(x,−s) dx ds we get
∫ 0

−t

∫

Rn

|∇w|2dµ =
∫ 0

−t

∫

Rn

1
2
H(w2)dµ−

∫ 0

−t

∫

Rn

w[∆uϕ + 2∇u∇ϕ + u∆ϕ]dµ

+
∫ 0

−t

∫

Rn

wusϕdµ .

Note that ∫ 0

−t

∫

Rn

1
2
H(w2)G(x,−s) dx ds =

=
1
2

∫ 0

−t

∫

Rn

[w2∆G(x,−s)−Dsw
2G(x,−s)] dx ds =

=
1
2

∫ 0

−t

∫

Rn

w2[∆G(x,−s) + DsG(x,−s)] dx ds +
1
2

∫

Rn

w2(x,−t)G(x, t) dx =

=
1
2
w2(0, 0) +

1
2

∫

Rn

w2(x,−t)G(x, t) dx

since ∆G(x,−s) + DsG(x,−s) = δ0,0.

Therefore we conclude that∫ 0

−t

∫

Rn

|∇w|2G(x,−s) dx ds =
1
2
w2(0, 0) +

1
2

∫

Rn

w2(x,−t)G(x, t) dx

−
∫ 0

−t

∫

Rn

wϕH(u)G(x,−s) dx ds

−
∫ 0

−t

∫

Rn

w[2∇u∇ϕ + u∆ϕ]G(x,−s) dx ds .

Now if u = u1, then w1 = u1 · ϕ and
∫ 0

−t

∫

Rn

wϕH(u1)G(x,−s) dx ds =
∫ 0

−t

∫

Rn

ϕ2u1H(u1)G(x,−s) dx ds = 0
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since u1H(u1) = 0 and w1(0, 0) = 0 so

I1(t) =
∫ 0

−t

∫

Rn

|∇w1|2G(x,−s) dx ds =

=
1
2

∫

Rn

w2
1(x,−t)G(x, t) dx−

∫ 0

−t

∫

Rn

w1[2∇u1∇ϕ + u1∆ϕ]G(x,−s) dx ds .

Observe that the last term on the right admits an estimate
∫ 0

−t

∫

Rn

w1[2∇u1∇ϕ + u1∆ϕ]G(x,−s) dx ds ≤

≤ C

∫ 0

−t

∫

B2/3\B1/2

|w|(|∇u1|+ u1)G(x,−s) dx ds ≤

≤ C e−c/t ,

where C depends on the L2 norm of u1. Now we consider w2 = ũϕ, where ũ =
∑

k 6=1 uk. Note that u1

and
∑

k 6=1 uk satisfy the assumption of the monotonicity formula.

Next, for w2 we have

I2(t) =
∫ 0

−t

∫

Rn

|∇w2|2G(x,−s) dx ds =

=
1
2

∫

Rn

w2
2G(x, t) dx−

∫ 0

−t

∫

Rn

w2ϕH(ũ)G(x,−s) dx ds

−
∫ 0

−t

∫

Rn

w2[w∇ũ∇ϕ + ũ∆ϕ]G(x,−s) dx ds .

If at (x, t) we have that u2(x, t) > 0, then Hu2(x, t) = 0, and since uk’s have disjoint supports

ũH(ũ) = 0 .

If (x, t) is a free boundary point, then ũ(x, t) = 0. Hence

∫ 0

−t

∫

Rn

ϕ2ũH(ũ)G(x,−s) dx ds = 0

and as in the case of w1,

∫ 0

−t

∫

Rn

w2[2∇ũ∇ϕ + ũ∆ϕ]G(x,−s) dx ds ≤ C e−c/t .

Combining these estimates for I1 and I2 we have

J(t) =
1
t2

I1(t)I2(t) ≥ 1
t2

(
1
2

∫

Rn

w2
1(x,−t)G(x, t) dx + O(e−c/t)

)
×

×
(

1
2

∫

Rn

w2
2(x,−t)G(x, t) dx + O(e−c/t)

)
.
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This means that

1
4t2

∫

Rn

w2
1(x,−t)G(x, t) dx

∫

Rn

w2
2(x,−t)G(x, t) dx ≤ J(t) + O(e−c/t).

Step 2. Next we want to show that the w1-term is controlled by the w2-term. Recall that H(u1) ≤

H(ũ) so

0 ≤
∫ 0

−t

∫

Rn

H(ũ− u1)ϕG(x,−s) dx ds

=
∫ 0

−t

∫

Rn

(ũ− u1)∆[ϕG(x,−s)] dx ds−
∫ 0

−t

∫

Rn

(ũ− u1)sϕG(x1 − s) dx ds =

=
∫ 0

−t

∫

Rn

(ũ− u1)
[
∆

(
ϕG(x1 − s)

)
+ Ds

(
ϕG(x1 − s)

)]
dx ds

+
∫

Rn

(ũ− u1)ϕ(x,−t)G(x, t) dx

=
∫ 0

−t

∫

Rn

(ũ− u1) [∆ϕG(x,−s) + 2∇ϕ∇G(x,−s) + ϕ∆G(x,−s) + ϕ(x)DsG(x1 − s)] dx ds

+
∫

Rn

(w2(x,−t)− w1(x,−t))G(x, t) dx ds

=
∫ 0

−t

∫

Rn

(ũ− u1)
[
∆ϕ +∇ϕ · x

t

]
G(x,−s) dx ds +

∫

Rn

(w2(x,−t)− w1(x,−t))G(x, t) dx

= O(e−c/t) +
√

t(θ2(t)− θ1(t))

where

θi(t) =
1√
t

∫

Rn

wi(x,−t)G(x, t) dx , i = 1, 2 .

Therefore

θ1(t) ≤ θ2(t) + O(e−c/t).

then we have that after applying the Cauchy Schwartz inequality

θ1(t) ≤
(

1
t

∫

Rn

w2
1(x,−t)G(x, t) dx

)1/2

,

θ1(t) ≤ θ2(t) ≤
(

1
t

∫

Rn

w2
2(x,−t)G(x, t) dx

)1/2

.

Multiplying both inequalities we get

θ4
1(t) ≤

1
t2

∫

Rn

w2
1(x,−t)G(x, t) dx

∫

Rn

w2
2(x,−t)G(x, t) dx ≤ 4(J(t) + O(e−c/t)) .

Therefore the monotonicity formula theorem implies that θ1(t) is bounded for any t small.

Step 3. Since the heat equation is translation invariant, we can extend the previous estimate to any

free boundary point (x0,−t0) ∈ Q with t0 > 0. For ρ0 > 0 we let Bρ0(x0) × (−t0 − ρ0,−t0) ⊂ Q. ρ0
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depends only on the distance of (x0,−t0) from the parabolic boundary of Q. Then we let η = x−x0, τ =

t + t0 and consider vi(η, τ) = ui(x0 + η, τ − t0) is also a solution. Taking t = r2 in the definition of

θi(t), t > 0 and using a change of variables x = ry we have that

1
r

∫

Rn

u1(x0 + yr,−t0 − r2)ϕ(x0 + yr)G(y, 1) ≤ C0(6.2)

for any point (x0,−t0) such that dist((x0,−t0), ∂pQ) ≥ ρ0 and C0 depends on ρ0.

Next we want to show that u grows away from the free boundary linearly. Assume that (x1,−t1) ∈

Q, t1 > 0, u1(x1,−t1) > 0 and let ρ be the distance of (x1,−t1) from the free boundary. Hence u1 is

caloric in Q1 = B ρ
2
(x1)× (−t1 − ρ2

4 ,−t1). Suppose that for some x2 we have that

u1(x2,−t1) ≥ MR

with R = ρ
2 and M À 1.

By Harnack inequality

inf
BR(x1)×(−t1− 3R2

4 ,−t0−R2
2 )

u1 ≥ C1 sup
BR(x1)×(−t1−R2

4 ,−t0)

u1

≥ C1RM.

Thus taking r = 4R = 2ρ in (6.2) we obtain for every s

C0 ≥
∫

Rn

u1(x0 + 4Ry,−t1 − R2

2 − (4R)2)
4R

G(y, 1)dy ≥ c(n)MC1(6.3)

which is a contradiction if M > C0
c(n)C1

.

¤

Theorem 22. u(x, t) is locally Lipschitz in the parabolic distance.

Proof. It is a standard argument to show that the Lipschitz continuity in space implies 1
2 -Hölder conti-

nuity in time. ¤

7. The Clean-Up Lemma

We start by pointing out that in a ”clean” neighborhood of a free boundary point, u1 − u2 is caloric.

Lemma 23. If
∑

j>2 uj ≡ 0 in some cylinder Qρ(x0, t0) then u1 − u2 is caloric in Qρ(x0, t0).
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Proof. Since

H(u1) ≤ H

( ∑

k 6=1

uk

)
= H(u2) + H

( ∑

k>2

uk

)

and

H(u2) ≤ H

( ∑

k 6=2

uk

)
= H(u1) + H

( ∑

k>2

uk

)

it follows that u1 − u2 is caloric in Qρ(x0, t0). ¤

Next we have the parabolic “clean-up” lemma, which plays a crucial role in the classification of singular

points of the free boundary. It basically says that if at some free boundary point (x0, t0), J(0+) > 0.

That is |∇u(x0, t0)| 6= 0. Then at some neighborhood of (x0, t0) we have exactly two phases.

Clean-Up Lemma. Assume that at (x0, t0)

J(0+) = lim
t→0+

J(t) = λ > 0.

Then in a neighborhood of (x0, t0)
∑

j>2 uj ≡ 0.

First recall the following result [CSa].

Lemma 24. (See [CSa].) Assume that at (x0, t0)

J(u1, u2, 0) = lim
t→0

J(u1, u2, t) = α0 > 0.

Then

a) any convergent sequence of dilations

1
λk

u(λkx, λkt) , for λk → 0

converges to

ū1 = α1x
+
1 , ū2 = α2x

−
1 , ūj ≡ 0 for j > 2.

b) Further (ū1 − ū2) must verify the heat equation. So

α1 = α2 = (α0)1/4 .

In this circumstance, the “clean-up” lemma says that the components uj , for j 6= 1, 2 decay faster

than u1, u2 and vanish before reaching (x0, t0).

Theorem 25. Let u1, u2 be as in lemma above. Then, in a neighborhood of (x0, t0),
∑

j>2 uj ≡ 0.
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Before going into the proof, we need some preliminaries. After a large dilation, we can start with a

configuration satisfying the following hypothesis.

Let ūi, i = 1, 2 be the λ-dilatation of ui at the origin, i.e. ūi(x, t) = ui(λx, λt)/λ and let us write

ū1 − ū2 as

ū1 − ū2 = v0 + v1

with v0 caloric, v0|∂B1 = ū1 − ū2, and v1 is the part that comes from the presence of uj , j 6= 1, 2 and it

is supposed to be small.

From the previous lemma, we may renormalize α0 = 1, and assume that

(7.1) |(ū1 − ū2)− x1| ≤ h,

in particular suppj 6=1,2 ūj ⊂ |{|x1| ≤ h}|, and ūj being Lipschitz ūj ≤ h.

We also recall a decay property of harmonic functions in narrow domains.

Lemma 26. Let w be continuous in C1 = B1× [−1, 1], supported in Ω ⊂ C1 and harmonic in its support.

Assume that Ω is “narrow” in the sense that any cylinder Qh = B(x0)× (t0 − h2, t0) , contained in C1,

intersects CΩ, say, half of the time, i.e.,

|Qh ∩ CΩ|
|Qh| >

1
2

.

Then

w(x) ≤ sup
∂pC1

w · e−C
(1−

√
|x|2+t)
h .

Proof. We prove that in Qi,k = Qh(xi,−1 + 2kh), k = 1, 2, . . . , N, xi ∈ hZ2 ∩ C1, where N ∼ h−2, we

have that

w(x) ≤ 1
C

sup
Qik

w

for some C > 1. Indeed, by a density estimate we have that

sup
Qi,k

w(x, t) ≤ 1

1 + c0
|CΩ∩Qi,k−1|
|Qi,k−1|

sup
Qi,k−1

w.

But w ≡ 0 “half of the time ” hence |CΩ∩Qi,k−1|
|Qi,k−1| ≥ 1/2. Repeating this for all i, k and combining the

estimates the result follows. ¤
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Now we start the proof of the parabolic clean-up lemma.

Proof. From the proof of the monotonicity formula [CSa], we have that the blow-up functions are a pair

of linear functions, and from the H(u) inequalities they have the same slope. This means that near

(x0, t0) we have uniform flatness at every scale.

As in the elliptic case we want to start with a suitable inductive hypotheses.

In fact the iterative scheme is the same as in the elliptic case. Start with h1 small. Consider the

inductive sequence hk = (hk−1)2 (that converges to zero very fast) and the sequence

rk, with r1 = 1, rk+1 = rk − h
1/2
k

that converges to 1− µ with µ ≤ 1/2 if h1 is small.

More precisely we can state

Lemma 27. In Crk
= Brk

× (−1 + h
1/2
k , 1− h

1/2
k ) there is a caloric function vk such that

a) |vk − (u1 − u2)| ≤ hk

b) |∇(vk − vk−1)| ≤ h
1/2
k

c) |∇vk − e1| ≤
∑k

1(h`)1/2 ≤ 1
4

d) The level surface vk = 0 is Lipschitz with Lipschitz constant less than one for every k.

To prove this we proceed as follows. First from the exponential decay we can estimate ṽ0−(u1−u2) in

the cylinder of size C1−s. Next using the covering argument and computation from the previous section

one can estimate the size of ∆u− ut in C1−s and then from Green’s representation theorem we get that

v1 decays as h2n−1 away from h
1
2n neighborhood of supp uj , j > 2. Finally, using gradient estimates we

conclude that |∇ṽ0 −∇v0| ≤ h1/2.

As in the elliptic theory, we have now a discontinuity. At the neighborhood of a clean point the free

boundary is a transversal level surface of a caloric function. At a singular point the gradient of u goes

to zero, and we want to classify such points.

8. Almgren’s formula

Lemma 28. (∇u)2 is a continuous function across the interphase.
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Proof. If J0(x0, t0) = limt+0 Jt(x0, t0) 6= 0, from the clean up lemma (u1 − u2) is harmonic.

If J0(x0) is zero for every pair, then |∇u(x, t)|2 goes to zero as x goes to x0, which follows from the

estimates of θi(t), i = 1, 2. ¤

We consider now the backward heat equation

∆u + ut = 0 in Rn+1
+

For t0 > 0, we define

H(t) =
∫

Rn

|u(x, t)|2G(x, t) dx

where

G(x, t) =
1

(t + t0)n/2
e
− |x|2

4(t+t0) and u = (u1, u2, . . . , um).

Also

D(t) =
∫

Rn

|∇u(x, t)|2G(x, t) dx.

Theorem 29 (Parabolic Almgren monotonicity formula).

N(t) =
(t + t0)D(t)

H(t)
is monotone decreasing.

Proof. A version of this theorem is due to [EFV] for the caloric functions. For completeness we give a

proof in the Section 11 with the modification for our particular case. ¤

We are now in the following situation. Our solutions are only local and it is well-known that solutions

of the heat equation in B1 × (0,∞) with suitable non-homogeneous time dependent boundary data

prescribed on the lateral boundary ∂B1 × (0,∞) solution may become identically zero for t ≥ T. We

would like to prove the following: given a free boundary point, unless our solution is identically zero in

a cylinder backwards in time (i.e. had already became identically zero all the way to the boundary) it

is forced to have a polynomial decay at the point, so that we can ”blow it up” to a nontrivial solution

integrable at infinity against the Gaussian kernel.

We can ensure this by a modification to our setting of a theorem of L. Escauriaza, F.J. Fernandez, S.

Vessella.
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Theorem 30. Let (u1, u2, . . . , um) be a solution. Then there exists a constant C such that
∫

Q2r

u2 ≤ C

∫

Qr

u2.

This estimate is proved in [EFV] for a class of constant coefficient parabolic equations. The main

ingredient of the proof is based upon a localization of Almgren’s formula by multiplying u with a cut-off

function. Since in our case N(t) is a monotone function and all computations for derivatives of D(t)

and H(t) remain valid, the doubling property of the solution now immediately follows from the proof of

Theorem 29 and [EFV].

9. Classification of the global solutions

If N(t) = λ for all t and λ > 0, then from the proof of monotonicity formula we get that

ut +
x− x0

2(t + t0)
∇u = c(t)u(x, t),

for some unknown function c(t). We want to show that c(t) is the homogeneity degree of u. Without

loss of generality we may assume that x0 = 0, t0 = 0, then we have

ut(x, t) +
x

2t
∇u = c(t)u(x, t).

For θ > 0 we consider uθ(x, t) = u(xθ, tθ2), then

d

dθ
uθ = ut(xθ1 + θ2)2θt +∇(xθ, tθ2)x.

uθ satisfies to a differential equation on the path (xθ, tθ2) for fixed (x, t). Indeed

ut(xθ, tθ2) +
xθ

2tθ2
∇u(xθ, tθ2) = c(tθ2)u(xθ, tθ2)

2tθ ut(xθ, tθ2) + x · ∇u(xθ, tθ2) = 2tθc(tθ2)uθ(x, θ)

or

d

dθ
uθ =

H(tθ2)
θ

uθ(x, t)

where H(tθ2) = 2c(tθ2)tθ2. Hence

log uθ

∣∣θ
1

=
∫ θ

1

H(tσ2)
σ

dσ

and

uθ(x, t) = e
∫ θ
1

H(tσ2)
σ dσu(x, t).
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Since uθ(x, t) satisfies to the backward heat equation we get that

0 = H(uθ) = H(u) · e
∫ θ
1

H(tσ2)
σ dσ + u(x, t)

d

dt
e
∫ θ
1

H(tσ2)
σ dσ .

Therefore
∫ θ

1
H(tσ2)

σ dσ = c(θ) does not depend on t. Differentiating this equality with respect to t we

get

0 =
∫ θ

1

H ′(tσ2)σ dσ =
H(tθ2)−H(t)

2t

so H is a constant. Recall that H(s) = 2c(s)s implying that

c(s) =
α

2s
,

where α is a constant therefore u satisfies

ut +
x

2t
∇u · x =

α

2t
u.

Thus we conclude that

u(xθ, tθ2) = θαu(x, t) , u = (u1, u2, . . . , uk)

that is u is homogeneous of degree α on the paths (xθ, tθ2).

Since u is homogeneous we can seek the solution u in the following form tα/2f(x/
√

t). In particular

it can be a traveling wave u(x, t) = (x2 + ct)α/2.

Consider

u(x, t) = tα/2f

(
x√
t

)
.

Then

ut =
α

2
t

α
2−1f

(
x√
t

)
+ tα/2∇f

(
x√
t

) (
− x

2t3/2

)
,

ux = tα/2−1/2fx

(
x√
t

)
,

uxx = t
α
2−1fxx

(
x√
t

)
.

Hence plugging these into the backward heat equation ∆u + ut = 0 we obtain

−∆f(z) +
1
2
∇f(z) · z =

α

2
f(z)

where z = x/
√

t. Therefore α/2 is the eigenvalue of the operator −∆+ 1
2∇·z and u is the corresponding

eigenfunction.
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For the one dimensional case f satisfies an ODE

2fzz − fzz + αf = 0.

Setting w(z) = f(2z) one can easily verify that w solves wzz − 2wzz + 2αw = 0. But the latter is the

differential equation for the Hermite polynomials which can be explicitly given by

w(z) = α!
[α
2 ]∑

k=0

(−1)k(2z)α−2k

k!(n− 2k)!
.

Hence returning to f we obtain

u(x, t) = α!tα/2f(
x√
t
) = α!tα/2

[α
2 ]∑

k=0

(−1)k

k!(n− 2k)!
(

x√
t
)α−2k(9.1)

= α!
[α
2 ]∑

k=0

(−1)k

k!(n− 2k)!
xα−2ktk

which is the α-caloric polynomial for the backwards heat equation. Now if one has the heat equation

(i.e. after replacing t with −t) then

hm(x, s) = m!
[m

2 ]∑

k=0

1
k!(n− 2k)!

xm−2ktk

is the solution for our problem in the one dimensional case.

In n dimensions, hm1(x1, s)hm2(x2, s) · · ·hmn(xn, s),
∑n

j=1 mj = m,mj ≥ 0 is the homogeneous solu-

tion of degree m of our problem. By the classical theory of Hermite polynomials they have only simple

real zeros. Hence the polynomial hm(x,−1) has m simple zeros. Furthermore, hm(x, s) is even or odd

in the variable x when m is an even or odd integer, respectively. Therefore we can describe the nature

of the nodal sets of hm in spacetime

Σ(hm) = {(x, s), hm(x, s) = 0}.

First notice that h0(x, s) ≡ 1 so Σ(h0) = ∅, h1(x, s) = x and Σ(h1) is the t-axis. Hence hm has a

degenerate zero if and only if m ≥ 2.

10. Structure of the singular set

In this section we establish an estimate for the parabolic Hausdorff dimension of the set Σ =

{(x, t), u(x, t) = 0, |∇u(x, t)| = 0}.
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Theorem 31. Let P be the parabolic Hausdorff measure. Then the parabolic Hausdorff dimension

dimPΣ[u] ≤ n.

For the definition of P see [L2]. The proof is based on Federer’s dimension reduction argument. We

sketch it here. Let F be the set of all solutions and take u ∈ F and let S : F 7→ C, where S is the

singular map, S(u) = Σ, and C is the collection of all closed sets in Rn×R. First notice that the following

hypotheses are satisfied (see [L2] page 51)

• H1 F is closed under translation and scaling

• H2 Existence of homogeneous degree zero tangent functions

• H3 Singular set hypothesis i.e. the existence of mapping Σ.

If H1-H2 are satisfied then the pair (F ,S) is locally asymptotically self-similar.

It is easy to see that H1 is satisfied. Next notice that from Almgren’s theorem and nondegeneracy

(polynomial growth from below) the scaled function λ−Nu(λx, λ2t) converges to a caloric polynomial

by our classification of the global profiles. Here N is an positive integer. Finally H3 is satisfied in view

of the local regularity of u. Hence the dimension reduction theorem applies (see [Ch] theorem 2.3) and

we conclude that the parabolic Hausdorff dimension of Σ is smaller than n. Furthermore it also implies

that

dimH{x ∈ Ω, |∇u(x, t)| = 0} ≤ n− 2.

11. Proof of Almgren’s formula

Here we present the proof of Almgren’s monotonicity formula which works in our setting.

Recall that Gt = ∆G and

∇G = − x

2(t + t0)
G .
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Compute

d

dt
H(t) =

∫

Rn

d

dt

[ m∑

k=1

u2
k(x, t)G(x, t) dx

]
=

=
∫

Rn

2uutG(x, t) + u2Gt dx =

=
∫

Rn

2uutG(x, t) + u2∆Gdx =

=
∫

Rn

2uutG− 2u∇u · ∇Gdx =

=
∫

Rn

2u

[
ut +

∇u

2(t + t0)

]
G(x, t) dx .

(11.1)

Next we transform D(t),
∫

Rn

|∇ui|2Gdx =
∫

Rn

∇ui∇uiGdx =

= −
∫

Rn

[ui∆uiG +∇ui∇G] dx =

=
∫

Rn

ui

[
ut +

x · ∇ui

2(t + t0)

]
G dx .

(11.2)

Summing up with respect to all i = 1, 2, . . . , m we get

D(t) =
∫

Rn

u

[
ut +

∇u · x
2(t + t0)

]
Gdx

where

u∇u · x =
∑

i,j

uiDjuixj .

Finally to compute d
dt (D(t)) we use the Rellich-Nečas identity

div(∇G(∇ui)2)− 2div((∇ui · ∇G) · ∇ui) = ∆G|∇ui|2 − 2(∇2G∇ui) · ∇ui − 2∇ui · ∇G∆ui .

Hence after integration
∫

Rn

∆G|∇ui|2 = 2
∫

Rn

(∇2G∇ui)∇ui + 2
∫

Rn

∇ui∇G∆ui

= 2
∫

Rn

([
− Id

2(t + t0)
+

x⊗ x

4(t + t0)2

]
∇ui

)
· ∇uiG + 2

∫

Rn

∇ui∇G∆ui

= 2
∫

Rn

( ∇ui · x
2(t + t0)

)2

G− 1
(t + t0)

∫

Rn

|∇ui|2 ·G−

− 2
∫

Rn

∇ui · x
2(t + t0)

∆uiGdx i = 1, 2, . . . ,m .
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On the other hand,

d

dt
D(t) =

∫

Rn

d

dt

[(∑
Djui

)2

G

]
dx

=
∫

Rn

d

dt

(
m∑

i=1

|∇ui|2G
)

dx =

=
m∑

i=1

∫

Rn

d

dt

(|∇ui|2G
)

dx =

=
m∑

i=1

∫

Rn

[
2∇ui∇(ui)tG + |∇ui|2Gt

]
dx

=
m∑

i=1

∫

Rn

2 [−(ui)t(∆ui ·G +∇ui∇G)] + |∇ui|2Gt dx

=
m∑

i=1

∫

Rn

(
2

∑[
((ui)t)2 + (ui)t

∇ui · x
2(t + t0)

]
G + |∇ui|2∆G

)
dx

=
m∑

i=1

(∫

Rn

2
[
(ui)2t + (ui)t

∇ui · x
2(t + t0)

]
G+

+ 2
∫

Rn

( ∇ui · x
2(t + t0)

)2

G− 1
(t + t0)

∫

Rn

|∇ui|2G

+ 2
∫

Rn

∇ui · x
2(t + t0)

(ui)tGdx

)

= 2
m∑

i=1

∫

Rn

[
(ui)t +

∇ui · x
2(t + t0)

]2

G− 1
(t + t0)

D(t) .

Combining all these computations we have

d

dt
N(t) =

D(t)
H(t)

+
(t + t0) d

dtD(t)
H(t)

− (t + t0)D(t) d
dtH(t)

H2(t)

=
t + t0
H2(t)

[
D(t)H(t)

t + t0
+ H(t)

d

dt
D(t)−D(t)

d

dt
H(t)

]

=
t + t0
H2(t)

[(
2

m∑

i=1

∫

Rn

[
(ui)t +

∇ui · x
2(t + t0)

]2

− d

dt
D(t)

)
H(t)

+H(t)
d

dt
D(t)−D(t) · 2

∫

Rn

u

[
ut +

Du · x
2(t + t0)

]
Gdx

= 2
(t + t0)
H2(t)

[∫

Rn

u2G

m∑

i=1

∫

Rn

[
(ui)t +

Dui · x
2(t + t0)

]2

−
(∫

Rn

u

[
ut +

∇u · x
2(t + t0)

]
G

)2
]
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where the last line follows from a simple observation that

D(t) =
m∑

i=1

∫

Rn

|∇ui|2G =
∫

Rn

u ·
[
ut +

∇u · x
2(t + t0)

]
Gdx .

Then from the Cauchy-Schwarz inequality we have that N ′(t) ≥ 0. ¤

Remark. It is important to point out that if N(t) = const. then ut + ∇u·x
2(t+t0)

= c(t)u. As we showed

earlier, that c(t) is, in fact, the degree of homogeneity.

Theorem 32. Assume that u = (u1, . . . , um) is the solution to our free boundary problem. Then N(t)

is nondecreasing.

Proof. Let’s look back to those parts of the previous computations which contain integration by parts.

Let S be the zero set of ∇u, and Sε its ε-neighborhood. Furthermore let δ > 0 and

uδ
i = (ui − δ)+.

In equations (11.1) and (11.2) after integration by parts we have to deal with the following term
∫

Rn

uδ
i

(
∆uδ

i + (uδ
i )t

)
Gdx +

∫
uδ

i∇uδ
i ·GdAi,δ

︸ ︷︷ ︸
boundary term

where dAi,δ is the area measure on the δ-level surface of ui. Both terms are well-defined and go to zero

as δ → 0.

The next term that we have to deal with comes from the Rellich-Nečas identity. More precisely it

consists of two parts:

I1 =
∫

Rn

∇uδ
i · x

[
∆uδ

i + (uδ
i )t

]
G

I2 =
∫
∇G · |∇uδ

i |2 · ~n dAi,δ − 2
∫

(∇ui · ∇G) · ∇ui · ~n dAi,δ

where ~n is the unit exterior normal to δ-level surface of ui. Finally, we need to deal with the following

term:
∫

Rn

∇uδ
i∇(uδ

i )tG =
∫

(uδ
i )t∇uδ

i GdAi,δ −
∫

Rn

(uδ
i )t(∆uδ

i G +∇uδ
i∇G).

We thus need to estimate

I3 =
∫

(uδ
i )t∇uδ

i G~ndAi,δ −
∫

Rn

(uδ
i )t(∆uδ

i + (uδ
i )t) ·G.

¤
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These are the all “bad” terms that we are left with. First let us observe that on the boundary of

Ωδ
t = {ui(x, t) > δ}, ∇uδ

i = |∇uδ
i | · ~n. Here we have

I1 =
∫

Rn

∇uδ
i · x

[
∆uδ

i + (uδ
i )t

]
Gdx

I2 =
∫
∇uδ

i · ∇G|∇uδ
i |dAi,δ − 2

∫
∇uδ

i · ∇G|∇uδ
i |dAi,δ = −

∫
∇uδ

i · ∇G|∇uδ
i |dAi,δ

=
∫ ∇uδ

i · x
2(t + t0)

|∇uδ
i |GdAi,δ

I3 =
∫

(uδ
i )t∇uδ

i GdAi,δ −
∫

Rn

(uδ
i )t(∆uδ

i + (uδ
i )t)Gdx.

Fix ε and let δ → 0, then the terms with dAi,δ go to 0 (outside of Sε). Since for x near Sε, |∇u| = o(1),

we thus obtain

I1 = o(1)
∫

Rn

(∆ui + (ui)t)G dx −−−→
ε→0

0

and similarly I3 −−−→
ε→0

0. ¤
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