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Abstract
Autophagy is a major intracellular pathway for the lysosomal degradation of long-lived cytoplasmic
macromolecules and damaged or surplus organelles. More recently, autophagy has also been linked
with innate and adaptive immune responses against intracellular pathogens, including
Mycobacterium tuberculosis, which can survive within macrophages by blocking fusion of the
phagosome with lysosomes. Induction of autophagy by the Th1 cytokine IFN-γ enables infected
macrophages to overcome this phagosome maturation block and inhibit the intracellular survival of
mycobacteria. Conversely, theTh2 cytokines IL-4 and IL-13 inhibit autophagy in murine and human
macrophages. We discuss how differential modulation of autophagy by Th1 and Th2 cytokines may
represent an important feature of the host response to mycobacteria.
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1. Introduction
Tuberculosis is a disease of considerable social and economic impact globally. The primary
route of infection is through the inhalation of aerosolized droplets of Mycobacterium
tuberculosis or M. bovis. The bacteria ultimately reach the distal regions of the lung, where
they are phagocytosed by macrophages and dendritic cells. In most cases the infection is
contained after formation of a granuloma, the culmination of a T-helper 1 (Th1)-biased adaptive
immune response. The resulting latent infection can be re-activated when the host immune
response is compromised, such as during HIV infection or in old age. Understanding the
processes involved in granuloma formation and containment of the bacteria is essential in the
development of new treatments and vaccine strategies against tuberculosis. Here we examine
how autophagy, a potentially vital facet of the innate immune response to mycobacteria, is
differentially modulated by Th1 and Th2 cytokines.
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2. Role of cytokines in the immune response to mycobacteria
Immunity to tuberculosis is associated with a predominantly Th1 cell-mediated response,
characterised by the localised production and release of IFN-γ, IL-12 and TNF-α (Salgame,
2005). Genetic defects in the receptors for IL-12 and IFN-γ increase susceptibility to
progressive mycobacterial disease (de Jong et al., 1998; Jouanguy et al., 1996, 1999), while
treatment with TNF-α-specific monoclonal antibodies, used in the treatment of inflammatory
disorders such as rheumatoid arthritis and Crohn’s disease, can lead to reactivation of latent
tuberculosis (Keane, 2005; Keane et al., 2001). Mice genetically deficient in IFN-γ (gko mice),
although able to develop granulomas, fail to produce nitric oxide (NO) and are unable to restrict
intracellular growth of the bacilli (Flynn et al., 1993). IL-12 also increases protection against
mycobacterial infection in susceptible BALB/c mice, but not in gko mice, demonstrating that
the protective effects of IL-12 are dependent on IFN-γ (Flynn et al., 1995). Similarly in cattle,
induction of protective immunity against M. bovis infection is associated with the stimulation
of high levels of IFN-γ (Hope and Vordermeier, 2005). In vitro, M. bovis induces strong IL-12
secretion in bovine dendritic cells that is associated with the stimulation of Th1-biased CD4+

T lymphocyte responses (Hope et al., 2000, 2004) and the secretion of IFN-γ by NK cells and
γδ T lymphocytes (J.C. Hope, unpublished). In humans, dendritic cells also promote IFN-γ
release from natural killer (NK) T cells, a major source of early IFN-γ in TB pleurisy (Schierloh
et al., 2007). In mice infected with BCG, IL-17 is detected after 1 day in the lung (Umemura
et al., 2007). Gamma-delta T cells are a primary source of IL-17, following activation with
IL-23 (produced by macrophages and dendritic cells). Secretion of IL-17 by γδ T cells up-
regulates Th1 responses, neutrophil inflammatory responses and IFN-γ release by T cells
(Umemura et al., 2007).

Lymphocytes in the lungs of patients with pulmonary tuberculosis typically have a Th1
phenotype, secreting IFN-γ (Mazzarella et al., 2003; Taha et al., 1997).However, Th2
lymphocyte subsets have been observed in lung tissue from patients with cavitary tuberculosis,
compared with Th1 subsets in non-cavitary disease (Mazzarella et al., 2003). This correlates
with higher production of IL-4 in the periphery of patients with cavitary disease (van Crevel
et al., 2000) and suggests that IL-4 might be an indicator of disease severity. However, another
study has shown that lymphocytes taken from the cavitary wall produce more IFN-γ in response
to mycobacterial antigens than cells from non-progressive tuberculoma tissues (Ulrichs et al.,
2005). In some cases, granulomas can be positive for both IFN-γ and IL-4 (Fenhalls et al.,
2002, 2000). Some authors have reported a Th1 response in the periphery of patients with mild
pulmonary tuberculosis and Th2 responses in anergic patients and those with more severe
disease (Boussiotis et al., 2000; Dlugovitzky et al., 1997). Clinical observations in tuberculin-
reactive patients have also demonstrated that Th1 responses, while high in the granuloma, are
often paradoxically depressed in peripheral blood lymphocytes in response to mycobacterial
antigens (Jo et al., 2003; Zhang et al., 1995). The phenotype of infected macrophages and
dendritic cells within the granuloma is less well defined, but in vitro studies in human peripheral
blood monocytes/macrophages have demonstrated that virulent strains of tuberculosis
preferentially up-regulate the production of Th2 cytokines (IL-4, IL-5, IL-10 and IL-13), while
non-virulent strains induce a Th1-type response (Freeman et al., 2006; Manca et al., 2004; Sun
et al., 2006). Thus, it is possible that in the typically Th1 environment of the granuloma,
localised secretion of IL-4 and IL-13 could specifically impair the response of infected
macrophages to IFN-γ. However, secretion of anti-inflammatory cytokines like IL-4, TGF-β
and IL-10 may be necessary to dampen the pathological effects of a prolonged or excessive
Th1 response, although in progressive tuberculosis disease IL-4 can actually increase
immunopathology (Hernandez-Pando et al., 2004; Rook et al., 2004).

Analysis of granuloma development in human lungs have revealed a distinct spatio-temporal
sequence of cellular infiltration to sites of mycobacterial infection. The necrotic centre is
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surrounded by a layer rich in CD68+ antigen-presenting cells (APC), large epithelioid cells
and langerhans cells and CD4+ and CD45RO+ memory cells, but very few CD8+ cells (Ulrichs
et al., 2004). This is surrounded by an outer layer of follicle-like structures, with mycobacteria-
containing CD68+ cells and large numbers of CD4+ and CD8+ cells and B cells (Ulrichs et al.,
2004). These follicular structures, resembling secondary lymphoid organs, may be responsible
for orchestrating the local immune response to mycobacterial infection (Ulrichs et al., 2004).
Thus, within these areas, infected macrophages (and other APC) could be directly and
powerfully activated by T cells, particularly through the release of IFN-γ and TNF-α.

3. IFN-γ promotes phagosome maturation in macrophages
Numerous studies have shown that priming macrophages and dendritic cells with IFN-γ prior
to infection increases intracellular killing of mycobacteria (see Hope et al., 2004; Russell,
2001). This killing appears to be directed by both nitric oxide synthase 2 (NOS2)-dependent
and–independent mechanisms. In mice, IFN-γ-induced expression of NOS2 restricts M.
tuberculosis replication via the generation of NO. However, NOS2−/− mice infected with M.
tuberculosis survive significantly longer than mice lacking IFN-γ, IFN-γR1 or STAT1, through
which IFN-γ signals, indicating the existence of IFN-γ-dependent, NOS2-independent
immunity against M. tuberculosis (MacMicking et al., 2003). One effector in this response is
the GTPase Irgm1 (previously called LRG-47), which has specific anti-mycobacterial actions
(MacMicking et al., 2003). Although the precise role of Irgm1 in the response to mycobacterial
infection is not yet clear, it is involved in phagosome biogenesis (MacMicking et al., 2003).

The success of mycobacteria as intracellular pathogens is due in part to their ability to inhibit
maturation of the macrophage phagosome, preventing fusion with lysosomes, while still
allowing fusion with transferrin-containing endosomes, thus maintaining a habitable
environment that promotes survival (Deretic et al., 2006; Russell, 2001). However, when
macrophages are activated with IFN-γ, either alone or in combination with LPS, they are largely
able to overcome this phagosome maturation block (Schaible et al., 1998; Via et al., 1998).
Following activation with IFN-γ, Irgm1 is recruited to the mycobacterial phagosome, but in
Irgm1−/− mice phagosome maturation is impaired (MacMicking et al., 2003). The role of Irgm1
on the phagosome is not known, but it may facilitate fusion with late endosomes or recruitment
of IFN-γ-inducible NOS2, a process that is normally inhibited by mycobacteria (MacMicking,
2005; Miller et al., 2004). Recent evidence has also linked Irgm1 with another IFN-γ-induced
anti-mycobacterial process; autophagy.

4. Autophagy and the innate immune response to mycobacteria
Macroautophagy (hereafter referred to as autophagy) is a fundamental homeostatic mechanism
in which cells sequester discrete portions of the cytoplasm into an autophagosome, a specialized
vacuole with a double membrane, which can fuse with lysosomes for degradation (Levine,
2005; Shintani and Klionsky, 2004). This process removes damaged or surplus organelles,
such as leaky mitochondria and excess peroxisomes and promotes cell survival by degrading
long-lived cytoplasmic macromolecules during periods of starvation (Kuma et al., 2004).
Autophagy is controlled by the target of rapamycin (TOR), a conserved Ser/Thr kinase that
regulates cell proliferation and metabolism in response to growth factors, energy inputs and
nutritional demands (Wullschleger et al., 2006). Activation of TOR stimulates anabolic
processes and biomass production, while its inhibition enhances catabolic processes, including
autophagy (Fig. 1). For example, treatment with rapamycin or amino acid starvation leads to
the inhibition of mTOR and induction of autophagy. Conversely, TOR can be activated by
growth factors via the Akt pathway, resulting in the inhibition of autophagy (Wullschleger et
al., 2006).
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Autophagy has been implicated in the adaptive immune response by playing a role in
endogenous antigen presentation (Dengjel et al., 2005; Paludan et al., 2005). Autophagy is also
involved in the innate response (Levine and Deretic, 2007). Ligation of TLR4 with LPS induces
autophagy in macrophages via a Toll-interleukin-1 receptor domain-containing adaptor-
inducing interferon-β (TRIF)-dependent, MyD88-independent mechanism (Xu et al., 2007).
In addition, autophagy plays a role in the response to a number of intracellular pathogens,
including Epstein-Barr Virus (Paludan et al., 2005), Shigella flexnari (Ogawa et al., 2005),
Salmonella typhimurium (Birmingham et al., 2006) and Toxoplasma gondii (Ling et al.,
2006). Induction of autophagy by amino acid starvation or treatment with rapamycin in
macrophages infected with M. tuberculosis or M. bovis bacillus Calmette-Guerin (BCG) leads
to an increase in phagosome maturation and a decrease in intracellular survival of the bacteria
(Gutierrez et al., 2004). Thus, autophagy represents a mechanism by which macrophages are
able to overcome the phagosome maturation block imposed by mycobacteria, leading
ultimately to enhanced mycobacterial destruction. Moreover, IFN-γ, a key anti-mycobacterial
cytokine, has been demonstrated to induce autophagy in infected macrophages (Gutierrez et
al., 2004).

5. Autophagy and Th1 – Th2 polarisation
The mechanism by which IFN-γ induces autophagy in macrophages is not yet fully understood.
However, it is clear that Irgm1 is involved in this process. Transfection of murine macrophages
with Irgm1 promotes the formation of autophagosomes, while siRNA knockdown of Irgm1
inhibits IFN-γ-induced autophagosome formation (Gutierrez et al., 2004; Singh et al., 2006).
The human ortholog of Irgm1, IRGM also participates in autophagy. Although not itself IFN-
γ-inducible, siRNA knockdown of IRGM in human macrophages inhibits autophagosome
formation and maturation of BCG-containing phagosomes, thereby promoting mycobacterial
survival (Singh et al., 2006). The extent to which autophagy contributes to IFN-γ-induced
phagosome maturation in macrophages infected with mycobacteria has yet to be fully
investigated. While mycobacteria-containing autophagosomes can be observed following IFN-
γ treatment (Gutierrez et al., 2004; Singh et al., 2006) it is not yet clear whether all IFN-γ-
induced phagolysosomes are actually autolysosomes. However, siRNA knockdown of Beclin
1, a key regulator of autophagosome formation, completely abrogates the effect of IFN-γ on
phagosome-lysosome fusion in infected murine RAW264.7 macrophages (Harris et al.,
2007), suggesting that autophagy may be responsible for the IFN-γ-induced phagosome
maturation in these cells.

TNF-α is an important factor in the protective immune response to M. tuberculosis; it is
essential for the formation and maintenance of the granuloma (Flynn and Chan, 2001).
Moreover, TNF-α induces apoptosis in infected cells, depriving the mycobacteria of their niche
cell (Fratazzi et al., 1999) and packaging mycobacterial antigens in apoptotic vesicles for
uptake and presentation by dendritic cells (Schaible et al., 2003; Winau et al., 2006). A number
of studies suggest that TNF-α may also be important in the modulation of autophagy.
Autophagic elimination of Toxoplasma gondii is induced in infected macrophages following
ligation of CD40, coupled with exogenous or autocrine TNF-α signalling (Andrade et al.,
2006; Ling et al., 2006). In T lymphoblastic leukemic cell lines autophagy has been observed
at an early stage of TNF-α-induced cell death (Jia et al., 1997). Treatment of human
atherosclerotic vascular smooth cells with TNF-α has been shown to induce expression of the
autophagy genes MAPLC3 and Beclin 1 and this effect is dependent on activation of the Jun
kinase (JNK) pathway (Jia et al., 2006). In addition, TNF-α might also promote autophagy by
inhibiting activation of the Akt pathway (Jia et al., 2006). Activation of the Akt pathway inhibits
autophagy via activation of mTOR, while siRNA-mediated knockdown of Akt induces
autophagy in murine macrophages (Harris et al., 2007). In MCF-7 human breast cancer cells,
TNF-α-induced autophagy is dependent on ERK1/2 signalling and inhibition of ERK signalling
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results in greater sensitivity to TNF-α-induced cell death (Sivaprasad and Basu, 2008). In
Ewing sarcoma cells, TNF-α-induced autophagy is inhibited by activation of NF-κB and is
dependent on the production of reactive oxygen species (Djavaheri-Mergny et al., 2006).
Mycobacterium tuberculosis can inhibit TNF-α-induced apoptosis by activating NF-κB and
enhancing the production of soluble TNF receptor 2 (Gao and Kwaik, 2000). These may also
represent strategies to inhibit TNF-α-induced autophagy.

While IFN-γ and TNF-α stimulate autophagy, the archetypal Th2 cytokines IL-4 and IL-13
have the opposite effect. In HT-29 epithelial cells, for example, IL-13 is a potent inhibitor of
starvation-induced autophagy via stimulation of the Akt pathway (Arico et al., 2001; Petiot et
al., 2000). Both IL-4 and IL-13, signal through IL-4Rα, which forms a heterodimer with gamma
common (γc) chain (for the IL-4 receptor) or the IL-13Rα1 (for the IL-13 receptor) (Nelms et
al., 1999). Ligation of these receptor complexes results in signalling via the insulin receptor
substrate (IRS)-1/2 and STAT6 pathways (Nelms et al., 1999). While STAT6 is involved in
IL-4 and IL-13-induced gene expression, IRS-1/2 signalling activates the type I
phosphatidylinositol 3-kinase (PI3K) pathway and subsequently the Akt pathway (Fig. 1). In
human and murine macrophages infected with mycobacteria, both IL-4 and IL-13 inhibit
starvation-induced autophagy through activation of the Akt pathway (Harris et al., 2007). This
results in decreased phagosome maturation and promotes intracellular survival of the bacteria.
Similarly, IL-4 and IL-13 both inhibit IFN-γ-induced autophagy, but this process is
independent of Akt; instead it is dependent on STAT6 signalling (Harris et al., 2007).

These data suggest that autophagy, as well as being a potentially important anti-mycobacterial
response in macrophages, may be mediated by Th1 and Th2 cytokines. The predominantly Th1
environment within the lungs of patients/cattle with active tuberculosis should promote
intracellular killing of mycobacteria by NOS2-dependent and -independent mechanisms,
including autophagy. Moreover, autophagy may represent a means of targeting bacteria to
phagolysosomes (or autolysosomes) for processing and presentation of antigens and thus could
play an important role in control of mycobacteria within the granuloma and help to drive the
adaptive immune response (Fig. 2). Conversely, IL-4 and IL-13, released by macrophages
infected with virulent strains of M. tuberculosis (Freeman et al., 2006;Manca et al., 2004;Sun
et al., 2006), could act in an autocrine manner to inhibit the autophagic process.

6. Conclusions and future directions
It has not yet been determined whether autophagy contributes significantly to the immune
response against mycobacteria in vivo, although the potential importance of this process is
clear. In this context, it would be interesting to study the autophagic status of alveolar
macrophages and dendritic cells during pulmonary tuberculosis, both within and outside the
granuloma. The role of various different cytokines on this process may prove insightful,
particularly those of potential importance in the innate immune response and granuloma
formation, such as IL-10 and TGF-β. It is notable that at least two intracellular pathogens,
Listeria moncytogenes and Legionella pneumophila, have evolved mechanisms to evade or
subvert the autophagic pathway and increase their own survival (Birmingham et al., 2007;
Dubuisson and Swanson, 2006). Whether mycobacteria are capable of modulating
autophagosome formation and maturation, as they are with phagosome maturation, could be
particularly interesting and provide further insight into the evolutionary arms race between
pathogen and host.
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Fig. 1.
Cytokine signaling and autophagy. Following ligation of the IL-4/IL-13 receptor, the insulin
receptor substrate (IRS 1/2) interacts with the phosphorylated I4R motif of the IL-4Rα via
Jak1. Type III PI3K and PDK1 are recruited to the complex, leading to the formation of
phosphoinositides (including PIP3), which in turn phosphorylate Akt. Through its interaction
with the tuberous sclerosis protein 1 and 2 complex (TSC1/2), Akt activates mammalian target
of rapamycin (mTOR), which inhibits autophagy (Nobukuni et al., 2007). Inhibition of mTOR,
such as by rapamycin, induces autophagy. IFN-γ-induced autophagy, dependent on Irgm1
(IRGM in humans), is inhibited by Th2 cytokines via STAT6 activation.
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Fig. 2.
Autophagy has the potential to play an important role in the immune response to mycobacteria.
In this hypothesised model of granuloma formation, alveolar macrophages, unable to overcome
the phagosome maturation block imposed by infecting mycobacteria, undergo apoptosis.
Apoptotic vesicles carry mycobacterial protein and glycolipid antigens to dendritic cells (DC)
which can prime MHC class I- and CD1-restricted T cells (Schaible et al., 2003; Winau et al.,
2006) which, in turn, produce IFN-γ. Moreover, infected DC, through stimulation of NK cells
and γδ T cells, can increase IFN-γ production (Ferlazzo et al., 2003; Shrestha et al., 2005). This
activates anti-microbial responses in macrophages, including autophagy, promoting
degradation of intracellular mycobacteria and processing and presentation of peptide antigens
via MHC Class II to T cells (Schmid et al., 2007). Following clonal expansion, antigen-specific
T cells migrate to the site of infection and help to drive the formation of a granuloma. Inhibition
of autophagy through the autocrine secretion of IL-4 and/or IL-13 by infected macrophages
could potentially disrupt this process, allowing the bacteria to gain a foothold before the
formation of a protective granuloma.

Harris et al. Page 11

Vet Immunol Immunopathol. Author manuscript; available in PMC 2010 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


