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SUMMARY

The organization of the Escherichia coli chromosome
into insulated macrodomains influences the segre-
gation of sister chromatids and the mobility of chro-
mosomal DNA. Here, we report that organization of
the Terminus region (Ter) into a macrodomain relies
on the presence of a 13 bp motif called matS re-
peated 23 times in the 800-kb-long domain. matS
sites are the main targets in the E. coli chromosome
of a newly identified protein designated MatP. MatP
accumulates in the cell as a discrete focus that coloc-
alizes with the Ter macrodomain. The effects of MatP
inactivation reveal its role as main organizer of the
Ter macrodomain: in the absence of MatP, DNA is
less compacted, the mobility of markers is increased,
and segregation of Ter macrodomain occurs early
in the cell cycle. Our results indicate that a specific
organizational system is required in the Terminus re-
gion for bacterial chromosome management during
the cell cycle.

INTRODUCTION

The large size of genomes compared to cellular dimensions im-

poses extensive compaction of chromosomes compatible with

DNA metabolism during replication, transcription, and segrega-

tion. Compaction of the chromosome results in the formation of a

structure called the nucleoid. Work performed in different bacte-

ria has revealed a number of processes involved in bacterial DNA

condensation and organization; they include unrestrained DNA

supercoiling, formation of a chromatin-like structure through

the interaction of nucleoid-associated proteins (NAPs) with DNA,

condensation by structural maintenance of chromosomes (SMC)-

like proteins, and macromolecular crowding (Thanbichler and

Shapiro, 2006). Cytological analyses have revealed that bacterial

circular chromosomes are organized with a specific disposition

within growing cells that preserves the linear order of loci in the
DNA (Viollier et al., 2004; Nielsen et al., 2006b; Wang et al.,

2006). In E. coli, cytological (Niki et al., 2000) and genetic (Valens

et al., 2004) analyses based on long distance DNA interactions

revealed a structuring process that spatially insulates large re-

gions of the chromosome called macrodomains (MDs). Collisions

between DNA sites belonging to different MDs occur at low fre-

quency, and two particular regions, called nonstructured (NS)

regions, can interact with both flanking MDs (Valens et al.,

2004). The Ori MD containing oriC is centered on migS, a centro-

mere-like site involved in bipolar positioning of oriC (Yamaichi

and Niki, 2004). Opposite the Ori MD, the Ter MD containing

the replication terminus is centered on the chromosome dimer

resolution site dif. The Ter MD is flanked by the Left and Right

MDs, whereas the Ori MD is flanked by the two NS regions. MD

organization was directly visualized by analysis of the positioning,

the segregation pattern, and the dynamics of markers belonging

to various MDs. Markers in MDs showed much lower mobility

than markers in NS regions (Espéli et al., 2008).

Understanding of chromosome segregation has improved

considerably in recent years (Thanbichler and Shapiro, 2006).

Replication initiates from a single origin, oriC, and progresses

bidirectionally to the terminus of replication located opposite the

origin. In E. coli, replication initiation occurs in specific replication

factories where both replisomes are colocalized. As replication

progresses, foci representing the two replisomes follow separate

paths (Bates and Kleckner, 2005; Reyes-Lamothe et al., 2008). A

colocalization step between sister chromatids of the newly dupli-

cated foci has been reported and appears to vary with growth

conditions (Sunako et al., 2001; Bates and Kleckner, 2005; Niel-

sen et al., 2006a; Adachi et al., 2008; Espéli et al., 2008). This

process seems to be more persistent for loci located near the

terminus of replication (Li et al., 2003; Bates and Kleckner, 2005;

Espéli et al., 2008). The loss of colocalization occurs simulta-

neously at various positions on the chromosome when much

of the chromosome is replicated (Bates and Kleckner, 2005;

Espéli et al., 2008).

The mechanisms responsible for structuring the chromosome

in MDs are largely unknown. A likely model postulates that inter-

nal organization of the different MDs involves recognition of a

domain-specific repeated motif by a protein that would isolate
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this domain from the others. Such an organization would be rem-

iniscent of two systems characterized in the Ori-proximal region

of the Bacillus subtilis chromosome, the Spo0J-parS and the

RacA-ram systems. Spo0J interacts with eight to ten parS sites

scattered over a region of 600 kb (Lin and Grossman, 1998),

whereas 25 copies of a 14 bp ram sequence scattered over the

612 kb Ori region are bound by RacA (Ben-Yehuda et al., 2005).

Here, we report use of a statistical analysis to predict an ‘‘MD

signature’’ motif, i.e., a motif specifically enriched in one MD that

could be the target of such a protein. We report the identification

of the landmark signature sequence of the Ter MD, a 13 bp motif

called matS, repeated 23 times in the 800-kb-long region. We

identify the protein MatP that interacts in vivo with the motif matS.

We further demonstrate that the matS-MatP-specific interaction

is crucial for Ter MD organization. In the absence of MatP, seg-

regation of the Ter MD occurs early in the cell cycle, and markers

in the Ter MD exhibit mobility similar to that of markers in NS

regions. Mutational analysis of cis-acting matS sites provides

information on the mechanism used by MatP to compact DNA

over a large distance. On the basis of these observations, we

propose a model for spatial organization of the Ter MD by MatP

during the cell cycle.

RESULTS

matS Is the Signature Motif of the Ter Macrodomain
We hypothesized that scattered DNA binding sites for an archi-

tectural protein are likely candidates as MD organization deter-

minants of the E. coli chromosome. To predict hypothetical

‘‘domain signature’’ motifs, we used a statistical approach, as

described before (Halpern et al., 2007). It consisted of evaluating

the exceptionality of all motifs of a given length inside an MD

(exceptionality score) and comparing it to their exceptionality

outside the domain (contrast score, i.e., the p value of a binomial

test). Exceptionality was evaluated by comparison of observed to

expected counts of each word of a given length, with the mono-

to hexanucleotide composition of the Ter domain being taken

into account. The analysis focused on 11-nt-long words, be-

cause in a learning case based on detection of the parS motif in

the Origin proximal domain of the B. subtilis genome, this length

proved relevant for detection of one of the parS subsequences

as the most highly exceptional (Experimental Procedures and

the Supplemental Experimental Procedures available online).

Exceptionality of each of the 505,775 11-mers present in the Ter

MD is plotted as a function of its contrast score in Figure 1A.

Among the most exceptional and contrasted words, six were

overlapping (Figure 1A, and Table S1); they allowed the identifi-

cation of a 13-mer consensus sequence presented on Figure 1B.

When the 13-mer GTGACRNYGTCAC sequence was searched

on the whole E. coli genome, it was found 21 times between co-

ordinates 1135 kb and 1900 kb (Figure 1C and Table S2), which

approximates the extent of the Ter MD (1220 kb to 1900 kb

[Espéli et al., 2008]). This motif therefore appeared to be a good

candidate for organizing the Ter MD; we called it matS for macro-

domain Ter sequence. Allowing one nucleotide difference in the

matS consensus sequence revealed the presence of only four

additional sites in the entire chromosome, two located in the Ter

MD (matS5 and matS17) and two in the Left MD (pseudo-matS
476 Cell 135, 475–485, October 31, 2008 ª2008 Elsevier Inc.
L1 and L2). The matS motif was also found as a repeated motif

in the genome of g-proteobacteria, in Enterobacteriaceae and

in Vibrionaceae species. Moreover, the concentration of matS

sites in the region opposite the replication origin was conserved

in these species (Figure 1D).

matS Is Specifically Bound by MatP
Electromobility shift assays (EMSAs) performed with crude E. coli

extracts revealed the specific binding of a factor to matS (data not

shown). To identify the gene encoding this factor, we took advan-

tage of a streptomycin selection system that allows identification

of genes encoding DNA binding activity. In brief, expression of a

gene conferring streptomycin sensitivity may be modulated by

the binding of a protein to its target sequence (e.g., matS) located

in the promoter region. Using a multicopy genomic library, we

were able to select transformants that displayed reduced strepto-

mycin sensitivity (i.e., candidates to bind matS). We identified

seven clones containing the same genomic region extending from

ycbZ and ompA. The only complete open reading frame (ORF)

found in every clone was ycbG (renamed matP for macrodomain

Ter protein). matP encodes a 17 kD unknown protein conserved in

Enterobacteriaceae and Vibrionaceae species and to a lesser ex-

tent in Pasteurellaceae species. Structure predictions revealed a

ribbon-helix-helix domain observed in a number of transcription

factors and plasmid partition systems and a coiled-coil C-terminal

domain. Interestingly,MatPbelongs to a group of proteins (includ-

ing SeqA and MukBEF) that are exclusively identified in bacteria

carrying Dam methyltransferase activity (Brezellec et al., 2006).

Using a two-step purification procedure, we purified MatP to

near homogeneity. MatP was soluble and formed dimers in solu-

tion (data not shown). Using EMSA, we confirmed specific bind-

ing of MatP to matS (Figure 2A); the Kd of the MatP dimer for a

double stranded 41 bp oligonucleotide containing matS was

about 8 nM (Figure 2B). Competition assays revealed that MatP

binds matS more than 100 times more efficiently than the degen-

erate sites present in the Left MD (Figure S1).

The in vivo DNA binding pattern of MatP was analyzed by

formaldehyde-mediated protein crosslinking followed by immu-

noprecipitation of MatP-containing complexes with anti-MatP

antibodies (chromatin immunoprecipitation [ChIP] assay). DNA

recovered from the ChIP fraction was analyzed by polymerase

chain reaction (PCR) with various pairs of primers. Results pre-

sented in Figure 2C indicated that matS sites were specifically

enriched; PCR fragments corresponding to five matS sites were

detected, whereas three control fragments devoid of the matS

site were not amplified. A similar analysis was performed in a

strain in which matS22 and matS23 had been deleted (Figure 2D).

No fragments corresponding to matS22 and matS23 regions

could be amplified in the ChIP fraction, whereas fragments over-

lapping matS18, matS19, and matS20 were amplified. These re-

sults showed that MatP binding to a fragment in vivo was depen-

dent on the presence of a matS site. The binding pattern of MatP

in the matS23 region in a WT strain was analyzed in more detail.

Several primer pairs amplifying fragments located at various dis-

tances from matS23 were used (Figure 2E). No amplification was

revealed for fragments located at a distance of 5 kb or 10 kb from

the matS site, indicating that MatP does not spread from matS23

far into flanking DNA.



To map the binding sites for MatP on a genome-wide basis, we

used DNA from the ChIP fraction as a probe to hybridize macro-

arrays that contain the complete set of open reading frames

(ORFs) in the E. coli genome. The amount of specific MatP bind-

ing or enrichment factor was estimated by subtraction of the

normalized abundance of a locus in the ChIP fraction of a matP

strain to the abundance of the same locus in the ChIP fraction of

the WT strain and by division of this value by its normalized abun-

dance in total DNA. The relative enrichment factor was plotted

versus genome position (Figure 2F). These results revealed a

limited number of ORFs bound by MatP (Table S8). Strikingly,

among the most enriched 30 ORFs, 25 contained or were adja-

cent to a matS sequence, indicating that matS sequences con-

stitute the main targets of MatP on the chromosome (Figure 2G).

Furthermore, it showed on the genome scale that MatP does not

spread far into DNA flanking matS sites since ORFs separated

from matS sites by a few kb were not enriched.

matP Inactivation Causes Severe Defects
in Chromosome Segregation and Cell Division
In exponential phase in rich medium (doubling time, t = 30 min), de-

letion of matP induced severe chromosome segregation and cell-

division defects (Figures 3A and 3B): a significant number of cells

were anucleate (7%), whereas small and long filamentous cells dis-

played condensed nucleoids (12%). It is noteworthy that the

amount of filamentous and anucleate cells was maximal in

exponential phase and decreased as cells entered stationary

phase. Cell filamentation is often associated with the activation of

a DNA repair pathway, called SOS induction. matP cells remained

viable in rich medium when SOS induction was prevented by

Figure 1. matS Sites Are Clustered in the Ter Macrodomain of the E. coli Chromosome

(A) Each 11-mer was plotted according to its exceptionality in the Ter MD (abscissa axis) and to the contrast bias between the Ter MD and the rest of the chro-

mosome (ordinate axis). The 505,775 11-mers found in the Ter domain are indicated by blue circles. The six overlapping words are indicated in red together with

the nucleotide sequence.

(B) A Logo 13 bp consensus palindromic sequence deduced from 21 matS motifs (see main text) has been defined with the Weblogo program (http://weblogo.

berkeley.edu/).

(C) Distribution of 21 matS sites and four matS-like sites in the E. coli chromosome. Twenty-one motifs were found between coordinates 1135 kb and 1900 kb.

Four sites differing by 1 nt change are present in the chromosome, two located in the Ter MD (matS5 and matS17), and two in the Left MD (pseudo-matS L1 and

L2). Colored bars represent the different MDs (coordinates are indicated in minutes).

(D) The localization bias of matS sites is conserved among enterobacteria, Vibrio, and Pasteurella species. Distribution of repeated matS sites in a 600–1000 kb

large region opposite to oriC in the chromosome of Salmonella typhimurium LT2, Erwinia carotovora subsp. atroseptica, Vibrio cholerae (chromosome I), and

Yersinia pestis KIM.
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a recA mutation; furthermore, no SOS induction was detected in

matP cells (data not shown), indicating a lack of chromosomal dam-

age. In contrast, in minimal medium (t = 70 min), most cells dis-

playedaWTphenotypeateverystepof thegrowthcurve (Figure3B,

and see below). The average number of origins per cell was pre-

dicted from the number of chromosomes measured by cytometry

after the addition of rifampicin, which prevents reinitiation of chro-

mosome replication (rifampicin run-out experiments). This number

of origin was similar in both WT and matP cells; it was estimated

around six (not considering filamentous cells) in rich medium and

three in minimal medium, indicating that initiation of replication in

both strains occurs halfway through the cell cycle in both conditions

(Figure S2). The duration of the replication (C period) was estimated

directly on the microscope slide by measurement of the fraction of

the cell cycle when replisomes were functional, as revealed by the

detection of SSB-YFP foci (Reyes-Lamothe et al., 2008). A modest

decrease in the number of cells without SSB foci was observed in

the matP strain and can be interpreted as a longer C period, 86

min and 94 min in the WT and the matP strains, respectively

(FigureS3).Altogether, these results indicated thatmatP inactivation

affected chromosome segregation in rich medium but without in-

ducing significant DNA damage or changes in replication regulation.

Long-Range DNA Interactions between the Right
and the Ter MDs Are Affected by MatP Inactivation
Long-distance DNA collisions revealed by the frequency of site-

specific recombination between l attL and attR loci inserted at

different chromosome locations can be used to reveal chromo-

some conformation (Valens et al., 2004). These interactions have

been measured in WT and matP cells grown in minimal medium

(Figure 3C). As observed before, interactions between attR in-

serted in the Right MD and attL sites inserted in the Ter MD were

low in WT cells because they belong to different MDs. Remark-

ably, the collisions were more frequent in matP cells. In contrast,

interactions within the Right MD or between the Right MD and

other regions of the chromosome were comparable in WT and

matP cells. These results indicate that in matP cells, Right MD

DNA collides with a higher probability with the flanking Ter MD,

suggesting a disorganization of Ter MD.

MatP Colocalizes with the Ter Macrodomain
throughout the Cell Cycle
To determine the cellular position of MatP, we constructed a

strain containing a chromosomally encoded version of gfp fused

to matP under the control of the matP promoter. In rich medium,

Figure 2. Specific Interaction of MatP with

matS Sites

(A) EMSA of a double-stranded oligonucleotide

containing matS19 was performed with increasing

concentrations of MatP in the presence of 24 mM

nonspecific competitor DNA. MatP concentra-

tions were 0 nM (lane 1), 0.1 nM (lane 2), 0.5 nM

(lane 3), 1 nM (lane 4), 2 nM (lane 5), 5 nM (lane

6), 7 nM (lane 7), 10 nM (lane 8), 20 nM (lane 9),

50 nM (lane 10), 100 nM (lane 11), and 200 nM

(lane 12).

(B) The occupancy of the matS site was plotted as

a function of MatP concentration. The binding data

were fit to a simple binding isotherm as described

before (Murtin et al., 1998).

(C) Chromatin immunoprecipitation assay of MatP

on the E. coli chromosome. An affinity purified

aMatP polyclonal antibody was used to immuno-

precipitate regions of the chromosome cross-

linked to MatP (ChIP fraction). PCR probes were

designed to detect 300 pb fragments containing

various matS sites or chromosomal regions with-

out matS sites (NSL1, NSL2, and Left 2).

(D) Chromatin immunoprecipitation assay of MatP

on the chromosome of a strain where matS22 and

matS23 were deleted.

(E) In vivo MatP spreading from matS sites was

tested by ChIP with probes located 0.5, 1, 5 and

10 kb away from matS23.

(F) ChIP-on-chip assay for MatP binding. Pano-

rama gene arrays (Sigma-Genosys Biotechnol-

ogies) carrying the 4287 E. coli ORFs were hybrid-

ized with labeled DNA from the ChIP fraction

obtained from a WT strain, with labeled DNA

from the ChIP fraction of a matP strain, and with

total DNA of a WT strain, and quantified (see

main text). ORFs with results above the background and containing or flanking matS sites are labeled in red. Colored bars represent the different MDs as indicated

in Figure 1.

(G) Zoom of the Ter MD region. ORFs containing or flanking matS sites were indicated according to their number on Figure 1C. Only matS5 and matS21 were

absent among the 30 most MatP-enriched ORFs.
478 Cell 135, 475–485, October 31, 2008 ª2008 Elsevier Inc.



this strain displayed no filamentous or anucleate cells, indicating

that the MatP-GFP fusion protein was functional. We followed

throughout the cell cycle the subcellular localization of MatP by

time-lapse live microscopy (in minimal medium at 25�C; t =

120 min). MatP formed discrete foci, indicating that MatP accu-

mulated at specific locations in the cell. In newborn cells, MatP

foci localized near the new pole. As cells progressed in the cell

cycle, the MatP focus migrated to the midcell, where it remained

for a period as long as 60 min. Finally, about 30 min before divi-

sion, the MatP focus split, and the two sister foci remained

Figure 3. Cell Division and Chromosome Segregation Defects in

matP Cells

(A) Representative cells of E. coli MG1655 and the matP isogenic derivative

grown in exponential phase (OD600 0.4) in Lennox Rich Medium at 37�C.

Nucleoids were stained with DAPI (green).

(B) Quantification of the different types of cells observed in rich and minimal

medium. ‘‘par’’ indicates cells with mispositioned condensed nucleoids. ‘‘Fila-

ments’’ indicates the presence of filamentous cells.

(C) Long-distance DNA interactions revealed by l Int recombination assay.

The recombination frequency between attR located at 170 (indicated by an

arrow) in the Right MD and various attL sites in the NS region, the Right,

Left, and Ter MDs (Table S6) was measured upon induction of the Xis and

Int recombinases in WT (blue) and matP (red) cells. The Right, Ter, and Left

MDs are indicated by colored lines above the graph.
juxtaposed for a few minutes before moving away from midcell

(Figures 4A and 4B, Movie S1). This localization pattern was also

observed at a faster growth rate in a snapshot analysis (t = 70

min at 30�C; Figures S4A and S4B) and at a slower growth rate

(t = 120 min at 30�C; Figure S4D).

The localization pattern of MatP-GFP was remarkably similar

to that observed for chromosomal markers in the Ter MD (Li

et al., 2003; Bates and Kleckner, 2005; Espéli et al., 2008). There-

fore, we analyzed the colocalization of a focus generated by a

fusion of matP to the gene encoding mCherry with two foci cor-

responding to chromosomal markers revealed by two different

parS/ParB systems (Nielsen et al., 2006b). We used two markers

inserted 100 kb apart in the Ter MD (Figure S5), two markers

inserted 350 kb apart in the Ter MD, or two markers inserted out-

side the Ter MD 1270 kb apart in Right and Left MDs (Figures 4C–

4F, Figure S5). Chromosomal markers located 100 kb or 350 kb

apart in the Ter MD colocalized with or contacted the MatP focus

in 85% of the cells. Colocalization of the MatP focus with a Ter

locus was also observed with the lacO-LacI fluorescent repres-

sor operator system (FROS) (data not shown). Contrasting re-

sults were obtained with chromosomal markers inserted outside

the Ter MD: the MatP focus was rarely (<5%) colocalized with

both chromosomal markers (Figures 4D and 4F).

Interaction of MatP with matS Prevents Early
Segregation of Duplicated Ter Macrodomains
After replication, the length of the colocalization period of sister

chromosomal loci changes according to their belonging to MDs

or NS regions. These differences result in abrupt changes in the

proportions of cells with 1, 2, or 4 foci at the boundaries of the

Right, Ter and Left MDs (Figures 5A and 5B) (Espéli et al., 2008).

In matP cells, we observed a dramatic decrease in the propor-

tion of cells with one focus for markers located in the Ter MD.

Whereas more than 80% of the WT cells presented only one

focus for most markers in the Ter MD, this number was reduced

to about 50% in matP cells (Figures 5A and 5B). Similar results

were obtained with the lacO-LacI FROS system (Figure S6).

Since the proportions were unchanged in other MDs and NS re-

gions, we conclude that MatP inactivation specifically affected

the Ter MD. Because MatP inactivation did not alter the cell-

cycle parameters in minimal medium (see above), these results

suggested that MatP inactivation specifically affected the coloc-

alization step between the duplicated Ter MDs.

The effect of MatP inactivation on Ter MD segregation was

directly visualized with live microscopy. Time-lapse experiments

with 1 min intervals were performed for analysis of the position of

a marker in the Ter MD (Ter-6 at position 1689 kb) over a period

longer than 120 min, i.e., the duration of a complete cell cycle in

these conditions (Figure 5C, see above). In WT cells (Figure 5D),

the focus moved from the pole in the newborn cell to midcell and

then split into two sister foci 30 min before division. This segre-

gation drove the focus to a very precise final position at midcell,

the home position, as visualized by the remarkably small stan-

dard deviation (between 60 and 80 min after birth) (Figure 5D

and Movie S2). Strikingly, the segregation pattern of Ter-6

marker was radically different in matP cells for three parameters

(Figure 5E, Movie S3). First, a transient individualization step

where sister foci fuse and separate several times was observed
Cell 135, 475–485, October 31, 2008 ª2008 Elsevier Inc. 479



over a long period, from 20 to 50 min after birth. Second, final

separation of sister foci occurred early in the cycle, 70 min before

division compared to 30 min in WT cells. This early segregation of

Ter MDs in matP cells accounted for the reduced number of cells

with one focus for markers in the Ter MD (Figure 5B). Third, the

focus was localized less precisely at the home position in the

matP cells than in WT cells. Altogether, these results showed

that the inactivation of MatP resulted in early segregation of Ter

markers.

The three external matS sites located at the border with the

Left MD (matS21-23) were deleted and the proportion of cells

with one, two, three, or four foci in strains carrying chromosomal

markers located at four different positions in the Ter MD (Ter-6,

Ter-7, Ter-8) or in the Left MD (Left-3) were analyzed in snapshot

experiments (Figure 5F). The deletion of the three matS sites de-

creased the number of cells with one focus from 66% to 46% for

the Ter-8 marker. This effect was as profound as the inactivation

of MatP. The distribution was unchanged concerning markers

Ter-6 or Left-3 that are distant from deleted matS sites. Alto-

gether, these results showed that the absence of interaction

of MatP with matS sites specifically affected the region of the

Ter MD adjacent to the considered matS sites and induced early

segregation of its markers.

Ter Macrodomain Organization Is Mediated by MatP
The local effect of matS site deletions was examined in greater

detail. Whereas the deletion of the three matS sites bordering

the Ter MD (matS21-23) affected the number of foci of the border

marker Ter-8 as much as MatP inactivation, their deletion had

only a partial effect on the marker Ter-7 (Figure 5F). This sug-

gested that matS20 may still influence the foci copy number of

Ter-7, located 40 kb away. Similarly, deletion of only matS23,

or both matS22 and matS23, only slightly affected the number

of Ter-8 foci, indicating that matS21 influences Ter-8, a locus

located 50 kb away. This effect seems to be lost, however, at a

distance of 150 kb because matS20 has no apparent effect on

Ter-8. These results fit with the density of matS sites in the Ter

MD, which is on average one site every 40 kb, and indicate that

the MatP-mediated organization of Ter MD affects DNA colocal-

ization over a large distance.

To determine whether the effect of MatP on foci colocalization

was associated with compaction, we measured the interfocal dis-

tance between different markers in WT and matP strains. In matP

cells, theaverage interfocal distancebetween twomarkers100kb

distant in the Ter MD was increased by 2-fold compared to WT

cells (0.27 mm versus 0.15 mm; Figures 6A–6C). A comparable in-

crease in interfocal distance was also observed upon inactivation

of MatP for markers 350 kb distant in the Ter MD (data not shown).

These results indicate that MatP influences DNA compaction.

Constraints on mobility are apparent in MDs, whereas in NS

regions, DNA markers exhibited a greater mobility (Espéli et al.,

2008). To assess the influence of MatP on DNA mobility, we mea-

sured the total distance traveled by loci from the Ter MD in WT

and in matP cells over a 5 min period (Figure 6D). In matP cells,

the Ter-6 and Ter-8 loci traveled a distance about four times

greater than that crossed by the same loci in WT cells (1.2 mm

versus 0.3 mm). These loci became as mobile as loci in the

NS regions. The diffusion coefficient of these loci can be

Figure 4. MatP-GFP Foci Colocalize with Markers of the Ter Macro-

domain

(A) Dynamics of MatP-GFP foci observed by live microscopy during the cell

cycle. A picture was taken every 5 min over a period of 60 min (t = 120 min;

see main text). MatP-GFP is not evenly distributed but appears as foci. The

scale bar represents 2 mm.

(B) Segregation pattern of Mat-GFP foci during the cell cycle obtained from the

average of 15 cells. The position of the foci along the long axis of the cell is

expressed as a percentage of the cell length. Mother and daughter cells are

represented on the left and right of the panel, respectively.

(C) Colocalization of the MatP-mCherry focus (red) with two parS markers,

localized 350 kb apart in the Ter MD, labeled with ParBT1-YFP (blue) and

ParBP1-CFP (green). The scale bar represents 2 mm.

(D) Colocalization of the MatP-mCherry with two parS markers localized

1270 kb apart in the Right MD marked with ParBT1-YFP (blue) and in the Left

MD marked with ParBP1-CFP (green). The scale bar represents 2 mm.

(E and F) Quantification of the colocalization of the MatP-mCherry focus with

the chromosomal markers obtained in (C) and (D), respectively. The different

types of cells are indicated in each panel. Two hundred cells were analyzed.
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approximated from the mean square displacement (Figure 6E)

as described before (Espéli et al., 2008). At home position, each

locus presents a subdiffusive mode of movement. In matP cells,

the diffusion coefficient of both Ter-6 and Ter-8 loci was two

to four times greater than that in the WT strain (Dt1-2 �3.5 3

10�12cm2/s versus Dt1-2 �1.5 3 10�12cm2/s), indicating that

these markers occupy a cage two to four times larger in matP

cells than in WT cells (i.e., �400 nm 3 400 nm compared to

�200 nm 3 200 nm).

Figure 5. MatP Modulates the Colocaliza-

tion Step of the Ter Macrodomain

(A) Distribution of the Ter-6 parS marker labeled

with ParBP1-GFP in WT and matP cells. Scale bars

represent 2 mm.

(B) Quantification of the number of foci observed

per cell for 19 markers in WT (top) and matP (bot-

tom) cells (position of markers is indicated in

Figure S7 and Table S5). An MD map is drawn at

the top of the graph. About 300 cells were counted

for each locus. Striking changes are only observed

in the Ter MD.

(C) Schematic representation of the cell-cycle

parameters observed for the time-lapse experi-

ment conditions at 25�C in minimal medium A.

D period corresponds to the time between the

end of replication and division.

(D) Averaged segregation pattern of the Ter-6

marker in WT cells observed during time-lapse

experiments. The localization of foci in 20 cells

was averaged after synchronization according to

the division time. The position of the foci along

the long axis of the cell (indicated by the percent-

age of the cell length) was plotted over time. The

end of the replication C period, the period of foci

colocalization, and the time of foci individualiza-

tion are indicated.

(E) Averaged segregation patterns of the Ter-6

marker in a matP strain as in (D). The loose coloc-

alization period corresponds to the time interval

during which individualized foci collide with each

other several times without any precise segrega-

tion direction.

(F) Effect of matS sites on the number of foci ob-

served per cell for four markers located in the Ter

and Left MDs. Genetic map of the Ter-Left MD

border region is shown. Positions of the parS

tags and the matS sites are indicated. The propor-

tion of observed cells with one, two, or three to four

foci of the Ter-6, Ter-7, Ter-8, and Left-1 markers,

as measured in (B), is reported in different strains

carrying deletion of specific matS sites.

DISCUSSION

Chromosome Organization
and the Ter Macrodomain
Understanding of chromosome architec-

ture and dynamics remains fragmentary

in both prokaryotic and eukaryotic cells.

By measuring the relative probabilities of

collisions between different pairs of loci

scattered over the E. coli genome and by tracking fluorescent

reporters, we have shown that the chromosome is organized

in MDs and less constrained NS regions and that the behavior

of loci belonging to the MDs and to the NS regions is radically

different (Valens et al., 2004; Espéli et al., 2008). Among the dif-

ferent mechanisms that may account for this chromosome struc-

turing, we have now provided evidence that a site-specific sys-

tem, composed of the DNA binding protein MatP and its target

matS sites, organizes the 800-kb-long chromosomal Ter MD.
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The existence of the Ter MD was questioned in a study that

reported independent spatial positioning and an asymmetric pat-

tern of segregation of two markers located at 150 kb from each

other in the Ter MD (Wang et al., 2005). Data reported here support

the existence of a Ter MD. First, our data indicate that belonging

to the Ter MD does not imply permanent spatial and temporal co-

localization since in 35% of the cells, foci of markers separated

by 350 kb within the Ter MD can contact the MatP focus without

overlap, while the three foci overlapped in only 50% of cells. Sec-

ond, we did not find any evidence for splitting of the Ter MD since

MatP-GFP foci segregate symmetrically as one entity in WT

MG1655 cells devoid of any FROS system that might perturb

Ter MD segregation. Colocalization of reporters from different

FROS systems with the MatP focus is consistent with the symmet-

ric segregation pattern of Ter loci reported in several studies with

FISH or FROS (Niki et al., 2000; Li et al., 2003; Bates and Kleckner,

2005; Adachi et al., 2008; Espéli et al., 2008). Discrepancies could

originate from the strain and growth conditions used by Wang

et al. (2005): both the numberand the positionof MatP foci in strain

AB1157 grown in minimal medium with glycerol differ from those

found either for strain MG1655 grown in the same conditions or for

the same AB1157 strain grown at a faster rate (Figure S4).

Organization of the Ter MD by MatP
By interacting with multiple dispersed target sites over a large re-

gion of the chromosome, MatP is reminiscent of the Spo0J and

Figure 6. MatP Controls DNA Compaction and Constrains DNA Mobility in Ter Macrodomain

(A) Genetic map of the matS4-matS14 segment of the Ter MD with coordinates indicated in kb. Position of the Ter-2 and Ter-4 parS markers, of matS4-matS14

sites and of the dif site is indicated.

(B) Interfocal distance was measured between foci of two Ter MD markers in WT and matP cells. Scale bars represent 2 mm.

(C) Histogram representing the proportion of cells with the different interfocal distances in WT and matP cells.

(D) The mobility of various loci in the chromosome was estimated by measurement of the absolute movement of the foci at the home position in time-lapse

experiments with 10 s intervals (NSR-2, NSL-3, Ter-6, Ter-8 [indicated in Figure S7]). The x-y coordinates of the foci at every time point were recorded, and

the distances traveled in the 10 s interval were calculated. The absolute value of the distance for every interval was added progressively over 5 min. The mobility

of Ter-6 and Ter-8 markers was measured in both WT and matP cells and that of NSR-2 and NSL-3 in WT cells.

(E) Mean square displacement (MSDxy) for time intervals (t) between 10 and 250 s are plotted on linear axes for the markers indicated in (D).
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RacA systems. Chromosome segregation upon entry into spor-

ulation in B. subtilis involves remodeling and anchoring of the

chromosomes to the cell poles. RacA binds preferentially to ram

sites but also with less affinity to the bulk chromosomal DNA.

Strong protein-protein interactions allow DNA compaction. RacA

molecules bound to ram sites form an adhesive structure that

anchors the origin regions at the poles, while nonspecific binding

of RacA to the entire chromosome may induce remodeling of

the chromosome into a serpentine-like nucleoid (Ben-Yehuda

et al., 2005). Spo0J, upon binding to parS sequences, spreads

into flanking DNA over 5–10 kb, forming ‘‘Spo0J domains’’ (Mur-

ray et al., 2006). The long-range organization of the oriC region is

modulated by Soj protein that has the ability to coalesce different

Spo0J domains (Marston and Errington, 1999). The role of Spo0J

spreading in the Ori region is not clearly defined and may be re-

quired for the proper positioning and/or the organization of the

oriC region. The comparison between MatP and RacA or Spo0J

may be limited to the distribution of the target sequences be-

cause both the mechanisms used and the rationale for organiz-

ing chromosomal subregions are different. Concerning the mode

of interaction with DNA, MatP binds matS sequences, and no

spreading to flanking DNA or nonspecific binding to other re-

gions has been detected. On average, matS motifs are present

at one copy every 40 kb, and matS sites exert effects over dis-

tances greater than 40 kb (Figure 5). Different mechanisms can

be proposed to explain how MatP dimers interact with and affect

DNA over a large distance. First, one can imagine that the relative

proximity of several matS sites in supercoiled plectonemic DNA

allows contacts between the different dimers of MatP bound to

matS sites and that the intervening DNA would be looped out.

Such a mechanism would be reminiscent of the functional fila-

ment aggregates formed by the polymerization of SeqA dimers

(Guarne et al., 2005). In an alternative model, matS-MatP com-

plexes might act as nucleation sites for an as-yet-unknown fac-

tor that does spread several kb along the DNA.

MatP also contrasts with Spo0J and RacA by organizing the

region opposite to oriC rather than the Ori region itself. MatP ap-

pears to be the first protein described that is involved in the

organization of the chromosome terminus. It is not yet known

whether MatP localization relies on the interaction with a particu-

lar cellular structure as observed for RacA or whether it depends

on the orientation of the chromosome and the position of matS

sites in the cell as observed for Spo0J (Lee et al., 2003). The MatP

focus is present and shows dynamic behavior during the entire

cell cycle, suggesting that attachment to the chromosome rather

than anchoring to a cellular structure might account for the local-

ization of MatP foci.

Control of Ter MD Segregation by MatP
Segregation of the E. coli chromosome has been described in

different studies. Several studies agree on the existence of an

extended colocalization of duplicated Ter regions that segregate

only a few minutes before division (Li et al., 2003; Bates and

Kleckner, 2005; Adachi et al., 2008; Espéli et al., 2008). A striking

defect associated with MatP inactivation is the early segrega-

tion of duplicated Ter MDs (Figure 7). Remarkably, MatP inacti-

vation is specific for Ter MD segregation since the segregation

of markers in other regions is not affected. Our results confirm
that chromosome segregation in E. coli is a tightly controlled

process. Not only does accurate transmission of chromosomes

into daughter cells rely on early segregation of the Ori region,

involving migS and MukBEF (Ohsumi et al., 2001; Yamaichi

and Niki, 2004; Danilova et al., 2007), but our results also reveal

that it requires a delay in Ter MD segregation, promoted by

MatP. Upon completion of replication, duplicated MDs are kept

together by MatP close to midcell (Figure 7). The size of the MatP

focus is similar to that of the Ter MD territory, and, in more than

85% of the cells, markers of the Ter MD are localized in the MatP

focus, suggesting that MatP contributes to the definition of the

Ter MD cage. About 30 min before division, the Ter MDs individ-

ualize and segregate to daughter cells. The splitting of the MatP

focus gives rise to two MatP foci concomitantly with the separa-

tion of the two Ter MDs. Initiation of Ter MD segregation might

therefore be under the control of factor(s) that destabilize the

MatP-dependent Ter MD colocalization either directly or indi-

rectly, for example through the force applied to drive Ter MD

segregation.

Figure 7. A Model for MatP-Dependent Ter Macrodomain Organiza-

tion during the Cell Cycle

The organization of the Ter MD (blue/cyan lines) by MatP is represented

through selected steps of the cell cycle in WT (left) and matP (right) cells. In the

WT strain, the MatP focus is represented as a green disk that coincides with

the Ter MD territory. In WT cells, the colocalization of the condensed Ter

MDs remains until 30 min before division (vertical black bar), whereas, in the

matP strain, condensation is altered and colocalization is looser and much

shorter (vertical degraded gray bar). In both strains, replication initiation (green

horizontal bar labeled R.I.) occurred in the mother cell. The Ter MD replication

takes place in the daughter cells; the end of replication is marked by the red

horizontal bar labeled R.E. The C period is represented by the green vertical

bar. The rest of the chromosome is represented arbitrarily as unfolded

(black/gray lines), and oriC is represented as a red dot.
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Chromosome Management at a Fast Growth Rate
Bacteria have the exceptional property of being able to drasti-

cally modify the cell-cycle parameters depending on growth

conditions. The cell cycle of slowly growing E. coli cells is remi-

niscent of that of eukaryotic cells, with G1-, S-, and G2/M-like

phases. However, in rich medium, the cell cycle is more compli-

cated because the time it takes to replicate the chromosome

can be longer than the generation time. Therefore, a new round

of replication must be initiated before the previous round is

completed. As a consequence, several overlapping replication

cycles are under way in the same cell, and the topological com-

plexity of the chromosome is increased. In this context, it is not

surprising that Ter MD organization and condensation involving

MatP is required under fast growth conditions, whereas it does

not notably perturb cell physiology in slow growth conditions.

A number of processes are already known to occur in the Ter

MD; they include termination of replication (Coskun-Ari and

Hill, 1997), decatenation of entangled chromosomes (Hojgaard

et al., 1999), chromosome dimer resolution (Blakely et al., 1991),

and coupling of replication with the cell cycle (Esnault et al.,

2007). A challenge now is to identify the MatP-dependent pro-

cess(es) required for proper chromosome management in

rapidly growing cells.

Constraints on DNA Mobility by MatP
MDs defined genetically as insulated regions in the cell showed

a limited mobility, whereas loci in NS regions exhibited a greater

mobility (Espéli et al., 2008). MatP is the main factor restricting

DNA mobility in Ter MD compared to mobility of NS regions.

The cage sizes of the Ter MD markers in matP cells are compa-

rable to those determined for NS region markers in WT cells.

These results support a model whereby DNA in E. coli cells is

constrained and the existence of two levels of DNA mobility

would result from a limitation of the mobility in MDs rather than

from a mobility increase in NS regions. Distinct DNA dynamics

coexist in eukaryotic nuclei, and this is thought to reflect con-

straints exerted at different loci by nuclear substructures. Re-

markably, the diffusion coefficients measured in E. coli are

comparable to those obtained in eukaryotic cells (Mearini and

Fackelmayer, 2006): in NS regions, the values are close to those

obtained for loci located in the internal part of the nucleus (3.5 3

10�12 cm2/s versus 3.7 3 10�12 cm2/s), whereas in MDs, the

values are similar to those of loci located at the nuclear periphery

(1.5 3 10�12 cm2/s versus 1.25 3 10�12 cm2/s). Thus, we have

shown that a DNA binding protein acting over a large distance

modulates DNA dynamics. As observed in eukaryotes, we can

rule out a role of gene activation in modulating DNA dynamics

in E. coli because the transcriptome profiles of genes present

in the Ter MD were not affected by MatP inactivation (R.M.,

F.B., and O.E., unpublished data). Our finding indicates that in

NS regions and in the Ter MD in the absence of MatP, bulk chro-

mosomal DNA in E. coli shows greater mobility. Interestingly, on

the basis of the efficiency of site-specific recombination reac-

tions, it was previously reported that the effective DNA concen-

tration of plasmids in vivo is one order of magnitude lower than

the chemical concentration (Hildebrandt and Cozzarelli, 1995).

NAPs were proposed to be responsible for this effect since, as

predicted for integration host factor (IHF) (Murtin et al., 1998),
484 Cell 135, 475–485, October 31, 2008 ª2008 Elsevier Inc.
they are thought to interact with most of the chromosomal DNA.

The abundance of NAPs combined with their nonspecific bind-

ing and potent DNA bending activities could account not only

for the reduction of the effective DNA concentration in the cell

but also for the high mobility of the DNA molecule through rapid

and unstable interactions. Characterization of the MatP interac-

tion with Ter MD DNA and its influence on local chromatin

composition will shed light on the parameters governing DNA

mobility in prokaryotic cells.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Plasmids, and Growth Conditions

E. coli K12 strains are all derivatives of MG1655. Standard growth, transforma-

tion, and transduction procedures used were as previously described (Valens

et al., 2004). parS tags and antibiotic resistance genes were integrated as

described before (Espéli et al., 2008). Plasmids and strains with relevant geno-

types are described in Tables S3 and S4. The strains were grown in liquid

Lennox medium at 30�C or 37�C, liquid minimal medium A supplemented with

0.1% casamino acids and 0.4% glucose at 30�C. The position of parS tags is

indicated in Table S5.

Statistical Analysis

To evaluate the exceptionality of motif (hereafter called ‘‘word’’) frequencies,

we used the R’MES software (http://genome.jouy.inra.fr/ssb/rmes/). Prior to

statistical analysis, all repeats of a size greater than 40 bps were masked

with the Vmatch software (http://www.vmatch.de/). Two files corresponding

to the sequence of the Ter MD in E. coli MG1655 (coordinates 1,229,217 to

1,900,000, GenBank strand) and to the sequence of the E. coli MG1655 ge-

nome outside the Ter MD domain were generated. Words were considered to-

gether with their reverse-complementary sequence. We used the a posteriori

prediction of the known parS site of B. subtilis in order to define two important

parameters: the length of the words to be analyzed and the order of Markov

chain used as a model for estimating expected counts of each word (Supple-

mental Experimental Procedures, Figure S8, and Table S7). Analyzing words

of 11 bp with a Markovian model of order 5 (taking into account mono- to

hexamer composition) allowed the identification of one of the parS submotifs

as the most exceptional in the origin proximal domain of the B. subtilis ge-

nome. We therefore computed the exceptionality score for all 11 bp words

of the Ter MD of E. coli with a Markovian model of order 5. In addition to this

exceptionality criterion, a ‘‘contrast’’ criterion was used: words that were more

exceptional inside than outside the Ter MD were selected. For this, a binomial

test was applied, determining whether the exceptionality of each of the

505,775 11-mers present at least once in the Ter MD was significantly higher

inside than outside the domain (Robin et al., 2007). The ten most exceptional

candidates in the Ter MD having a contrast p value below 5% are listed in Table

S1, and, remarkably, six are overlapping.

Long-Range DNA Interactions

The recombination test measuring DNA collisions was performed as described

previously (Valens et al., 2004). Because cells showed important growth

defects in conditions used before (rich medium), recombination assays were

performed in minimal medium and the recombinase expression was induced

for 10 min at 38�C at OD600 = 0.2.

Chromatin Immunoprecipitation

ChIP assays were performed as described (Danilova et al., 2007) with an affin-

ity purified polyclonal antibody against MatP. Hybridization of Panorama gene

arrays was performed with a32P-dCTP-labeled probes generated by random

priming of 50 ng of immunoprecipitated or total E. coli DNA.

Light and Fluorescence Microscopy

Microscopy observations were as described before (Espéli et al., 2008).

http://genome.jouy.inra.fr/ssb/rmes/
http://www.vmatch.de/


SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, eight

figures, and eight tables and can be found with this article online at http://
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Moléculaire, Structurale (F.B.), and the Association pour la Recherche sur le

Cancer (F.B.).

Received: April 11, 2008

Revised: July 8, 2008

Accepted: August 18, 2008

Published: October 30, 2008

REFERENCES

Adachi, S., Fukushima, T., and Hiraga, S. (2008). Dynamic events of sister

chromosomes in the cell cycle of Escherichia coli. Genes Cells 13, 181–197.

Bates, D., and Kleckner, N. (2005). Chromosome and replisome dynamics in

E. coli: loss of sister cohesion triggers global chromosome movement and

mediates chromosome segregation. Cell 121, 899–911.

Ben-Yehuda, S., Fujita, M., Liu, X.S., Gorbatyuk, B., Skoko, D., Yan, J., Marko,

J.F., Liu, J.S., Eichenberger, P., Rudner, D.Z., and Losick, R. (2005). Defining

a centromere-like element in Bacillus subtilis by Identifying the binding sites for

the chromosome-anchoring protein RacA. Mol. Cell 17, 773–782.

Blakely, G., Colloms, S., May, G., Burke, M., and Sherratt, D. (1991). Escher-

ichia coli XerC recombinase is required for chromosomal segregation at cell

division. New Biol. 3, 789–798.

Brezellec, P., Hoebeke, M., Hiet, M.S., Pasek, S., and Ferat, J.L. (2006). Do-

mainSieve: A protein domain-based screen that led to the identification of

dam-associated genes with potential link to DNA maintenance. Bioinformatics

22, 1935–1941.

Coskun-Ari, F.F., and Hill, T.M. (1997). Sequence-specific interactions in

the Tus-Ter complex and the effect of base pair substitutions on arrest of DNA

replication in Escherichia coli. J. Biol. Chem. 272, 26448–26456.

Danilova, O., Reyes-Lamothe, R., Pinskaya, M., Sherratt, D., and Possoz, C.

(2007). MukB colocalizes with the oriC region and is required for organization

of the two Escherichia coli chromosome arms into separate cell halves. Mol.

Microbiol. 65, 1485–1492.

Esnault, E., Valens, M., Espeli, O., and Boccard, F. (2007). Chromosome struc-

turing limits genome plasticity in Escherichia coli. PLoS Genet. 3, e226.
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