

Edinburgh Research Explorer

Top-percentile traffic routing problem by dynamic programming

Citation for published version:
Grothey, A & Yang, X 2011, 'Top-percentile traffic routing problem by dynamic programming', Optimization
and engineering, vol. 12, no. 4, pp. 631-655. https://doi.org/10.1007/s11081-010-9130-2

Digital Object Identifier (DOI):
10.1007/s11081-010-9130-2

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Optimization and engineering

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. May. 2024

https://doi.org/10.1007/s11081-010-9130-2
https://doi.org/10.1007/s11081-010-9130-2
https://www.research.ed.ac.uk/en/publications/64af42d1-6f5e-4dd1-9cd7-c282212c231e

Top-percentile traffic routing problem by

Dynamic Programming

Andreas Grothey, Xinan Yang
School of Mathematics

College of Science and Engineering
The University of Edinburgh

May 6, 2009

Abstract

Multi-homing is a technology used by Internet Service Provider
(ISP) to connect to the Internet via different network providers. To
make full use of the underlying networks with minimum cost, an op-
timal routing strategy is required by ISPs. This study investigates
the optimal routing strategy in case where network providers charge
ISPs according to top-percentile pricing. We call this problem the
Top-percentile Traffic Routing Problem (TpTRP). The TpTRP is a
multistage stochastic optimisation problem in which routing decision
should be made before knowing the amount of traffic that is to be
routed in the following time period. The stochastic nature of the
problem forms the critical difficulty of this study.

In this paper several approaches are investigated in modelling and
solving the problem. We begin by modelling the TpTRP as a multi-
stage stochastic programming problem, which is hard to solve due
to the integer variables introduced by top-percentile pricing. Several
simplifications of the original TpTRP are then explored in the sec-
ond part of this work. Some of these allow analytical solutions which
lead to bounds on the achievable optimal solution. We also establish
bounds by investigation several “naive” routing policies. In the end,
we explore the solution of the TpTRP as a stochastic dynamic pro-
gramming problem by a discretization of the state space. This allows
us to solve medium size instances of TpTRP to optimality and to
improve on any naive routing policy.

1

Grothey, A & Yang, X 2012, 'Top-percentile traffic routing problem by dynamic
programming', Optimization and Engineering, vol. 12, no. 4, pp. 631-655

1 Introduction

Internet Service Providers (ISPs) do not generally have their own network
infrastructure to route the incoming traffic of their customers, but instead use
external network providers. Multi-homing is used by ISPs to connect to the
Internet via more than one network provider (see Figure 1). This technique
is becoming more and more popular in ISP organisations as it improves the
reliability and quality of service of the ISP. When failure occurs in one of the
networks or its quality degrades, the ISP can use an alternative network.

customer

customer

customer

customer

ISP Internet

network 1

network 2

network 3

Figure 1: ISP connect customers to the Internet under multi-homing technique

However, an ISP that uses multi-homing is subject to extra charges due
to the use of multiple networks. Important questions that are faced by such
an ISP is how to assign traffic among network providers to minimize the
inflicted cost of multi-homing. Of course, the answer to this question depends
on the pricing policy used by network providers. In this work we consider
top-percentile pricing.

Top-percentile pricing is a relatively new and increasingly popular pricing
policy used by network providers to charge service providers, that is quickly
becoming established in [7]. In this scheme, the network provider divides
the charge period, say a month for example, into several time intervals with
equal, fixed length. Then, it measures and evaluates the amount of data
(traffic) sent in these time intervals. At the end of the charge period, the
network provider select the traffic volume of the top q-percentile interval as
the basis for computing the cost. For example, if the charge period (i.e. 30
days) is divided into 4320 time intervals with the length of 10 mins, and if
top 5-percentile pricing is used, the cost computed by top-percentile pricing
is based on the traffic volume of the top 216th interval.

2

Figure 2: Random traffics, reordered traffics and the top-percentile on which charge are based

It is worthwhile to point out that, under top-percentile pricing, the ISP
can ship several traffics via a network without being charged by its provider.
For example, Figure 2 shows a simplified top-percentile pricing procedure, in
which we have 10 time intervals in total and are charged according to the 3rd
highest volume of shipped traffic. In this instance, every time interval gets a
nonzero amount of traffic shipped. If the network provider charges c on per
unit traffic shipped during the top-3rd time interval, then the cost amounts
to cT 3. However, if the ISP send no more than 2 traffics to a network during
the charge period, it will not be charged by this network provider as there is
no traffic in the 3rd highest time interval. So that under pure top-percentile
pricing policy, the ISP has a chance to not be charged by a network provider
although it did send data with it.

Traditionally, network providers have used pricing policies such as fixed-
cost pricing and per-usage pricing. Under per-usage pricing, the ISP pays for
the actual amount of traffic shipped over the charge period, while fixed-cost
pricing means the ISP pays a fixed price for the charge period regardless
of the amount of traffic shipped. The optimal routing policies under these
pricing mechanisms have been explored in the past literature. For example,
Altman et al. [1] and Wang, Schulzrinne [11] investigate the competitive
routing problem under per-usage pricing, while the fixed-cost price routing
policy is investigated in [8], [5]. In contrast to the traditional pricing policies,
very little work has been done on network design and operation under top-
percentile pricing. The deterministic problem (in which we assume that we
know all the volumes of traffic in advance) has been analysed in [3], where
the authors build a mixed-integer linear programming model and develop
an efficient B&B algorithm to solve it. For stochastic considerations, Levy
et al. in [6] develops a probabilistic model and provides an analysis of
the expected costs, thus demonstrate that multi-homing can be economical
efficient. On the other hand, Goldenberg et al. [4] focus on the development
of smart routing algorithms for optimising both cost and performance for
multi-homing users. However, to the best of our knowledge there is no result
dealing with the optimal multi-homing routing policy under top-percentile
pricing.

The purpose of this study is to determine the optimal routing strategy
under top-percentile pricing policy. Precisely, if all network providers charge

3

the ISP based on the volume of the top q-percentile time interval’s traffic, how
to allocate all time intervals’ traffics among those networks to minimise the
total cost charged on the ISP. In practise, network providers might combine
top-percentile pricing with other pricing policies. In this work however, we
investigate the optimal multi-homing routing policy in the context of pure
top-percentile pricing, namely network providers charge the ISP according to
and only according to the traffic volume on the top-percentile time interval.
For the reason of clarity, in the following parts of this paper we call this
problem, the Top-percentile Traffic Routing Problem (TpTRP). We assume
that the ISP can not anticipate the volume of future traffics. Instead, what
the ISP knows are the probabilistic distributions of every time intervals’
traffic. Under this precondition, the TpTRP becomes a multi-stage stochastic
problem in which decision should be made under significant uncertainty.

As a starting point, we model the TpTRP as a multi-stage stochastic
programming problem. Unfortunately, the modelling of the top-percentile
cost requires the introduction of integer variables within the last time stage.
This makes the multi-stage stochastic programming model too difficult to be
solved for any but the smallest instances. On the other hand, we suggest
two simplifications of the model which are analytically solvable. The naive
routing policies derived from them provide us with lower and upper bounds on
the optimal solution of the TpTRP. Finally we suggest to solve the TpTRP as
a stochastic dynamic programming problem by a discretization of the state
space. This model is solvable for medium size instances, giving a routing
policy which outperforms any naive routing policy. With some modifications,
the decision rule concluded from this routing policy can be implemented on
real-size instances as well and likewise outperforms any naive routing policy.

The remainder of this report is organised as follows. In Section 2 we in-
troduce the multi-stage mixed-integer stochastic programming model arising
from the TpTRP and demonstrate the difficulties in solving it. Section 3 is
about the simplifications, where we derive several naive routing policies. We
present the discretization step, build the stochastic dynamic programming
model of TpTRP in Section 4. Then in Section 5, we numerically examine
the quality and reliability of all the routing policies we produced by imple-
menting them onto several instances. Finally, conclusions and future works
are summarised in Section 6.

4

2 Stochastic Programming Model

2.1 Problem specification

• I, |I| = n : The set of network providers.
There are n underlying network providers. We assume that all the
network providers use top-percentile pricing with a same percentile
parameter q. Network provider i charges ci per unit of traffic transfered
on the top-percentile interval. We assume further that there is no upper
bound on the volume of traffic that can be transfered by each network
provider, and no failure occurring in any network during the charge
period.

• Γ : The set of time intervals.
We assume that all network providers divide the charge period into the
same |Γ| time intervals of equal length.

• θ = ⌊|Γ| ∗ q⌋: The index of the top-percentile time interval.
Cost inflicted on the ISP charged by network provider i is a function of
the traffic volume sent within the θ-th highest time interval by network
provider i. Namely Costi = ciyi, if yi is the θ-th highest volume of
traffic shipped by network provider i.

• T τ , τ ∈ Γ : The volume of traffic required to be sent in time interval τ .
We assume that before the routing decision for period τ is made, T τ (ωτ)
is a random variable depending on the random event ωτ .

• xτ = (xτ
1 , x

τ
2, ..., x

τ
n)T , τ ∈ Γ : The routing decision for time interval τ .

At the beginning of every time interval, a routing decision xτ should be
made without knowing the amount of traffic T τ . The question is, what
are the possible choices of decision? For example, we can make decision
on the fraction of traffic T τ to be sent by every network provider.
However, this is not the only possible choice.

t(t−1) (t+1)

for stage t+1
make decision

for stage t
make decision

see realization and implement decision

Figure 3: Process of data revelation and implementation of decisions

5

As shown in Figure 3, T τ is the cumulative data sent during time in-
terval τ , the complete amount of T τ is not fully revealed until the end
of the time interval. However, any traffic must be sent as soon as it
is generated, according to the routing decision we have made. There-
fore a necessary condition for a feasible routing decision is that it is
implementable without knowing the volume of traffic. For example, we
could route traffic up to a threshold amount with one network provider
and split the remainder among the rest network providers according to
some predetermined fractions.

2.2 Multi-stage mixed-integer stochastic programming
model

Now we build the stochastic programming model for the TpTRP. We treat
every time interval as a stage; during each of the |Γ| stages, a routing decision
has to be made on how to route that time interval’s traffic with the available
network providers. The decision xτ

i is the fraction of traffic T τ to be sent by
network provider i: so that the volume of traffic for network i is xτ

i T
τ .

Let ωτ = (ω1, ω2..., ωτ) be the information available at time stage τ ,
i.e. the realisations of the traffic volumes T 1, T 2, ..., T τ . Further denote by
xτ = (x1, x2, ..., xτ) the history of routing decisions up to time stage τ . Let
Qτ (xτ , ωτ) denote the value function at time stage τ , i.e. the expected cost
of being at time stage τ with decision history xτ and traffic realisations ωτ .
Then for stages τ = 0, ..., |Γ| − 1, the TpTRP can be stated in recourse form
as:

Qτ (xτ , ωτ) = min
xτ+1

Eωτ+1(Qτ+1(xτ+1, ωτ+1))

s.t. :
∑

i∈I

xτ+1
i = 1,

0 ≤ xτ+1
i ≤ 1, ∀i ∈ I

For terminal conditions, given all the decisions up to time stage |Γ|, an
additional stage |Γ| is added to calculate the cost implied by the decision
set x|Γ| = (x1, x2, ..., x|Γ|) under top-percentile pricing policy. We introduce

binary variables z
τ,ω|Γ|

i to distinguish whether a particular time interval τ is in
the top q-percentile time intervals shipped by network provider i, under the
realisations ω|Γ| = (ω1, ω2, ..., ω|Γ|). With the help of these binary variables

we can finally find the volume of the top-percentile traffic y
ω|Γ|

i for network
provider i, thus the cost charged on the ISP. For stage τ = |Γ|,

6

Q|Γ|(x|Γ|, ω|Γ|) = min
z

∑

i∈I

ciy
ω|Γ|

i

s.t. :
∑

τ∈Γ

z
τ,ω|Γ|

i ≤ θ, ∀i ∈ I

xτ
i ω

τ − y
ω|Γ|

i ≤ z
τ,ω|Γ|

i ωτ , ∀i ∈ I, ∀τ ∈ Γ

z
τ,ω|Γ|

i ∈ {0, 1}, ∀i ∈ I, ∀τ ∈ Γ

From the above discussion we can see that the last stage problem is just
determining the volume of top q-percentile traffic for every network provider,
i.e. the θth highest volume of {x1

i ω
1, x2

i ω
2, ..., x

|Γ|
i ω|Γ|} for network provider

i. Although this step seems easy conceptually, it has to be modelled using
integer variables, because the θ−th highest volume of {x1

i ω
1, x2

i ω
2, ..., x

|Γ|
i ω|Γ|}

is non-convex in its arguments.
In conclusion, we build a (|Γ| + 1)-stage mixed-integer stochastic pro-

gramming model with binary requirement only on some of the last stage
variables to model the TpTRP. Given a discrete set of random realisations
Ωτ , τ = 1, ..., |Γ|, the deterministic equivalent of this multi-stage stochastic
model is:

obj = min
x1

Eω1∈Ω1 [min
x2

Eω2∈Ω2 [...[min
x|Γ|

Eω|Γ|∈Ω|Γ|(min
z

∑

i∈I

ciy
ω|Γ|

i)]...]]

s.t. :
∑

i∈I

xτ,ωτ

i = 1, ∀τ ∈ Γ, ∀ωτ ∈ Ω1 × ... × Ωτ

xτ,ωτ

i ωτ − y
ω|Γ|

i ≤ z
τ,ω|Γ|

i ωτ , ∀i ∈ I, ∀τ ∈ Γ, ∀ω|Γ| ∈ Ω1 × ... × Ω|Γ|

∑

τ∈Γ

z
τ,ω|Γ|

i ≤ θ, ∀i ∈ I, ∀ω|Γ| ∈ Ω1 × ... × Ω|Γ| (2.1)

0 ≤ xτ,ωτ

i ≤ 1, ∀i ∈ I, ∀τ ∈ Γ, ∀ωτ ∈ Ω1 × ... × Ωτ

z
τ,ω|Γ|

i ∈ {0, 1}, ∀i ∈ I, ∀τ ∈ Γ, ∀i ∈ I, ∀τ ∈ Γ, ∀ω|Γ| ∈ Ω1 × ... × Ω|Γ|

Problem (2.1) is a standard mixed-integer stochastic programming prob-
lem. If we assume there are K discrete realizations ωτ ∈ Ωτ per stage (K =

|Ωτ |, τ = 1, ..., |Γ|), then the problem has (
|Γ|
∑

τ=1

Kτ−1 + |I| ·K |Γ| + |I| · |Γ| ·K |Γ|)

constraints and |I|·(
|Γ|
∑

τ=1

Kτ−1+K |Γ|+|Γ|·K |Γ|) variables of which |I|·|Γ|·K |Γ|

are integer.

2.3 Numerical results and difficulties

The simplest approach to solve the problem is to consider its deterministic
equivalent as a large scale monolithic mixed-integer linear program and to
apply a commercial standard solver, e.g. CPLEX, on it. Unfortunately,

7

the size and the integer nature of the problem prevents the efficient use of
standard commercial software, even on fairly small instances.

For example, in Instance 1 we assume that we have 2 potential network
providers to choose from, both of them divide the charge period into 5 time
intervals and charge based on the 2nd highest volume of traffic. Every time
interval’s traffic follow a same discrete distribution, with a mean value 8000.
At every time stage τ , the potential realisation set Ωτ = {6000, 8000, 10000}
and pr(6000) = pr(8000) = pr(10000) = 0.33. This leads to a stochastic tree
with 35 = 243 scenarios and a deterministic equivalent problem size of 3037
constraints and 3158 variables, in which 2430 are restricted to be binary.

Instead of trying to solve this problem we make a simplification on the
decision structure. We combine the first |Γ| stages together, making all
decision indifferently within the first time stage, and then compute the cost
in the final stage. This simplified two-stage model reduces the size of the
deterministic equivalent problem, however, it still need to examine 35 =
243 scenarios in total. In the deterministic equivalent, we get 10 first stage
variables and 2916 second stage variables, in which 2430 are restricted to be
binary. With 2921 constraints, this deterministic equivalent of the two-stage
mixed-integer stochastic model could not be solve to optimality by CPLEX.
(Elapsed time = 344722.09 sec. (tree size = 773.62 MB). Gap = 37.88%)

Although Instance 1 is a fairly small instance of the TpTRP, its de-
terministic equivalent is too large to be solved by commercial solver such
as CPLEX. In fact, multi-stage stochastic programming problems are well
known for being challenging both from theoretical and computational points
of view, because they can lead to very large scale problems with a large num-
ber of outcomes of the random parameters [2]. However, the difficulties we
are facing are much more challenging than this, as our program is a stochas-
tic program with integrality constraints in the last stage. Adding integrality
restrictions to the last stage problem significantly increases the complexity
of the problem. The main difficulty in solving stochastic integer programs is
that, when integrality restrictions are present in the last stage, the last stage
value function is not necessarily convex about previous stage variables but
only lower semi-continuous. Thus, most standard decomposition approaches
that work by building a precious convex under-estimator of the value function
break down when last stage integer variables are present.

In conclusion, the stochastic model arising from the TpTRP is hard to
solve as an mixed-integer multi-stage stochastic program.

8

3 Simplifications

Instead of focusing on the complex stochastic programming model and try-
ing to solve it, in this work we propose to solve the TpTRP by Stochastic
Dynamic Programming (SDP) using a discretization of the state space. Due
to the discretization, we will only solve an approximation of the original
TpTRP. The purpose of this section is to derive bounds on the cost of the
optimal routing policy, which can be used to evaluate the quality of the solu-
tion obtained by SDP. To obtain a lower bound we derive an analytic solution
of the deterministic version of the TpTRP, where we assume that we know
all future traffic volumes ahead of making the routing decisions. To obtain
upper bounds we analyse several plausible (although not optimal) routing
policies of increasing complexity.

3.1 Deterministic problem

Firstly, we consider the deterministic version of the TpTRP in which all
the volumes of traffic T τ , ∀τ ∈ Γ are known in advance. Without loss of
generality, we can reorder these traffics into a non-increasing order T 1 ≥
T 2 ≥ ... ≥ T |Γ|. The following lemma developed by Matthieu Chardy 1

(in an unpublished technical report) gives the necessary conditions that the
optimal routing policy should satisfy.

Lemma 3.1. In the optimal routing policy for the deterministic case, the θ-th
highest volume of traffic for all network providers apart from the cheapest one

is zero, namely the ISP will incur a charge only from the cheapest network

provider.

Proof. We proof this lemma by contradiction.
Without loss of generality, we assume that ci > cimin

, ∀i 6= imin. For a
specific routing policy, let ui, i ∈ I be the volume of the θ-th highest volume
of traffic shipped by network provider i. So that the cost charged on the ISP
by this routing policy is

∑

i∈I

ciui.

Assume that there is an i0 6= imin and ui0 > 0, we show that we can
reduce the objective value (cost) with a reallocation of the traffics:

• reallocate ui0 and all the lower traffics which were previously sent by
network provider i0 to network provider imin;

• leave all the rest allocation intact.

1Orange Labs, 38-40 rue du général Leclerc, BP 92130, Issy-les-Moulineaux.

9

With this reallocation, on one hand unew
i0

= 0, that is we reduce the cost
by ci0ui0 . On the other hand, since all the reallocated traffics are no greater
than ui0, therefore unew

imin
≤ cimin

(ui0 + uimin
), that is at worst the objective

increases by cimin
ui0. The total change in cost is thus (cimin

− ci0)ui0 , which
is strictly negative since ci0 > cmin. So, we have a better solution from the
reallocation, and proved by contradiction that all the network providers apart
from the cheapest one get a top-percentile traffic of zero.

From this lemma we can derive the optimal routing policy for the deter-
ministic case:

• No traffic is split, i.e. every time interval’s traffic is shipped by a single
network provider.

• The n(θ−1) highest traffics are allocated equally among the n network
providers.

• All the other lower volume traffics (as many as |Γ| − n(θ − 1)) are
allocated to the cheapest network provider.

By implementing this optimal routing strategy, all network providers
apart from the cheapest one get (θ−1) periods of traffic, therefore the charge
to the ISP is zero as the θ-th highest volume of traffic is left to be zero. On
the other hand, the top θth time interval for the cheapest network provider
has a volume of T n(θ−1)+1, which introduces a cost of cimin

T n(θ−1)+1. As a
result, the total cost charged to the ISP by involving the optimal routing
policy is equal to cimin

T n(θ−1)+1.
As we assume that we have full knowledge of the traffic ahead in time, the

optimal routing policy in the deterministic situation is not implementable.
However, it provides us with lower bound on all the stochastic routing poli-
cies. This lower bound can be used in practise to evaluate how good a routing
policy is.

3.2 Implementable routing policies

The aim of this section is to present three plausible routing policies of varying
complexity for which we can analytically derive the expected cost. Through-
out this section we need to assume:

(A1) All traffics T τ , τ ∈ Γ are independent and identically-distributed
and have compool support: [Tl, Tu].

10

(A2) We do not consider splitting the traffic, i.e. the whole traffic T τ for
every time interval τ is routed to a single network provider.

Let T τ , τ ∈ Γ be i.i.d random variables with probability distribution
function F (x) = pr(T τ ≤ x), x ∈ [Tl, Tu].

We start by deriving an expression for the expectation of the top-θth
volume of traffic. Let Y θ

|Γ| be the the volume of the θ-th highest out of |Γ|

traffics. The probability distribution function of Y θ
|Γ| is:

FY θ

|Γ|
(x) = Pr(Y θ

|Γ| ≤ x) =
∑

0≤j≤θ

B(j||Γ|, 1 − F (x)),

where B(j||Γ|, 1−F (x)) is the probability mass function of the binomial dis-
tribution, which represents the probability that exactly j out of |Γ| traffics are
greater than x. As FY θ

|Γ|
(x) is a absolutely continuous distribution function,

we define its density function as fY θ

|Γ|
(x) which satisfies

∫ Tu

Tl

fY θ

|Γ|
(x)dx = 1

and FY θ

|Γ|
(x) =

∫ x

Tl

fY θ

|Γ|
(t)dt, ∀x ∈ [Tl, Tu]. Accordingly, the expectation of

the volume of the top-θth traffic is given by:

E[Y θ
|Γ|] =

∫ Tu

Tl

xfY θ

|Γ|
(x)d(x).

Single-homing Routing Policy (SRP)

The first routing policy we consider is single-homing, e.g. send everything by
the cheapest network provider. The expected cost charged on the ISP will
be:

CostSRP = cimin
E[Y θ

|Γ|] = cimin

∫ Tu

Tl

xd(
∑

0≤j≤θ

B(j||Γ|, 1− F (x))) (3.1)

Trivial Multi-homing Routing Policy (TMRP)

Clearly the SRP is not good since we waste the (θ−1) ’free’ time intervals on
all network providers apart from the cheapest one. Instead we consider the
’trivial’ multi-homing routing policy that randomly routes (θ−1) time inter-
vals’ traffic to every network provider and the rest to the cheapest one. In this
way the ISP is only charged by the cheapest network provider, but uses the
free time intervals of all network providers. The expected cost is accordingly:

11

CostTMRP = cimin
E[Y θ

|Γ|−(n−1)(θ−1)]

= cimin

∫ Tu

Tl

xd(
∑

0≤j≤θ

B(j||Γ| − (n − 1)(θ − 1), 1 − F (x))) (3.2)

Analytical Routing Policy (ARP)

It is trivial that the expected cost of TMRP is always lower than SRP. This
means the routing policy derived from the single-homing architecture per-
forms worse than the Trivial Multi-homing Routing Policy. Now the question
is, whether we can improve on the TMRP.

The TMRP sends all the remaining time intervals’ traffic to the cheap-
est network provider after filling the free time intervals of every network
provider. However, it is not obvious that the lowest expected future cost is
incurred by choosing the cheapest network provider to send all the remain-
ing traffics. As an alternative we consider sending all the remaining traffics
to the network provider with the least expected future cost. Here we focus
on the minimum actual cost we are going to pay instead of simply choosing
the network provider with the least per unit cost. Following we give the
Analytical Routing Policy (ARP) in detail:

• Firstly, fill all the network providers’ free (θ − 1) time intervals with
the first n(θ − 1) traffics;

• Secondly, make decision on where to direct the (n(θ−1)+1)st, and all
the following time interval’s traffic by comparing the future expected
cost after time interval n(θ − 1). This means, we choose the deci-
sion which involves the least expected cost from n potential decisions:
D = {d1, d2, ..., dn}, where di represents ’allocate all the remaining traf-
fics to network provider i. The expected cost implied by decision d = di

is:

Costd=di
= ciE[θth highest out of T̂ 1

i , ..., T̂ θ−1
i , T n(θ−1)+1, ..., T |Γ|],

where T̂ j
i (known value) is the j-th highest volume of traffic that al-

ready been sent via network i, while T n(θ−1)+1, ..., T |Γ| are not yet re-
vealed traffics. Comparing the expected cost implied by every decision
we get the routing policy and thus the future expected cost:

CostARP = min
d∈D

Costd=di
. (3.3)

12

3.3 An example

In this section we give an example of TpTRP in which all time intervals’
traffic follow a same uniform distribution and derive the expected costs of
implementing the above routing policies on it. They will serve as benchmarks
to judge the quality of the routing policy obtained by SDP.

Assume that we have 2 network providers with cost c1 < c2. Both of them
divide the charging period into 10 time intervals and charge based on the 3rd
highest volume of traffic. Assume further that all time intervals’ traffic follow
a same uniform distribution with a cumulative distribution function:

FU(x) =

0, 0 ≤ x ≤ 6000
x−6000

8000
, 6000 < x < 14000

1, x ≥ 14000

Let Y k
m be the k-th highest traffic volume out of m random traffic. Then

the distribution function of Y k
m is

FY
k
m(x) = Pr(Y k

m ≤ x)

=
∑

0≤j<k

B(j|m, 1−FU(x)) =
∑

0≤j≤k

(

m
j

)

(
x − 6000

14000 − 6000
)m−j(

14000 − x

14000 − 6000
)j .

And its expectation is

E[Y k
m] =

∫ 14000

6000

xd(FY
k
m(x)) = 14000 −

k(14000 − 6000)

m + 1
.

According to formulae (3.1) and (3.2), the expected cost of implementing
the SRP and TMRP are thus:

CostSRP = c1E[Y 3
10] = 10 ∗ (14000 −

3 ∗ (14000 − 6000)

10 + 1
) = 118181.82.

CostTMRP = c1E[Y 3
8] = 10 ∗ (14000 −

3 ∗ (14000 − 6000)

8 + 1
) = 113333.33.

Similarly, we can compute the expected cost of applying the Deterministic
Routing Policy (DRP) if assuming we know all the traffic volumes in advance.
This gives

CostDRP = c1E[Y 5
10] = 10 ∗ (14000 −

5 ∗ (14000 − 6000)

10 + 1
) = 103636.36.

13

Now we show how to implement the ARP on the same example. It consists
of two steps: Firstly allocate T 1, T 2 to network provider 1 and T 3, T 4 to
network provider 2. Secondly, compare the expected cost of the following
two choices to make the routing decision for all following time stages (here
ωτ represent the realisation of traffic Tτ):

1. send T 5, ..., T 10 to network 1

Costd=d1
= c1E[top-3rd out of ω1, ω2, T

5, ..., T 10],

2. send T 5, ..., T 10 to network 2

Costd=d2
= c2E[top-3rd out of ω3, ω4, T

5, ..., T 10],

Take d = d1 for example, let A be the random variable representing
the 3rd highest volume of traffic out of ω1, ω2, T

5, ..., T 10, and FA(x) be the
probabilistic distribution function of A. Assume ω1 ≥ ω2, then

FA(x) = Pr(A ≤ x) =

F 0
6 (x), if ω1 ≥ x, ω2 ≥ x

F 1
6 (x), if ω1 ≥ x, ω2 ≤ x

F 2
6 (x), if ω1 ≤ x, ω2 ≤ x

So that Costd=d1
= c1E[A] =

∫ 14000

6000
xd(FA(x)).

For example, if ω1 = 13690, ω2 = 13361 and ω3 = 7730, ω4 = 7238, we
can compute

Costd=d1
= c1E[top-3rd out of 13690, 13361, T 5, ..., T 10] = 127659,

Costd=d2
= c2E[top-3rd out of 7730, 7238, T 5, ..., T 10] = 127295.

Comparing this two expected cost we find the decision d = 2 is better and
send all the remaining traffic to network provider 2. In fact with provider
costs c1 = 10 and c2 = 12, when ω1, ω2 are high enough (greater than
13000) and ω3, ω4 are relatively low (say less than 8000), it might be better
to allocate all the remaining traffic to the expensive network provider.

In theory, the ARP improves the TMRP by comparing the expected fu-
ture cost to make routing decision thus should cost less than the TMRP.
However, we cannot evaluate the cost of the ARP analytically. In Section
5.2 we evaluate the ARP on 1, 000, 000 random traffic scenarios and find

CostARP = 113351.84 ± 12.08.

14

4 Stochastic dynamic programming model

We have seen in Section 2.3 that the stochastic programming model of the
TpTRP is computationally intractable. On the other hand, Section 3 has
presented two radical simplifications of the decision process that result in
analytically solvable models (the deterministic model and the ARP model).
In this section we show how, by a discretization of the state space, the TpTRP
can be solved by Stochastic Dynamic Programming (SDP). We now define
the main modelling elements we need in the SDP model.

4.1 Main modelling elements

Stages

Stages in this problem can be defined naturally by the time interval. At
the beginning of every time stage, we observe on the current state and make
routing decisions for this time interval’s traffic.

States

In our problem, at the beginning of time interval τ , we know all the previous
realisations of traffic volumes T̂ t, t = 1, ..., τ − 1 and routing decisions xt

i, t =
1, ..., τ − 1. The implied usage T̂ t

i = T̂ txt
i, t = 1, ..., τ of network i can be

computed. These define the current state Sτ of the system. However in SDP,
we aim to build up value functions Vτ (S

τ) which represents the minimum
expected cost from time interval τ to the end, where the current state is Sτ .
In our case the cost is solely determined by the θ-th highest volume of traffic
for every network provider, at the end of the charging period. Since traffic
volumes T̂ j,τ

t , j > θ, τ = 1, ..., |Γ| cannot impact on the cost, we delete them
from the state space. Thus the state variable is described by

Sτ = (T̂ 1,τ
1 , T̂ 2,τ

1 , ..., T̂ θ,τ
1 ; T̂ 1,τ

2 , T̂ 2,τ
2 , ..., T̂ θ,τ

2 ; ...; T̂ 1,τ
n , T̂ 2,τ

n , ..., T̂ θ,τ
n).

In addition, as SDP finds a representation of Vτ (S
τ) by tabulating its

value for every possible state Sτ . In order to obtain a computationally
tractable model we need to discretize the state space.

Decisions

So far we have assumed that the traffic of any time interval is routed by a
single network provider. In practice, it is possible for us to split any time

15

interval’s traffic and send it through more than one network. Under top-
percentile pricing network provider i computes the cost based on the θ-th
highest volume of shipped traffic, namely costi = f(T̂ θ

i). If at the beginning
of time interval τ the θ-th highest volume of traffic sent via network provider
i is T̂ θ,τ

i , any allocation of less than T̂ θ,τ
i in the following time interval will

not change the price charged by this network provider. Therefore, the ISP
can ship at most

∑

i∈I T̂ θ,τ
i units of data without increasing the cost. We call

this amount, the ’Free’ volume of traffic in the following parts of this paper.

T̂ τ
Free =

∑

i∈I

T̂ θ,τ
i , (4.1)

We can ship up to this amount of traffic using this ’free capacity’ of each
network provider and make the routing decision only on the traffic in excess
of this amount. We define this amount of traffic as the ’additional traffic’:

TAdd(S
τ) =

{

T τ − T̂ τ
Free if T τ − T̂ τ

Free > 0
0 otherwise

Given a state Sτ , we make our decision on where to direct the ’additional
traffic’ to minimize the value function Vτ (S

τ). Furthermore for simplification,
in this model we do not split the ’additional traffic’. Namely at every stage,
we have a decision set with only n choices: X = {d1, ..., dn}, where di, i ∈
I represents routing the whole ’additional traffic’ via network provider i.
According to the discussion in Section 2.1, making decision on additional
traffic is implementable.

Formulations

An SDP problem can be written in terms of recursion that relates the value
of being in a particular state at one point in time to the value of the states
that we are carried into at the next point in time. The Bellman’s equation
for deterministic problems is: [8]

Vτ (S
τ) = min

xτ∈X
(Cτ (S

τ , xτ) + Vτ+1(S
τ+1(Sτ , xτ))),

where Cτ (S
τ , xτ) is the immediate cost of taking action xτ at state Sτ , Sτ+1

is the state we transition to if we are currently in state Sτ and take action
xτ .

In the stochastic case the Bellman’s equation becomes:

Vτ (S
τ) = min

xτ∈X
(

∑

ωτ∈Ωτ

pr(ωτ)Vτ+1(S
τ+1(Sτ , xτ , T

τ(ωτ)))), (4.2)

16

where Ωτ is the set of all the potential realisations of the new traffic T τ and
pr(ωτ) is the probability that T τ = ωτ occurs. Now Sτ+1 is a function of the
previous state Sτ , the decision xτ and the realization of traffic T τ .

The update from (Sτ , xτ , T
τ (ωτ)) to Sτ+1 is as follows (assuming the

decision is xτ = dî):

1. If the new traffic T τ (ωτ) is less than or equal to T τ
Free (as in formula

4.1):

T j,τ+1

î
= T j,τ

î
, j = 1, ..., θ

T j,τ+1
i = T j,τ

i , j = 1, ..., θ; i 6= î.

2. If the new traffic T τ (ωτ) is greater than T τ
Free:

T̃ j,τ+1

î
= T̃ j,τ

î
, j = 1, ..., θ − 1

T̃ θ,τ+1

î
= T τ (ωτ) −

∑

i6=î

T θ,τ
i ,

then reorder these θ values into a non-increasing order to obtain
(T 1,τ+1

î
, T 2,τ+1

î
, ..., T θ,τ+1

î
). For network provider i 6= î, the state vari-

able is remain the same:

T j,τ+1
i = T j,τ

i , j = 1, ..., θ; i 6= î.

In addition, at the last stage |Γ| + 1, we know all the routing decisions
and outcomes of traffic, we compute the cost charged on the ISP as follows:

V|Γ|+1(S
|Γ|+1) = V|Γ|+1(T

1,|Γ|
1 , T

2,|Γ|
1 , ..., T

θ,|Γ|
1 ; ...; T 1,|Γ|

n , T 2,|Γ|
n , ..., T θ,|Γ|

n) =
∑

i∈I

ciT
θ,|Γ|
i .

So that the complete recurrence function is:

Vτ (S
τ) = min

xτ∈X
(

∑

ωτ∈Ωτ

pr(ωτ)Vτ+1(S
τ+1)), τ = 1, ..., |Γ|

V|Γ|+1(S
|Γ|+1) =

∑

i∈I

ciT
θ,|Γ|
i

17

5 Numerical Results

5.1 Test Problems

In this section we give some numerical results on several small instances of
the TpTRP. For clarity, we firstly characterise and index these instances
which are examined in the later part of this section.

Parameters Stochastic InformationInstance
|Γ| θ n distribution time dependency

Instance 1 5 2 2 U(6000, 12000) i.i.d.
Instance 2 10 3 2 U(6000, 14000) i.i.d.
Instance 3 10 3 2 uniform see Fig. 5
Instance 4 10 3 2 truncated N(10000, 106) i.i.d.
Instance 5 10 3 2 truncated normal see Fig. 6

Table 1: List of TpTRP Instances

Table 1 summarises the instances used. Instance 1 is the one that we failed
to solve in the stochastic programming section, which is also the smallest one
listed here. For the other instances, we assume that we divide the modelling
region into 10 time intervals and cost are based on the time interval with
the θ = ⌊q ∗ |Γ|⌋ = 3rd (q = 0.3) highest volume of traffic. In all cases we
use 2 network providers (n = 2) with costs c1 = 10, c2 = 11, 12 or 15. Apart
from Instance 1, the other instances differ by the assumptions made on the
random traffic. In instance 2 and 4 the traffic in every period follows the same
uniform (U(6000, 14000) in Instance 3) or normal (N(10000, 106) in Instance
4) distribution. Instance 3 and 5 on the other hand, use traffic distributed
according to a time varying uniform or normal distribution. The parameter
for each time interval are displayed in Figures 4 and 5. Note that Instance 4
and 5 uses a truncated normal distribution in which traffic outside the 99.7%
(±3σ) confidence region is projected onto the boundary of the region.

time interval1 2 3 4 5 6 7 8 9 10

6000

8000

10000

12000

14000

volume

0

Figure 4: Upper and lower bounds for uniform distributions in Instance 3

18

6000

0

8000

10000

12000

1 2 3 4 8 105 6 7 time interval

14000

volume

9

Figure 5: Mean and 99.7% confidence region for normal distributions in Instance 5

5.2 Bounds on the TpTRP optimal solution for i.i.d.

traffic

In section 3.2, we have presented several simple routing policies of TpTRP
and also the theoretical expected cost of applying them on an example with
uniform i.i.d. traffic (same as Instance 2). In this section however, we will test
these plausible routing policies on a group of 1, 000, 000 random scenarios,
give the mean costs of implementing them in practice. As mentioned in
Section 3.2, the ARP is only applicable in case where traffic for different
time intervals are independent and identically distributed. Therefore we
consider Instance 2 and 4 and summarise the numerical test result in Table
2. The entries in this table is given in a format of ’Mean Cost±Standard
Deviation’.

Instance c2 SRP TMRP ARP DRP

11 118193.04±10.32 113352.46±12.07 113138.24±12.27 103659.85±11.54
Instance 2 12 118193.04±10.32 113352.46±12.07 113351.84±12.08 103659.85±11.54

15 118193.04±10.32 113352.46±12.07 113352.46±12.07 103659.85±11.54
11 129490.72±13.99 122749.70±20.28 122645.30±20.72 107256.27±26.01

Instance 4 12 129490.72±13.99 122749.70±20.28 122749.70±20.28 107256.27±26.01
15 129490.72±13.99 122749.70±20.28 122749.70±20.28 107256.27±26.01

Table 2: Numerical result (mean cost and standard deviation) of implementing simple routing policies
on 1, 000, 000 scenarios

We considered three different choices of the per unit cost for network
provider 2 (c2 = 11, 12 or 15), where c1 = 10. From this table we can see, the
inequality SRP ≥ TMRP ≥ ARP ≥ DRP holds for all choices of c2. Apart
from the ARP, the mean cost of all the other routing policies does not vary
with the change of c2, because they use no more than the free time intervals
of network provider 2. Moreover, in case where c2 = 11, the ARP performs

19

definitely better than the TMRP by using network provider 2 to send several
scenarios’ remaining traffic. For example for Instance 2 (c2 = 11), there
are 75, 932 out of 1, 000, 000 scenarios using network provider 2 to send the
remaining traffics, which leads to a definitely lower mean cost for the ARP
than TMRP. However, in case where c2 = 12 and c2 = 15, the difference
between these two routing policies is not significant as the standard deviation
is greater than the difference in mean cost.

In addition, comparing the mean cost for Instance 2 given in Table 2 with
the theoretical expected cost of applying those simple routing policies (given
in section 3.3), we see that in all cases, the theoretically obtained value is
within ±2σ of the result obtained by simulation, confirming our analysis.

5.3 SDP routing policy

To obtain the optimal routing policy by SDP, we discretize the possible traf-
fic volumes into a specific number of levels with equal size, and approximate
the continuous distribution functions of random traffic by discrete ones. For
example, if we discretize the traffic region [0, 14000] equally into 14 levels,
then we use Ω = {6000, 7000, ..., 13000} as the set of potential realizations of
traffic. In case of Instance 2 where uniform distribution is considered, we ap-
proximate it by the discrete distribution pr(1000 ∗ i) = 1/8, i ∈ {6, 7, ..., 13}.
Namely we always round the traffic down to the whole thousand.

With the discretization, we can solve the resulting TpTRP with SDP
techniques as shown in Section 4. By evaluating the minimization problem
(4.2), we get a decision on where to route the additional traffic at every time
interval, proceeding backwards in time. Finally we end up with a routing
table that gives for every stage and every state (i.e. the θ highest traffic
volumes by every network provider), the optimal routing decision for this
period’s additional traffic.

To evaluate the quality of this routing policy, we examine it in a simu-
lation of 1, 000, 000 random scenarios taken from the (original) continuous
distribution. We obtain a routing decision by rounding the current (contin-
uous) state down to the nearest tabulated discrete state.

Mean cost

For every problem instance, we experiment with different discretization levels,
to see how the discretization reflects the optimal routing policy. We also give
results of the numerical test on SRP, TMRP and DRP as a comparison.

Looking at Table 3 we can see, the SDP routing policy performs much
better (discretizing into more than 7 levels) than SRP and TMRP, and no

20

Instance SRP TMRP DRP levels SDPRP

7 107811.61±12.90
Instance 2 118193.04±10.32 113352.46±12.07 103659.85±11.54 14 106602.73±12.33

28 106203.10±12.17
7 105256.80±8.44

Instance 3 114351.48±7.61 104311.21±7.89 102319.77±7.05 14 103853.99±7.71
28 103375.22±7.54
7 115349.65±27.07

Instance 4 129490.72±13.99 122749.70±20.28 107256.27±26.01 14 113684.41±25.42
28 112426.28±24.37
7 117998.14±23.24

Instance 5 134311.75±13.88 123051.54±19.42 110998.99±22.17 14 116955.95±22.35
7 116394.02±22.00

Table 3: Numerical result (mean cost and standard deviation) of implementing SDP routing policy
(SDPRP) on 1, 000, 000 scenarios with c2 = 12

more than 10% higher than the lower bound – the DRP. Numerical results
in Table 3 show that the average cost is getting lower as the discretization
is getting finer. This means firstly, the optimal routing policy is changing
as the number of level changes, and secondly, the better results might be
achievable from an even finer discretization. However, both computation
time and memory use increase drastically with the use of more discretization
levels, therefore a finer discretization is not computable.

We summarise the numerical test results for c2 = 11 and c2 = 15 in Table
4 and 5 respectively. From these tables we can see, they are almost of the
same structure as when c2 = 12. Therefore, we have reason to believe that
our SDP model is a good approximation of the original TpTRP and provides
us implementable routing policy which performs significantly better than the
trivial routing policies.

Instance SRP TMRP DRP levels SDPRP

7 107219.29±12.69
Instance 2 118193.04±10.32 113352.46±12.07 103659.85±11.54 14 106090.86±12.18

28 105734.36±12.03
7 104728.46±8.15

Instance 3 114351.48±7.61 104311.21±7.89 102319.77±7.05 14 103543.13±7.53
28 103140.84±7.42
7 112736.85±27.45

Instance 4 129490.72±13.99 122749.70±20.28 107256.27±26.01 14 112284.40±25.95
28 111243.77±25.93
7 116876.23±23.50

Instance 5 134311.75±13.88 123051.54±19.42 110998.99±22.17 14 116048.43±22.47
7 115527.05±22.15

Table 4: Numerical result (mean cost and standard deviation) of implementing SDPRP on 1, 000, 000
scenarios with c2 = 11

21

Instance SRP TMRP DRP levels SDPRP

7 109022.21±13.42
Instance 2 118193.04±10.32 113352.46±12.07 103659.85±11.54 14 107432.60±12.60

28 106932.48±12.38
7 106260.86±9.04

Instance 3 114351.48±7.61 104311.21±7.89 102319.77±7.05 14 104197.98±7.92
28 103679.88±7.67
7 121318.02±23.87

Instance 4 129490.72±13.99 122749.70±20.28 107256.27±26.01 14 118532.91±22.55
28 116904.49±22.72
7 119729.13±22.76

Instance 5 134311.75±13.88 123051.54±19.42 110998.99±22.17 14 118916.88±21.67
7 118294.11±21.38

Table 5: Numerical result (mean cost and standard deviation) of implementing SDPRP on 1, 000, 000
scenarios with c2 = 15

Resource consumption

In our state variable

Sτ = (T̂ 1,τ
1 , T̂ 2,τ

1 , ..., T̂ θ,τ
1 ; T̂ 1,τ

2 , T̂ 2,τ
2 , ..., T̂ θ,τ

2 ; ...; T̂ 1,τ
n , T̂ 2,τ

n , ..., T̂ θ,τ
n),

parameters are the θ highest volume of traffics for every network provider.
Thus we have naturally T̂ 1,τ

i ≥ T̂ 2,τ
i ≥ ... ≥ T̂ θ,τ

i , ∀i ∈ I. If the traffic
region ([0, 14000] in our instances) is divided into L levels, there are at most

Cθ
L+θ−1 =

(

L + θ − 1
θ

)

2 underlying outcomes of the state variable Sτ
i =

(T̂ 1,τ
i , T̂ 2,τ

i , ..., T̂ θ,τ
i). In case where there are n network providers and |Γ| time

intervals in the TpTRP instance, we have a state space with |Γ|(Cθ
L+θ−1)

n

states in the underlying SDP model.
We need to compare the expected future cost Vτ+1(S

τ+1) for all states in
the subsequent stage τ + 1. After all routing decisions for stage τ have been
computed, the costs Vτ+1(S

τ+1) are not required anymore. Therefore it is
sufficient to store the Vτ (S

τ) value for two subsequent stages τ and τ +1. For
the routing decision xτ we have two choices. In the simplest case, all routing
decisions are computed (and stored) ahead of time. Implementing a routing
policy then amounts to simply looking up the corresponding x in a routing
table. However, it calls for a great quantity of computer memory to keep the
big decision matrix. For example in Instance 2 with 28 levels, the decision
matrix has 10(C3

30)
2 = 164836000 entries, it needs at least 628.80Mb to store

the decision matrix only, and at least 251.52M to store the value Vτ (S
τ) for

two stages.

2

(

L + θ − 1
θ

)

is the number of possibilities which satisfies T̂
j,τ
i ∈ Ωτ , j = 1, ..., θ and

T̂
1,τ
i ≥ T̂

2,τ
i ≥ ... ≥ T̂

θ,τ
i .

22

Also, running time is another important issue that we need to be con-
cerned about. In Table 6 we give a summary of the running time (to get the
decision table only) and the memory consumption (theoretical) in solving
the SDP model to optimality for Instance 2.

Problem Size Resource ConsumptionLevels
Level Length No. of States Running Time Memory Consumption

7 2000 7056 0.194s 0.38Mb
14 1000 313600 15.628s 16.75Mb
28 500 16483600 11487.095s 880.32Mb

Table 6: Comparison of problem size and resource consumption - original model for Instance 2

From Table 6 we can see that the number of state variables and thus the
memory consumption grows sharply with the number of discretization levels
of the traffic region. Namely, as quality of the routing policy enhances with
the increasing of number of levels, we have to pay for this enhancement.

Alternatively, apart from storing all the decisions in a big matrix, we can
regenerate the routing decisions xτ for a given stage only when needed. As the
SDP model is solved from back to the top, keep one decision means we choose
to drop all the decisions we have made for time stages {τ + 1, ..., |Γ|}, which
would be needed in the later stages. Hence to implement a routing policy
requires running the SDP model for |Γ| times. This costs us a great deal of
time. Table 7 gives a summary of running time and memory consumption in
this case. Note that as we need to know the current state to decide which
decision to generate at every time stage, we follow a single scenario in this
experiment. The running time shown in the table consists both the decision
generating time and the implementing time on this scenario. (Although
comparing with generating the decision, the implementation cost little.)

Problem Size Resource ConsumptionLevels
Level Length No. of States Running Time Memory Consumption

7 2000 7056 0.676s 0.11M
14 1000 313600 117.937s 4.79M
28 500 16483600 37687.800s 251.52M

Table 7: Comparison of problem size and resource consumption - alternative model for Instance 2

Looking at Table 7 we can see, although the memory consumption reduced
to about 1/4 of the previous amount, we have to spend much more time on
getting the decision for a single run. Moreover, this alternative model maybe
challenging to implement in reality. As shown in Figure 3, we know the
cumulative value of T τ−1 at the end of time stage τ − 1, where we can run
the SDP model to get the routing decision for time stage τ . However, the
end of time stage τ − 1 is also the beginning of time stage τ , where we need

23

to implement the decision xτ at once. So that we have no time to wait for the
decision xτ been generated, although it needs a significant amount of time
to do.

In general, there is a trade-off between running time and computer mem-
ory consumption. No matter which of these two is the critical issue, it does
prevent the use of the SDP model for finer discretization levels or larger prob-
lem instances. This is the well known ’curse of dimensionality’ in dynamic
programming. In conclusion, the SDP model provide us a routing policy
which is significantly superior to the simple routing policies and close to the
lower bound (optimal cost in deterministic case). However, the huge number
of states prevents the use of the SDP model on larger problem instances.

5.4 Implementable decision rule by classification

As shown above, the optimal routing policy given by the SDP model is
represented by a large discrete look-up table (7-dimensional for Instance 2,
3 and 4). This is caused by the fact that, in order to impose the traditional
SDP technique on the TpTRP, we discretize the continuous traffic space into
a discrete one. The discretization brings not only some errors within the
discretization step, but also a large decision table which consumes a great
amount of computer memory.

Realistic problems have much larger sizes than the ones we considered.
For example the ISP divides a month into 10mins intervals which leads to
4320 stages. Clearly the model as stated is not applicable to problems of
this size. Instead, we use a classification method (such as support vector
machines [10]) to help identifying the conditions under which the more
expensive provider (provider 2) should be used from the routing table. We
then extrapolate these conditions to the large problem instance.

After investigating the discrete decision table for Instance 2 with 7 levels,
we find that generally the SDP routing decisions can be simplified in the
following way (assuming we have 2 network providers with c1 = 10 and
c2 = 12):

• For time intervals {1, 2, 3}, send everything to the cheapest network
provider (network provider 1);

• For time intervals {4, 5, 6, 7}, (Sτ = (T̂ 1,τ
1 , T̂ 2,τ

1 , T̂ 3,τ
1 ; T̂ 1,τ

2 , T̂ 2,τ
2 , T̂ 3,τ

2))

1. if T̂ 2,τ
1 − T̂ 3,τ

1 ≥ 1500 and T̂ 1,τ
2 ≤ 2000, send the additional traffic

TAdd(Sτ) to network provider 2;

2. otherwise send the additional traffic TAdd(Sτ) to network provider
1.

24

• For time intervals {8, 9, 10},

1. if T̂ 2,τ
2 ≤ 1500, send the additional traffic TAdd(Sτ) to network

provider 2;

2. otherwise send the additional traffic TAdd(Sτ) to network provider
1.

This decision rule means, we prefer to send most time intervals’ traffic
by the cheapest network provider and no more than the additional amount
of traffic by the second network provider. If the two ’free’ (highest) traffics
sent by the cheapest network provider are high enough (relatively higher
than the 3rd highest one) and at the same time, the expected 3rd highest
volume of traffic for network provider 2 is small enough (say no more than
1500 here), then sending the additional traffic to network provider 2 is better.
Implementing this classified decision rule (CDR) on the instances, we get the
following results:

Instance SRP TMRP SDPRP - 7levels CDR DRP

Instance 2 118193.04±10.32 113352.46±12.07 107811.61±12.90 108805.82±13.03 103659.85±11.54
Instance 3 114351.48±7.61 104311.21±7.89 105256.80±8.44 108322.02±8.64 102319.77±7.05
Instance 4 129490.72±13.99 122749.70±20.28 115349.65±27.07 113195.86±25.77 107256.27±26.01
Instance 5 134311.75±13.88 123051.54±19.42 117998.14±23.24 120378.18±21.96 110998.99±22.17

Table 8: Numerical result (mean cost and standard deviation) of implementing CDR routing policy on
1, 000, 000 scenarios with c2 = 12

From this table we can see, the classified decision rule performs better
than the TMRP in Instance 2, 4 and 5. Moreover in Instance 4, it seems even
better than the exact SDP routing policy for in 7 levels model. Observing
this, we can develop routing policy for instances with more time intervals. For
example, in case where we extend the Instance 2 to 4320 time intervals and
both network providers charge the ISP based on the 216th highest volume of
traffic, implementing the following decision rule:

• For time intervals {1, 2, ..., 216}, send everything to the cheapest net-
work provider (network provider 1);

• For time intervals {216, 217, ..., 4014},

1. if T̂ 215,τ
1 − T̂ 216,τ

1 ≥ 1500 and T̂ 214,τ
2 ≤ 2000, send the additional

traffic TAdd(Sτ) to network provider 2;

2. otherwise send the additional traffic TAdd(Sτ) to network provider
1.

25

• For time intervals {4015, 4016, ..., 4320},

1. if T̂ 215,τ
2 ≤ 1500, send the additional traffic TAdd(Sτ) to network

provider 2;

2. otherwise send the additional traffic TAdd(Sτ) to network provider
1.

Test this routing decision on 1, 000, 000 random scenarios (uniform dis-
tributed with mean 10,000), the result is shown in Table 9. It is clear that
the extended routing policy performs better than the TMRP, although much
higher than the lower bound.

Index SRP TMRP CDR DRP

mean cost ± s.d 136001.02 ±2.63 135999.15±2.64 135792.52±2.76 132020.52±3.67

Table 9: Numerical result (mean cost and standard deviation) of implementing CDR routing policy on
1, 000, 000 scenarios with c2 = 12

6 Conclusions and future works

The above experiments on the SDP routing policy shows that, the TpTRP
can be solved by our SDP model for small instances. We demonstrate that
a good routing policy can obtain significantly better results than any naive
multi-homing routing policy. For instances with uniform or normal traffic
distributions, our corresponding SDP model gives routing polices whose nu-
merical result on random data is just slightly greater than the lower bound
(given by DRP). However, for the real-world size problem (4320 time inter-
vals and 5%-percentile pricing), modelling by the exact SDP yields too many
states which consumes too much computer memory to run. As an alterna-
tion, we abstract a decision rule from the small size instances, which can
be applied to real-world problems and the numerical test shows that it still
outperforms the naive routing policies.

In conclusion, DP model is a promising model for small scale TpTRP.
However, more work should be done in order to make the SDP model avail-
able for real-world sized problems. For example the Approximate Dynamic
Programming [9] technique is a promising avenue to avoid the curse of di-
mensionality. We leave this as future work.

26

References

[1] E. Altman, T. Basar, T. Jimnez, and N. Shimkin, Competitive

routing in networks with polynomial costs, IEEE Transactions on Auto-
matic Control, 47 (2002), pp. 92–96.

[2] J. Birge and F. Louveaux, Introduction to Stochastic Programming,
Springer, New York, 1997.

[3] M. Chardy, A. Ouorou, and T. VanDonselaar, Optimization of

interconnoction strategy in top-percentile pricing framework, technical
report, Orange Labs, France Telecom, 38-40 rue du général Leclerc, BP
92130, Issy-les-Moulineaux, 2009.

[4] D. Goldenberg, L. Qiu, H. Xie, Y. Yang, and Y. Zhang, Opti-

mizing cost and performance for multihoming, ACM SIGCOMM Com-
puter Communication Review, 34 (2004), pp. 79–92.

[5] M. Herzberg and F.Shleifer, Optimization models for the design

of bi-directional self-healing ring based networks, Teletraffic Science and
Engineering, 3 (1999), pp. 183–194.

[6] J. Levy, H. Levy, and Y. Kahana, Top percentile network pricing

and the economics of multi-homing, Annals of Operations Research, 146
(2006), pp. 153–167.

[7] A. Odlyzko, Internet pricing and the history of communications, Com-
puter Networks, 36 (2001), pp. 493–517.

[8] M. Paquet, A. Martel, and B. Montreuil, A manufacturing

network design model based on processor and worker capabilities, Inter-
national Journal of Production Research, 46 (2007), pp. 2009–2030.

[9] W. Powell, Approximate Dynamic Programming - Solving the Curses

of Dimensionality, John Wiley & Suns, New Jersey, 2007.

[10] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer,
1995.

[11] X. Wang and H. Schulzrinne, Pricing network resources for adap-

tive applications, IEEE/ACM Transactions on Networking (TON), 14
(2006), pp. 506–519.

27

