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SUMMARY

We recently found that hnRNP A1, a protein impli-
cated in many aspects of RNA processing, acts as
an auxiliary factor for the Drosha-mediated process-
ing of a microRNA precursor, pri-miR-18a. Here, we
provide the mechanism by which hnRNP A1 regulates
this event. We show that hnRNP A1 binds to the loop
of pri-miR-18a and induces a relaxation at the stem,
creating a more favorable cleavage site for Drosha.
We found that approximately 14% of all pri-miRNAs
have highly conserved loops, which we predict act
as landing pads for trans-acting factors influencing
miRNA processing. In agreement, we show that
20O-methyl oligonucleotides targeting conserved
loops (LooptomiRs) abolish miRNA processing
in vitro. Furthermore, we present evidence to support
an essential role of conserved loops for pri-miRNA
processing. Altogether, these data suggest the
existence of auxiliary factors for the processing of
specific miRNAs, revealing an additional level of
complexity for the regulation of miRNA biogenesis.

INTRODUCTION

MicroRNAs (miRNAs) are small noncoding RNAs that negatively

regulate gene expression of complementary mRNAs (Ambros,

2004; Bartel, 2004; He and Hannon, 2004). They have diverse

and unique expression patterns and have been implicated in

a number of biological processes (for recent reviews see (Bushati

and Cohen, 2007; Chang and Mendell, 2007). Many miRNAs

target mRNAs that are involved in proliferation, differentiation,

and apoptosis, and accordingly impaired microRNA processing

enhances cellular transformation and tumorigenesis (Kumar

et al., 2007). The biogenesis of miRNAs involves the cropping

and release of hairpin-shaped precursors (pre-miRNAs) in the

cell nucleus by the microprocessor complex, comprising the

RNase III type enzyme Drosha and its partner DGCR8 (Gregory

et al., 2004; Han et al., 2004; Zeng et al., 2005). Subsequent

events include the export of pre-miRNAs from the nucleus (Yi

et al., 2003; Lund et al., 2004) and further processing in the
Mole
cytoplasm by the type III ribonuclease Dicer into mature miRNAs

(Bernstein et al., 2001; Hutvagner et al., 2001).

It has been shown that in many physiological and pathological

conditions, individual miRNAs are subjected to posttranscrip-

tional regulation, both at the level of Drosha and/or Dicer

processing (Obernosterer et al., 2006; Thomson et al., 2006).

We have recently shown that hnRNP A1, a protein implicated in

many aspects of RNA processing, specifically binds to a miRNA

cluster containing pri-miR-18a and promotes production of

miR-18a above other members of the cluster (Guil and Caceres,

2007). This miRNA is expressed as a cluster of intronic RNAs, the

miR-17�18a�19a�20a�19b-1�92 microRNA polycistron, and

overexpression of this cluster accelerates c-myc-induced tumor

development in a mouse B cell lymphoma model (He et al., 2005).

Thus, the general RNA-binding hnRNP A1 protein acts as an

auxiliary factor for the processing of a miRNA precursor, pre-

miR-18a, at the level of Drosha processing (Guil and Caceres,

2007).

Here, we have elucidated the mechanism by which hnRNP A1

facilitates miR-18a production. We show that hnRNP A1 binds to

the loop of this pri-miRNA and induces a relaxation at the stem,

which is important for its processing. Furthermore, we show

that 14% of all pri-miRNAs have terminal loops that are well

conserved throughout evolution, and we predict that this reflects

their requirement for auxiliary factors that bind to this sequence.

By using 20-O-methyl oligonucleotides complementary to con-

served terminal loops of the corresponding pri-miRNAs, we

could efficiently block their processing. Accordingly, we demon-

strate that mutations in the terminal loop of pri-miR-18a that do

not affect the structural architecture of the stem abrogate its

efficient processing. Altogether, these data suggest the exis-

tence of auxiliary factors that bind to conserved terminal loops

and facilitate the processing of specific miRNAs, revealing an

additional level of complexity for the regulation of miRNA

production.

RESULTS

Identification of hnRNP A1 Binding Sites in Pri-miR-18a
Our previous data showed that hnRNP A1 facilitates processing

of miR-18a in a context-dependent manner, emphasizing the im-

portance of the pri-miRNA sequences surrounding miR-18a in

the requirement for hnRNP A1 (Guil and Caceres, 2007). In order
cular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier Inc. 383
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Figure 1. hnRNP A1 Binds to the Terminal

and Internal Loops of Pri-miR-18a, Causing

Relaxation of the Stem

(A) Footprint analysis of the pri-miR-18a_73 nt/

hnRNP A1 complex. Cleavage patterns were ob-

tained for 50 32P-labeled pri-miR-18a transcript

(100 3 103 c.p.m.) incubated in the presence of

increasing concentrations of recombinant hnRNP

A1 protein (+, 50 ng; ++, 100 ng; +++, 150 ng;

++++, 200 ng), treated with Pb (II)-lead ions

(0.5 mM). F and T identify nucleotide residues

subjected to partial digest with formamide (every

nucleotide) or ribonuclease T1 (G-specific cleav-

age), respectively. Thick lines on the right-hand

side indicate rows of nucleotides protected by

hnRNP A1. Positions of selected residues are

indicated.

(B) Cleavage pattern obtained for the unlabeled

pri-miR-17-18a-19 RNA cluster incubated in the

presence of hnRNP A1 protein (+ 50ng), treated

with Pb (II)-lead ions (0.5 mM) and ribonuclease

V1 (0.5 u/ml), detected by RT with a pri-miR-18a-

specific 32P-labeled oligonucleotide.

(C) Proposed structure of free and hnRNP

A1-bound pri-miR-18a. The sites and intensities

of cleavages generated by structure probes (pre-

sented below), located at the places of hnRNP

A1 binding are shown. Nucleotides are numbered

from the 50 site of Drosha cleavage.
to map the precise binding site/s of hnRNP A1 in pri-miR-18a

and to determine whether this binding influences the RNA archi-

tecture and/or thermodynamic properties that might facilitate its

processing, we analyzed its RNA secondary structure in the

presence or absence of recombinant hnRNP A1 protein. Foot-

print analysis, using Pb(II)-lead ions that cleave single-stranded

and relaxed nucleotides, revealed two hnRNP A1 binding re-

gions: a primary one corresponding to the terminal loop of pri-

miR-18a and a secondary site that corresponds to the bottom

of the stem (Figure 1A). Interestingly, both sites share some sim-

ilarity with the consensus hnRNP A1 binding site, UAGGGA/U,

that was previously identified by SELEX experiments (Burd and

Dreyfuss, 1994). These results were confirmed and extended

by the use of a variety of structural probes and by footprint

analysis of pri-miR-18a performed in the context of a transcript

encompassing the minicluster pri-miR-17-18a-19a. This analy-

sis revealed that the binding of hnRNP A1 to the internal loop

in the stem of pri-miR-18a not only confers protection to specific

nucleotides, but also results in relaxation of residues between

U56 and U60 that are involved in strong Watson-Crick pairing

in the unbound pri-miR-18a molecule (Figures 1B and 1C and

data not shown). The model shown on Figure 1C is based on

multiple experiments with pri-miR-18a with different length of

flanking sequences that showed highly reproducible patterns

(Figure S1 and data not shown). We also confirmed that within

the miR-17-18a-19a minicluster, pri-miR-18a displays the high-

est affinity toward hnRNP A1, as it was the only pri-miRNA
384 Molecular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier I
capable of efficiently competing the interaction with hnRNP A1

(Figure S2). Thus, the sequence and natural context of pri-miR-

18a might constitute a suboptimal recognition site for Drosha/

DGCR8 cropping. It is likely that hnRNP A1 bound to the stem

structure in pri-miR-18a acts to unwind or rearrange this RNA

structure, creating a more favorable cleavage site for Drosha.

This is most likely related to the reported unwinding/annealing

activities of hnRNP A1 (Kumar and Wilson, 1990; Pontius and

Berg, 1990; Munroe and Dong, 1992).

hnRNP A1 Acts to Remodel the Stem Structure
of pri-miR-18a Facilitating Drosha-Mediated Processing
In order to define potential structural features that make pri-miR-

18a processing dependent on hnRNP A1, we took advantage of

a highly related pri-miRNA sequence, pri-miR-18b, which is part

of the homologous primary cluster miR106a�18b�20b located

on chromosome X (Tanzer and Stadler, 2004) that was shown

to be processed independently of hnRNP A1 (Guil and Caceres,

2007). In the case of pri-miR-18b, we detected an increase in the

intensity of Pb(II)-lead ion cleavages between G54 and G63 that

mapped to the UC bulge (Figure S3 and Figure 2B). Thus, the

cleavage pattern of pri-miR-18b resembles the structural rear-

rangements seen in the stem of pri-miR-18a in the presence of

added recombinant hnRNP A1 protein, that is, the relaxation of

residues between U56 and U60 that are involved in strong Watson-

Crick pairing (Figure 1A and Figure S3). To establish the significance

of this observation, we introduced two nucleotide mutations on
nc.
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pri-miR-18a and pri-miR-18b in order to force structural changes

in the stems so that the conformation of the mutant pri-miR-18a

resembles the one from pri-miR-18b and vice versa (Figure 2B).

Footprint analysis confirmed that the designed mutations altered

only locally the conformation of the stem loops without perturb-

ing the rest of the structure (Figure S4). We then performed

in vitro processing assays on these new substrates in the context

of the pri-miR-17-18a-19a minicluster. As previously reported,

miR-18a was the only pri-miRNA whose processing was re-

duced when incubated in extracts from cells depleted of hnRNP

A1, since both the neighboring 17 and 19a pri-miRNAs were

Figure 2. A Fine Structural Alteration in

the Pri-miR-18a Stem Allows for hnRNP

A1-Independent Drosha Cleavage

(A) Sequences of the highly related pri-miR-18a

and pri-miR-18b.

(B) Schematic of the secondary structures of

wild-type and stem mutants of pri-miR-18a and

pri-miR-18b. Mutated nucleotides are bolded.

(C) In vitro processing of pri-miR-18a and the mu-

tant pri-miR-18a UC > GU substrate. Both radiola-

beled primary RNA sequences (50 3 103 c.p.m.)

were incubated in the presence of either control

HeLa extracts (lanes 2 and 5) or hnRNP A1-

depleted extracts (lanes 3 and 6). Lanes 1 and 4

show negative controls with no extract added.

Products were analyzed on an 8% polycrylamide

gel. The asterisk indicates the pre-miR-18a

product. M, RNA size marker.

(D) In vitro processing of pri-miR-18b and the mu-

tant pri-miR-18b GU > UC substrate. Both radiola-

beled primary RNA sequences (50 3 103 c.p.m.)

were incubated in control HeLa extracts (lanes 2

and 4). Lanes 1 and 3 show negative controls

with no extract added. Products were analyzed

on an 8% polycrylamide gel. The asterisk indicates

the pre-miR-18b product. M, RNA size marker.

insensitive to the reduced levels of

hnRNP A1 (Figure 2C, lane 3) (see also

(Guil and Caceres, 2007). Upon depletion

of hnRNP A1 achieved with an unrelated

set of siRNAs, we observed a similar

result, and the accumulation of the re-

maining RNA containing unprocessed

pre-miR-18a becomes more evident

(Figure S5B, asterisk). Strikingly, intro-

duction of a bulge in the pri-miR-18a

stem (UC / GU) made its processing

more efficient and completely indepen-

dent of the presence of hnRNP A1

(Figure 2C). This experiment clearly

shows that a pri-miR-18a with a local

structural change in its stem resembling

pri-miR-18b (or pri-miR-18a upon

addition of hnRNP A1 as shown on Fig-

ure 1C) is now processed independently

of hnRNP A1. By contrast, the mutation

in pri-miR-18b that eliminates the UC bulge (GU / UC) did

not make this substrate dependent of hnRNP A1 for its process-

ing but rather abrogated its processing in HeLa cell extracts

(Figure 2D). From these experiments, we conclude that the re-

quirement for hnRNP A1 as an auxiliary factor in the processing

of pri-miR-18a reflects the ability of this factor to bind and alter

the local conformation of the stem in the vicinity of Drosha cleav-

age sites. These results revealed that subtle structural features

in pri-miRNAs that are innate or arise from chaperone activities

of RNA binding proteins might facilitate their processing by

Drosha.
Molecular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier Inc. 385
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Conserved Terminal Loops in Pri-miRNAs
Since the footprint analysis showed that hnRNP A1 has a strong

binding site on the pri-miR-18a terminal loop, we next focused

on the significance of this interaction. It is assumed that the ter-

minal loops of pri-miRNAs are relatively functionally unimportant

(Han et al., 2006). This notion is in agreement with the poor phy-

logenetic conservation that most pri-miRNAs display along their

terminal loop regions, which contrasts with the high level of

conservation in the mature miRNA sequences (Berezikov et al.,

2005). We have noticed that the terminal loop of pri-miR-18a is

atypically well conserved across vertebrate species (Figure 3A,

compare with pri-miR-27a, which displays no special conserva-

tion in the loop, Figure 3B). Phylogenetic analysis of human pri-

miRNAs sequences revealed that �14% (74 out of 533) of the

miRNAs analyzed had similar high conservation pattern across

the whole pri-miRNA sequence (Figure 3C and Figure S6). It is

conceivable that the conservation of the terminal loops indicates

the need to preserve a platform for the binding of auxiliary factors

required for an efficient processing of these pri-miRNAs.

Figure 3. Multiple Sequence Alignments for

the Human Genome with 16 Other Verte-

brate Genomes Show Very High Level of

Conservation in the Terminal Loop Regions

of Some Human pri-miRNAs

(A) Conservation across pri-miR-18a corresponds

to a persistently high phastCons conservation

profile (the blue track labeled ‘‘Conservation’’)

across stem and terminal loop region predicted

by miRBase and EvoFold.

(B) Conservation across pri-miR-27a includes

a clear dip in phastCons conservation profile (the

blue track labeled ‘‘Conservation’’) corresponding

to the terminal loop region predicted as above.

(C) A list of 74 pri-miRNAs with unusually highly

conserved terminal loops is shown.

Oligonucleotides Complementary
to Conserved Terminal Loops,
LooptomiRs, Block pri-miRNA
Processing
In this regard and to evaluate the role of

conserved terminal loops in pri-miRNA

biogenesis, we performed in vitro pro-

cessing assays in HeLa extracts with

the addition of 20-O-methyl-modified

oligonucleotides complementary to se-

quences in the terminal loops, which we

termed LooptomiRs (for Loop Targeting

Oligonucleotide anti miRNAs). We found

that the Drosha-mediated processing

of pri-miR-16-1 and pri-miR-27a, which

bear nonconserved terminal loops, was

not affected by the addition of comple-

mentary looptomiRs (Figures 4A and

4B). This observation was in agreement

with a previous study showing that pri-

miR-16-1 did not require the terminal

loop for its efficient processing (Han

et al., 2006). By contrast, looptomiRs designed against a number

of conserved terminal loop sequences, including those of

pri-miR-18a, pri-miR-101-1, pri-let-7a-1, pri-miR-379, and pri-

miR-31, were able to specifically block the processing of their

corresponding pri-miRNAs (Figures 4A, 4C, and 4D and Figures

S7A and S7B). We believe that this is due to the block exerted by

looptomiRs on sequences within the terminal loops that bind

auxiliary factors required for the efficient processing of these

targeted miRNAs. Furthermore, a looptomiR targeting miR-18a

selectively abolishes the processing of pri-miR-18a in the con-

text of the miR-17-18a-19a minicluster (Figure S7C). It is possi-

ble that looptomiRs could be used to block access to negative

factors that negatively regulated pri-miRNA processing. It is

also conceivable that some looptomiRs could potentially change

the secondary structure of complementary pri-miRNAs, thus

affecting the cleavage by Drosha. However, at least in the case

of pri-miR-18a bound to its looptomiR, we did not detect any sig-

nificant changes in the RNA structure of the region surrounding

the Drosha cleavage site (Figure S8).
386 Molecular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier Inc.
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The above results allowed us to conclude that the conserved

terminal loop region of pri-miR-18a is essential for its efficient

processing, most likely due to the direct binding of the auxiliary

factor hnRNP A1. Moreover, the effect of looptomiRs on the

processing of pri-miRNAs with conserved loops suggest a

more general role of RNA binding proteins as auxiliary factors

in the microRNA processing pathway. In order to find out poten-

tial additional auxiliary factors regulating processing of pri-

miRNAs harboring conserved terminal loops, we combined

RNA chromatography with mass spectrometry. Using this ap-

proach, we found that hnRNP A1, which was originally defined

as an auxiliary factor for miR-18a, also binds to the apical regions

of pri-let-7a-1 and pri-miR-101-1 stem loop (Figure 5 and

Figure S9). The specificity of this interaction was demonstrated

by the lack of hnRNP A1 binding to the loops of mir-16-1,

miR-19a, miR-21, and miR-379 (Figure 5C and Figure S9). Nota-

bly, the terminal loop of let-7a-1 has a perfect hnRNP A1 consen-

sus-binding site (UAGGGA/U) (Figure 5D). This loop was also

found to bind hnRNP L, whereas PTB was found to bind to the

pri-miR-101-1 stem loop. Experiments are currently under way

to elucidate the role of these factors in the processing of their

corresponding pri-miRNAs.

Figure 4. LooptomiRs Designed against

Conserved Terminal Loops Block the

Processing of a Subset of Pri-miRNAs

(A) Primary RNA transcripts corresponding to

pri-miR-16-1 (lanes 1–5) and pri-miR-18a (lanes

6–10) (50 3 103 c.p.m.) were processed in HeLa

extracts in the presence of specific (lanes 3 and

4 and 8 and 9 for pri-miR-16-1 and pri-miR-18a,

respectively) or control (lane 5 for miR-16-1 and

lane 10 for miR-18a, respectively) looptomiRs (+,

50 mM; ++, 100 mM). Lanes 1 and 6 show negative

controls with no extract added. M, RNA size

marker.

(B) Processing of pri-miR-27a is not affected by

the addition of a specific looptomiR. The RNA sub-

strate (50 3 103 c.p.m.) was processed in vitro in

the presence of the corresponding blocking

looptomiR (lane 3) or a control looptomiR (lane 4).

(C and D) In vitro processing of pri-miRNAs 101-1

and let-7a-1 is sensitive to the presence of specific

looptomiRs. Radiolabeled pri-miRNA 101-1 and

let-7a-1, (50 3 103 c.p.m.) were processed in

HeLa extracts with the addition of a specific

looptomiR (lane 3) or with a control looptomiR

specific for miR-18a (lane 4). As a control, the re-

action was also carried out in the absence of any

looptomiR (lanes 2). Lanes 1 represent control re-

action without extract. M, RNA size marker.

Pri-miR-18a Complex Formation
In order to have a closer look at the nature

of the interaction between pri-miR-18a

and hnRNP A1, we performed electro-

phoretic gel mobility shift (EMSA) experi-

ments. First, we assayed increasing

amounts of radiolabeled pri-miR-18a

(the same transcript as described in

Figure 4) programmed with a constant amount of hnRNP A1

recombinant protein (200 nM). The molar ratio of pri-miR-18a

relative to hnRNP A1 ranged from 0.25 to 4, such that RNA bind-

ing will saturate the protein. A monomeric complex, migrating in

between the substrate and its minor structural conformer, had

a binding stoichiometry close to one (Figure S10A). A larger

multimeric complex migrating above the minor conformer was

formed in the higher RNA:protein molar ratios, indicating that

pri-miR-18a is able to bind more than one molecule of hnRNP

A1. Importantly, addition of a specific looptomiR targeting pri-

miR-18a abrogated the formation of the monomeric miR-18a/

hnRNP A1 complex without substantially affecting the multimeric

complex (Figure S10B, lanes 5–8). We have shown that addition

of looptomiRs specifically blocks in vitro miRNA processing (Fig-

ure 4 and Figure S7). Taken together, this would suggest that

displacing hnRNP A1 from the terminal loop of pri-miR-18a,

without affecting its binding to other regions of this pri-miRNA,

is sufficient to block its activity in miRNA processing. Moreover,

addition of the looptomiR caused a small shift in the migration of

both main pri-miR-18a substrate and its minor conformer. This

result points to an efficient binding of the looptomiR to the tran-

script and also suggests small changes of the global architecture
Molecular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier Inc. 387
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of pri-miR-18a stem-loop structure in the presence of the

specific looptomiR, which is in agreement with the structural

analysis of such complex (Figure S8).

Role of Terminal Conserved Loops in miRNA Processing
To gain a more clear insight into the role of conserved terminal

loops for miRNA processing, we have created pri-miRNAs termi-

nal loop mutants of pri-miR-18a and as a control of pri-miR-16-1

(Figures 6A and 6C). In order to eliminate any potential hnRNP A1

binding site from the pri-miR-18a apical region, we have

substituted the region spanning from U24 to C40 with GCAA or

UCUCUC loops (miR-loop_mt1 and miR-loop_mt2, respec-

tively). We found that the introduction of mutant sequences in

the terminal loop of pri-miR-18a completely abrogated its pro-

cessing in HeLa extracts, as compared to a wild-type transcript

(Figure 6B). This was also true in the context of pri-miR-17-18a-

19a minicluster (Figure S11). By contrast, introduction of similar

mutant loops to pri-miR-16-1 transcripts didn’t influence the rate

of pri-miR to pre-miR processing, reinforcing previous findings

that pri-miR-16-1 could be processed in the absence of its termi-

nal loop (Figure 6D) (Han et al., 2006). Importantly, we needed to

establish whether the mutant loop sequences did not affect the

global architecture and thermodynamics of the pri-mir-18a

stem. To address this, we performed detailed structure analysis

of pri-miR-18a loop mutants, using Pb(II)-lead ions as a probe,

which are able to detect potential fine thermodynamic and struc-

tural perturbations within the stem-loop region. We found that

the pattern of cleavages obtained for wild-type pri-miR-18a

and two loop mutants, apart from the terminal loop regions,

were identical (Figure S12). This indicates that introduction of

Figure 5. Truncated Stem Loops of Pri-

miRNAs with Conserved Terminal Loops

Bind Common and Distinct RNA-Binding

Proteins

(A) RNA chromatography combined with Mass

Spectrometry of selected pri-miRNAs harboring

conserved loops was performed in HeLa nuclear

extracts. Samples resulting from RNA chromatog-

raphy were resolved on SDS gel and visualized

using GelcodeBlue (Pierce). Bands 1 and 3 corre-

spond to hnRNP A1, band 2 corresponds to

hnRNP L, and band 4 corresponds to hnRNP I

(PTB).

(B) A close-up of a region of the gel shown in (A).

Expectation values from the mass spectrometry

analysis are shown.

(C) Western blot analysis of RNA chromatography

with truncated stem loops of corresponding

pri-miRNAs.

(D) Predicted structures of pri-let-7a-1 and

pri-miR-101-1 with highlighted putative protein

binding sites are shown.

different terminal loops to pri-miR-18a

does not change the global architecture

of its stem region. Finally, we also ob-

served that the introduction of mutant se-

quences in the conserved terminal loops

of pri-miR-101-1 and pri-let-7a-1 com-

pletely abrogated their processing in HeLa extracts, confirming

the importance of conserved terminal loop regions for efficient

miRNA processing (Figures 7B and 7D).

In summary, we have presented here the mechanism by which

an auxiliary factor, hnRNP A1, promotes the Drosha-mediated

processing of pri-miR-18a. The conservation of terminal loops

of a subset of miRNAs together with the inhibition of processing

mediated by LooptomiRs strongly suggest the existence of

additional auxiliary factors binding to conserved terminal loop

sequences and regulating the processing of specific miRNAs.

DISCUSSION

The expression of mammalian miRNAs can be regulated at the

posttranscriptional level by modulating nuclear and cytoplasmic

miRNA processing events. For instance, during early mouse de-

velopment, many pri-miRNAs, including pri-let-7a-1, are present

at high levels but are not processed by Drosha, suggesting an

important role for posttranscriptional regulation of miRNA pro-

cessing. Furthermore, an analysis of gene expression in tumor

tissues showed widespread discrepancies in the levels of

miRNAs and their corresponding primary transcripts (Thomson

et al., 2006). In mouse and zebrafish, few miRNAs are expressed

in early embryos, and large numbers of miRNAs are induced in

temporal and spatial patterns during mid- to late embryonic

development (Kloosterman et al., 2006). It has been shown this

is not due to transcriptional control. Interestingly, the core

enzymes (Drosha and DGCR8) are widely expressed, and no

posttranslational regulation of Drosha or Dicer has been reported

(Thomson et al., 2006). It is possible that the downregulation of
388 Molecular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier Inc.
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miRNAs during early development could be attributed to a defect

in the relative amount and/or activity of auxiliary factors required

for microRNA processing. It has also been suggested that cleav-

age of pre-miRNAs in the cytoplasm by Dicer is regulated in such

a way that the presence of the functional mature miRNA is

restricted to only a fraction of the tissues where the pre-miRNA

is initially expressed (Obernosterer et al., 2006). In most cases,

the mechanism by which this fine regulation of miRNA expres-

sion is achieved is not yet understood.

Figure 6. The Conserved Terminal Loop of

pri-miR-18a Is Required for Its Efficient

Cleavage by Drosha

(A) Validated secondary structures of wild-type

and terminal loop mutants of pri-miR-18a (pri-

miR-18a_loop_mt1 and pri-miR-18a_loop_mt2).

Mutated nucleotides are bolded.

(B) In vitro processing of wild-type pri-miR-18a

and loop mutants. Radiolabeled pri-RNAs (50 3

103 c.p.m.) were incubated in HeLa cell extracts

(lanes 2, 4, and 6). Lanes 1, 3, and 5 show negative

controls with no extract added. Products were an-

alyzed on an 8% polycrylamide gel. The asterisk

indicates the single-stranded RNA regions after

Drosha cleavage. M, RNA size marker.

(C) Predicted secondary structures of wild-type

and terminal loop mutants of pri-miR-16-1.

(D) In vitro processing of pri-miR-16-1 and loop

mutants pri-miR-16-1_loop_mt1 and pri-miR-

16-1_loop_mt2. Radiolabeled pri-RNAs (50 3

103 c.p.m.) were incubated in HeLa cell extracts

(lanes 2, 4, and 6). Lanes 1, 3, and 5 show negative

controls with no extract added. Products were an-

alyzed on an 8% polycrylamide gel. The asterisk

indicates the single-stranded RNA regions after

Drosha cleavage. M, RNA size marker.

Here, we have shown that hnRNP A1

binding to the pri-miR-18a terminal loop

and to a region within the stem rearranges

the RNA secondary structure, allowing an

efficient processing by the Drosha/

DGCR8 complex. The question of how

widespread the contribution of hnRNP

A1 and other auxiliary factors to pri-

miRNA processing events is beginning

to emerge. We have also found that

hnRNP A1 binds with specificity to the

conserved loops of pri-miR-101-1 and

pri-let-7a-1, and functional validation of

the role of hnRNP A1 in the processing

of these miRNAs is now under progress

(Figure 5 and Figure S9). Thus, data pre-

sented here clearly establishes hnRNP

A1 as a positive regulator of miR-18a pro-

cessing (and perhaps of other miRNAs),

acting at the level of Drosha processing.

Another example of a positive regulator

of miRNA processing is illustrated by the

effect of TGF-b and BMP signaling in pro-

moting the expression of miR-21, which results in an induction of

a contractile phenotype in human vascular smooth muscle cells.

In this situation, TGF-b and BMP-specific SMAD signal trans-

ducers are recruited to pri-miR-21 in a complex with the RNA heli-

case p68 and facilitate its Drosha-mediated processing (Davis

et al., 2008). Interestingly, several RNA helicases and hnRNP

proteins were found associated with the microprocessor com-

plex, but their functions remain to be determined (Gregory

et al., 2004). In the case of p68 and p72 DEAD-box helicases,
Molecular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier Inc. 389
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both proteins were shown to be required for pri-miRNA process-

ing in the mouse (Fukuda et al., 2007). The developmentally

regulated RNA-binding protein Lin28 protein has been recently

shown to be necessary and sufficient to block the Drosha-medi-

ated cleavage of pri-let-7 miRNAs in embryonic cells (Piskounova

et al., 2008; Viswanathan et al., 2008). There is, however, a con-

flicting report indicating that Lin28 could be acting at the level of

Dicer processing (Rybak et al., 2008). In any case, irrespective of

the precise mechanism, Lin28 can be classified as a negative reg-

ulator of pri-miRNA processing. Interestingly, Lin28 has been

Figure 7. The Conserved Terminal Loops of

Pri-miR-101-1 and Pri-let-7a-1 Are Required

for Their Efficient Cleavage by Drosha

(A) Predicted secondary structures of wild-type

and terminal loop mutants of pri-miR-101-1 (pri-

miR-101-1_loop_mt1andpri-miR-101-1_loop_mt2).

Mutated nucleotides are bolded.

(B) In vitro processing of wild-type pri-miR-101-1

and loop mutants. Radiolabeled pri-RNAs (50 3

103 c.p.m.) were incubated in HeLa cell extracts

(lanes 2, 4, and 6). Lanes 1, 3, and 5 show negative

controls with no extract added. Products were

analyzed on an 8% polycrylamide gel. M, RNA

size marker.

(C) Predicted secondary structures of wild-type

and terminal loop mutants of pri-let-7a-1.

(D) In vitro processing of pri-let-7a-1 and loop mu-

tants. Radiolabeled pri-RNAs (50 3 103 c.p.m.)

were incubated in HeLa cell extracts (lanes 2, 4,

and 6). Lanes 1, 3, and 5 show negative controls

with no extract added. Products were analyzed

on an 8% polycrylamide gel. M, RNA size marker.

shown to bind to conserved nucleotides

in the terminal loop region of the Let-7d

precursor (Newman et al., 2008). Several

hnRNP proteins, among them hnRNP

A1, were also found associated with

Let-7d, but their functional role was not

established (Newman et al., 2008).

Thermodynamic properties and molec-

ular architectures of pri-miRNAs that

allow cleavage and release of the pre-

miRNAs from their primary transcripts

are beginning to be recognized (Krol

et al., 2004; Han et al., 2006). It was pro-

posed that a large terminal loop is critical

for miRNA processing (Zeng et al., 2005);

however, more recent data suggested

that the terminal loop is unessential,

whereas the flanking single-stranded

RNA segments are critical to define

the cleavage site. This model predicts

that the microprocessor component,

DGCR8, functions as a molecular anchor

that measures the distance from the

dsRNA-ssRNA junction and positions

the processing center of Drosha �11 bp

up along the stem (Han et al., 2006). Our

findings indicate that the fine structural features of pri-miRNAs

(innate or arising from chaperone activities of RNA binding pro-

teins) might be very important in the miRNA biogenesis pathway.

A bioinformatic survey revealed that a number of pri-miRNAs

are conserved throughout vertebrate evolution not only at the

mature miRNA sequence but also at the regions encompassing

terminal loops (Figure 3 and Figure S6). Notably, it was recently

shown that the processing of pri-miR-375 in zebrafish was effec-

tively blocked by injecting morpholino oligonucleotides targeting

the mature miRNA or the miRNA precursor, some of which
390 Molecular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier Inc.
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overlap the terminal loop, which as shown in Figure S6, is highly

conserved (Kloosterman et al., 2007). Results presented in this

study support the notion that phylogenetic conservation of

pri-miRNA terminal loops reflects the requirement for auxiliary

factors that bind to these conserved loops and ensure an optimal

pri-miRNA processing. Altogether, our findings open up addi-

tional avenues toward a deeper understanding of microRNA

biogenesis pathways and their contribution to physiological

states and pathological conditions.

EXPERIMENTAL PROCEDURES

Preparation of Plasmids and DNA Templates

For the structural analysis, RNA substrates were transcribed in vitro from

a DNA fragment containing the T7 promoter sequence directly upstream of

the pri-miRNA precursor sequence. The DNA fragments were amplified by

PCR from human genomic DNA using oligonucleotides, which are listed in

the Supplemental Data.

RNA Probing and Footprint Analysis

In vitro transcription of RNAs subjected to structure probing was carried out as

previously described (Sobczak et al., 2003). Transcripts were 50 end-labeled

with T4 polynucleotide kinase (Roche) and [g-32P] ATP (4,500 Ci/mmol; Amer-

sham Pharmacia Biotech). Transcripts were purified by electrophoresis in

a 10% denaturing polyacrylamide gel. Labeled and unlabeled RNAs were

visualized by autoradiography and StainsAll staining, respectively. Prior to

structure probing transcription, reactions were subjected to a denaturation

and renaturation procedure in a buffer containing 2 mM MgCl2, 80 mM

NaCl, and 20 mM Tris–HCl (pH 7.2) by heating the sample at 80�C for 1 min

and then slowly cooling to 37�C. Limited RNA digestion was initiated by mixing

5 ml of the RNA sample (100 000 c.p.m. or 100 pmol for labeled and unlabeled

RNAs, respectively) with 5 ml of a probe solution containing lead ions-Pb(II),

nuclease S1, or ribonucleases T1 or V1 at concentrations specified in the

Figure Legends. The reactions were performed at 37�C for 10 min. For the

footprint analysis, recombinant hnRNP A1 protein was added in specified

concentrations 5 min prior to the reaction. All reactions were carried out with

50 32P-labeled RNAs and were stopped by adding an equal volume of stop

solution (7.5 M urea and 20 mM EDTA with dyes) and sample freezing. Unla-

beled RNAs, after incubation with the probes, were subjected to high-salt

precipitation procedure. To determine the cleavage sites, the products of

the 50 32P-labeled RNA fragmentation reaction along with the products of alka-

line hydrolysis and limited T1 nuclease digestion of the same RNA molecule

were separated on 10% polyacrylamide gels containing 7.5 M urea, 90 mM

Tris-borate buffer, and 2 mM EDTA. The alkaline hydrolysis ladder was gener-

ated by incubation of labeled RNA in formamide containing 0.5 mM MgCl2 at

100�C for 10 min. Partial T1 ribonuclease digestion of RNAs was performed

under semidenaturing conditions (10 mM sodium citrate (pH 5.0); 3.5 M

urea) with 0.2 U/ml of the enzyme and incubation at 55�C for 15 min. Electro-

phoresis was performed at 1500 V and was followed by autoradiography at

�80�C with an intensifying screen or exposed to the PhosphorImager screen.

To determine the cleavages sites obtained for unlabeled RNAs, a reverse tran-

scription-based reaction was used as previously described (Michlewski and

Krzyzosiak, 2004). Briefly, 100 ng of RNA was reverse transcribed with the

use of 2 pmol 50 32P-labeled pri-miR-18a rev primer and SuperScript II reverse

transcriptase. The products of the reverse transcription were separated as

described above, along with the sequence ladder generated from the pri-17-

18a-19a using Promega fentomol sequencing kit.

Pri-miRNA Substrates and In Vitro Processing Assays

RNA substrates for in vitro processing assays were prepared from the DNA

templates by standard in vitro transcription with T7 RNA polymerase in the

presence of [a-32P]GTP. Preparation of total or hnRNP A1-depleted HeLa

extracts was described previously (Guil and Caceres, 2007). Assays were

done in 30 ml reaction mixtures containing 50% (v/v) total or depleted HeLa

extract, 0.5 mM ATP, 20 mM creatine phosphate, 3.2 mM MgCl2, and
Mo
20,000 c.p.m. (�10 fmol) of each pri-miRNA. Reactions were incubated at

30�C for 30 min, then subjected to phenol-chloroform extraction, precipitation,

and 8% (w/v) denaturing gel electrophoresis. For terminal loop blocking with

looptomiRs, specific or control 20-O-methyl oligonucleotides were purchased

from Sigma-Aldrich and added to the pri-miRNA at a final concentration of

50 mM 5 min prior to the incubation with extract to allow annealing.

The looptomiRs sequences used were as follows: anti miR-16-1 loop (50-oT

oAoAoToToToToAoGoAoAoToCoToToA-30), anti miR-18a loop (50-oAoToGo

CoToAoAoToCoToAoCoToToCoA-30), anti miR-27a loop (5-oGoAoCoToToG

oGoToGoToGoGoAoCoCoC-30), anti let-7a-1 loop (50-oGoGoToGoGoGoToG

oToGoAoCoCoCoToA-30), anti pri-miR-101-1 (50-oCoCoToToToAoGoAoAo

ToAoGoAoCoAoG-30), anti pri-miR-31 (50- oGoGoToToCoCoCoAoGoToToCo

AoAoCoA-30), anti pri-miR-379 (50-oGoToCoAoGoAoAoAoToCoAoToAoAoC

oG-30). An Ambion’s Decade RNA Size Marker was used.

Purification of Recombinant Protein

Recombinant hnRNP A1 protein was obtained as previously described

(Cazalla et al., 2005). In brief, T7 tagged hnRNP A1 protein was expressed in

the 293T cells transfected with pCG-hnRNP A1 vector (Caceres et al., 1997).

Forty-eight hours after transfection, cells were scrapped and sonicated in lysis

buffer. Recombinant hnRNP A1 protein was purified using anti-T7 affinity

chromatography.

Phylogenetic Sequence Analysis

Predicted structures and genomic mappings for all 533 known human pri-

miRNAs were obtained from miRBase release 10. Of these, only 5 pri-miRNAs

were unmapped in the current human genome assembly (hg18/NCBI36):

miR-672, miR-941-4, miR-674, miR-872, and miR-871. Coordinates for five

subregions (prestem, stem1, loop, stem2, and poststem) within each miRNA

were based upon miRBase structures. These coordinates were then recon-

ciled with gapped sites in miRBase structures to derive genomic coordinates

for all subregions. Multiple sequence alignments for the human genome (hg18/

NCBI36 assembly) with 16 other vertebrate genomes (chimp [November 2003,

panTro1], macaque [January 2006, rheMac2], mouse [February 2006, mm8],

rat [November 2004, rn4], rabbit [May 2005, oryCun1], dog [May 2005,

canFam2], cow [March 2005, bosTau2], armadillo [May 2005, dasNov1],

elephant [May 2005, loxAfr1], tenrec [July 2005, echTel1], opossum [January

2006, monDom4], chicken [Feb 2004, galGal2], frog [October 2004, xenTro1],

zebrafish [May 2005, danRer3], tetraodon [February 2004, tetNig1], and fugu

[August 2002, fr1]) were obtained from the UCSC Genome Bioinformatics

group (http://genome.ucsc.edu/). Overall conservation scores per bp based

upon these alignments (calculated using phastCons) (Siepel et al., 2005)

were obtained from the same source. UCSC EvoFold (Pedersen et al., 2006)

alignments and secondary structure predictions were used to examine con-

servation at finer scales. Comparisons of average conservation scores for

different miRNA subregions were based upon the mean and 95% confidence

intervals for phastCons scores (Piriyapongsa and Jordan, 2007). A total of 526

known miRNAs could be mapped to the current human genome assembly and

successfully related to phastCons conservation data. Of this total, 96 pri-

miRNAs could not be processed by the current protocol as conservation

was so low across all subregions that comparisons were meaningless. The

remaining 430 pri-miRNAs were all processed successfully, and 298 (69%)

of these showed a significant difference in conservation between stem and

loop subregions. Most of these pri-miRNAs show a mean conservation ratio

of loop/stem < 1, including pri-mir-10b, indicating a relatively poorly conserved

loop. Of the 430 processed pri-miRNAs, 132 (31%) did not show a significant

difference between stem and loop regions, but many of these also show loop/

stem mean conservation ratios < 1 and/or show low conservation (mean

phastCons score < 0.5) across the entire pri-miRNA sequence. Only 74

(17%) miRNAs, including hsa-miR-18a, were found to have a loop/stem ratio

close to 1 (within 0.001 from 1) and mean phastCons scores > 0.5 for the entire

sequences. This set of 74 sequences therefore constitutes the best candidates

for miRNAs with similar processing requirements to hsa-miR-18a (Figure 2C).

The table in Figure 3C shows the candidates ranked by mean conservation

ratio and suggests that hsa-mir-18a (ranked 8th out of 74) is among the

best-predicted candidates.
lecular Cell 32, 383–393, November 7, 2008 ª2008 Elsevier Inc. 391
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A detailed section covering phylogenetic sequence analysis methods used

in this paper is presented in the Supplemental Data.

SUPPLEMENTAL DATA

The Supplemental Data include 12 figures and Supplemental Experimental

Procedures and can be found with this article online at http://www.molecule.

org/supplemental/S1097-2765(08)00728-4.
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