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Distinct and essential morphogenic functions
for wall- and lipo-teichoic acids in Bacillus subtilis

Kathrin Schirner, Jon Marles-Wright,
Richard J Lewis* and Jeff Errington*

Centre for Bacterial Cell Biology, Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle
upon Tyne, UK

Teichoic acids (TAs) are anionic polymers that constitute a

major component of the cell wall in most Gram-positive

bacteria. Despite decades of study, their function has

remained unclear. TAs are covalently linked either to the

cell wall peptidoglycan (wall TA (WTA)) or to the mem-

brane (lipo-TA (LTA)). We have characterized the key

enzyme of LTA synthesis in Bacillus subtilis, LTA synthase

(LtaS). We show that LTA is needed for divalent cation

homoeostasis and that its absence has severe effects on cell

morphogenesis and cell division. Inactivation of both LTA

and WTA is lethal and comparison of the individual

mutants suggests that they have differentiated roles in

elongation (WTA) and division (LTA). B. subtilis has four

ltaS paralogues and we show how their roles are partially

differentiated. Two paralogues have a redundant role in

LTA synthesis during sporulation and their absence gives a

novel absolute block in sporulation. The crystal structure

of the extracytoplasmic part of LtaS, solved at 2.4-Å reso-

lution, reveals a phosphorylated threonine residue, which

provides clues about the catalytic mechanism and identi-

fies the active site of the enzyme.
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Introduction

The bacterial cell wall is a crucial structure that represents

the interface of the cell with the external medium. It protects

the cell from damage, restrains the membrane against the

large cellular turgor pressure and confers shape (Koch, 2006).

It is essential in almost all organisms for cell division, and in

pathogens it is recognized by both the innate and acquired

immune systems (Dziarski, 2003). The wall needs to be

enlarged to allow growth, while at all times maintaining its

integrity (Koch, 1985; Höltje, 1998; Schaffer and Messner,

2005; Stewart, 2005). Peptidoglycan (PG) is a major structure

of the walls of virtually all bacteria (Koch, 2006; Vollmer et al,

2008) and consists of crosslinked glycan strands forming a

complex meshwork surrounding the whole cell. Because of

its essential role, PG is the major target for antibiotics such as

b-lactams (e.g., penicillins and cephalosporins) and glyco-

peptides (e.g., vancomycin) (reviewed by Koch, 2003). The

walls of Gram-positive bacteria have a second major compo-

nent, teichoic acid (TA) (Archibald et al, 1961). TAs are

equally abundant in walls but less well understood (reviewed

by Neuhaus and Baddiley, 2003; Bhavsar and Brown, 2006).

TAs are anionic polymers and come in two distinct forms

depending on whether they are linked to the wall PG (wall

TA, WTA) or to the head groups of membrane lipids (lipo-TA,

LTA) (Neuhaus and Baddiley, 2003). A wide range of func-

tions that have been proposed for TAs, including: antigenicity

and innate immune recognition (Fedtke et al, 2004; Seo et al,

2008); pathogenicity (Morath et al, 2001; Weidenmaier et al,

2004; Fittipaldi et al, 2008); biofilm formation (Gross et al,

2001); efficient release of secreted proteins into the culture

medium (Nouaille et al, 2004); maintenance of cation homo-

eostasis (Archibald et al, 1961; Heptinstall et al, 1970) and

antibiotic resistance (Kristian et al, 2003; Kovacs et al, 2006).

Many bacteria have both the WTA and LTA systems, which

are synthesized by distinct biochemical routes, even when

the actual repeating unit of the polymer is the same (Fischer,

1988). Such is the case for Bacillus subtilis strain 168, the

subject of this study, in which both WTA and LTA consist of

poly(glycerol phosphate) (poly(GroP)) but they are synthe-

sized by separate, genetically distinct pathways (Fischer,

1988; Neuhaus and Baddiley, 2003). Both TAs can carry

D-alanyl ester substitutions (reviewed by Neuhaus and

Baddiley, 2003).

The WTA system has been relatively well characterized in

recent years. The tagA-F system encodes enzymes with

identified functions for each catalytic step in the biosynthesis

of poly(GroP) in the cytoplasm, and then the ABC transporter

TagGH apparently exports the polymer for linkage to PG in

the cell wall (Mauël et al, 1991; Lazarevic and Karamata,

1995; Neuhaus and Baddiley, 2003; Schertzer and Brown,

2003; Bhavsar et al, 2004; D’Elia et al, 2006a; Formstone et al,

2008). WTA was originally thought to be essential because

deletions of genes affecting the later steps in the pathway are

lethal (Bhavsar et al, 2004). However, recent results indicate

that the apparent lethality is due to the accumulation of a

toxic intermediate. Thus, when tagO, encoding the first

enzyme in the pathway, is deleted and no intermediates

accumulate, the cells are viable though severely compro-

mised (D’Elia et al, 2006a, b). Interestingly, the B. subtilis

mutants appear to be particularly affected in cell elongation

(D’Elia et al, 2006a). They can still divide but lose the ability

to maintain a rod shape and become swollen and almost

round. This is consistent with a recent report from this

lab that the enzymes of the WTA pathway appear to be
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associated with a cell elongation complex organized by the

MreB (actin) system (Formstone et al, 2008). The MreB

system forms helical filaments that run around the periphery

of the cell and appear to insert wall material along helical

tracts in such a way as to generate elongation of the rod while

maintaining a constant cell diameter (Jones et al, 2001;

Daniel and Errington, 2003; Stewart, 2005; Carballido-

López, 2006; Den Blaauwen et al, 2008). B. subtilis and

many other Gram-positive bacteria have three mreB paralo-

gues, the others are known as mbl (mreB like) and mreBH

(mreB homologue). All three seem to have overlapping,

partially redundant functions in cell elongation.

The LTA system and the genes that encode the biochemical

pathway are poorly characterized (Perego et al, 1995;

Gründling and Schneewind, 2007a). Shortly after this study

was initiated, Gründling and Schneewind (2007b) reported

the discovery of the key enzyme LTA synthase (LtaS), which

catalyses the formation of poly(GroP) in Staphylococcus

aureus. A homologue from B. subtilis was shown to possess

the same activity and complement the otherwise lethal ltaS

deletion. We found the ltaS gene independently in a screen

for suppressors of the Mg2þ -dependent growth defect of mbl

mutants. We show that ltaS mutants are affected in divalent

cation homoeostasis. The defect leads to shape malforma-

tions and to impaired septation and cell division. Therefore,

WTA and LTA are largely specialized for different morpho-

genic systems, elongation and division, respectively.

Systematic deletion of the three other ltaS paralogues of B.

subtilis reveals that LTA is essential for spore formation, with

a block at the time of polar division and/or progression

beyond this step. Quadruple mutants of the B. subtilis ltaS

paralogues are severely impaired but remain viable.

Crucially, complete disruption of the WTA and LTA pathways

is lethal, showing that TA synthesis is essential in B. subtilis.

Finally, we have determined the crystal structure of the

extracellular domain of LtaS and identified a catalytic threo-

nine residue, with implications for the biochemical function

of the enzyme and potential antibiotic targeting. While this

study was in progress, Oku et al (2009) showed that LTA and

WTA have overlapping and partially redundant roles needed

for cell viability and various cell wall properties in

Staphylococcus aureus.

Results and discussion

Elimination of the LTA synthase YflE suppresses

the Mg2þ dependency of mbl and mreB mutants

Elsewhere we have shown that mbl mutants are not viable at

low Mg2þ concentrations and that mutations suppressing

this phenotype can be readily obtained (Schirner and

Errington, 2009). In a collection of transposon-induced sup-

pressed mutants, we found three strains with insertions in the

yflE gene. Wild-type yflE encodes a protein of 649 amino

acids with a predicted molecular weight of 74 kDa. DNA

sequencing showed that each insertion would disrupt the

yflE open reading frame, after codons 41, 72 and 387,

respectively. While this study was in progress, Gründling

and Schneewind (2007b) showed that a closely related gene

(79% identical) in Staphylococcus aureus encodes LtaS. They

also showed that the yflE gene of B. subtilis could comple-

ment the lethal phenotype of ltaS in S. aureus by restoring

LTA synthesis. Therefore, we subsequently refer to the B.

subtilis yflE gene as ltaS.

It was not clear why disruption of ltaS suppressed the

Mg2þ sensitivity of the mbl mutant. However, after more

than two decades of speculation about the possible function

of LTA, identification of a gene specifically required for LTA

synthesis provided us with an important opportunity to

investigate the physiological role of these polymers in

B. subtilis. We first constructed a strain in which the ltaS

gene was completely deleted and then confirmed that the ltaS

mbl double deletion strain grows on plates at normal Mg2þ

levels, unlike the mbl single mutant (Figure 1A). In liquid

PAB medium with no added Mg2þ (Figure 1B; or in LB, not

shown), the double mutant (circles) grew much better than

the mbl mutant (squares), although growth was slower than

for the wild-type culture (diamonds). Deletion of ltaS also

counteracted the typical swelling and extreme twisting of mbl

mutant cells; instead, the double mutant appeared similar to

the ltaS single mutant (Figure 1C) (see below).

mreB mutants and, to a much lesser degree mreBH, have

also been shown to be sensitive to Mg2þ levels (Formstone

and Errington, 2005; Carballido-López, 2006). Combination

of ltaS with an mreB disruption also led to the restoration of

growth and morphology on nutrient agar (NA) plates, on

which mreB mutants do not grow (Formstone and Errington,

2005), and in liquid PAB medium (data not shown). An ltaS

mreBH double mutant was not detectably different from the
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Figure 1 Deletion of ltaS suppresses the Mg2þ dependency of mbl
mutants. (A) Growth of wild type (168), mbl mutant (2505), ltaS
mutant (4283) and suppressed mbl mutant (Dmbl DltaS, 4298) on
NA plates with (left) or without (right) addition of 20 mM Mg2þ .
(B) Growth curves of wild type (168, E), mbl mutant (2505, &),
ltaS mutant (4283, m) and suppressed mbl mutant (Dmbl DltaS,
4298, J) in PAB medium at 371C. (C) Phase-contrast microscopy of
wild type (168), mbl mutant (2505), ltaS mutant (4283) and mbl
ltaS double mutant (4298) grown in PAB medium at 371C. Scale
bar 5mm.
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isogenic ltaS single mutant in growth or morphology (though

the phenotype of mreBH mutants is mild).

Altered susceptibility to divalent cation levels

in ltaS mutants

Although the ltaS single mutant also grew slightly more

slowly than the wild type in PAB medium (doubling time 31

versus 26 min; Figure 1B), we were surprised to find that

growth was almost abolished in two of our other standard

growth media, CH and S-medium. By adding components of

these media to PAB, it emerged that the mutant strain was

unusually sensitive to Mn2þ . In the examples shown in

Figure 2A, addition of 0.05 mM MnSO4 to NA abolished

growth of the mutant, whereas growth of the wild type was

unaffected. Addition of 0.5 mM Mg2þ had no effect on

growth of the mutant, showing that the effect was not a

general sensitivity to divalent cations. In fact, we noticed that

the mutant had a reduced requirement for Mg2þ , at least on

minimal agar (Figure 2B). Thus, under these conditions the

mutant strain grew better than the wild type at both 10 and

100 mM Mg2þ . The lowered requirement for Mg2þ may be

the reason why a deletion of ltaS suppresses the Mg2þ -

dependent phenotype of both mbl and mreB mutants

(Formstone and Errington, 2005). These results provide

strong support for a model in which LTA is important in

scavenging and sequestration of Mg2þ ions (Neuhaus and

Baddiley, 2003). Loss of the LTA-dependent buffering zone in

the cell wall allows divalent cations more immediate access

to the cell surface. This in turn leads to a lower requirement

for Mg2þ , which is a cofactor in many enzymes, and in-

creased susceptibility to toxic Mn2þ ions, which can replace

Mg2þ because of their similar physicochemical properties but

which often cannot substitute for Mg2þ in enzyme function

(Cowan, 1995). These results suggest that LTA helps to

provide a physicochemical environment that favours the

retention of Mg2þ over Mn2þ in the cell wall.

In the process of constructing the deletion strain, we

noticed that the ltaS mutant was also hypersensitive to

various antibiotics (Supplementary Table 2) and lysozyme

(data not shown). The effect was not specific to a certain

class of antibiotic, suggesting that LTA also provides a

protective layer that restricts the access of many bioactive

agents to sensitive sites in the cell envelope.

Defective cell division in ltaS mutants

Microscopic examination of ltaS mutant cells grown under

various conditions revealed a characteristic phenotype. This

did not appear to be affected by the presence or absence of

added Mg2þ or Mn2þ , so all further experiments described

were based on unsupplemented PAB medium unless stated

otherwise. The main morphological effects (Figure 1C) were

increased cell or cell chain length (B. subtilis has a tendency

to form chains of cells, due to a delay between cell division

and separation of sister cells; Paulton, 1971), reduced cell

diameter (B90% of that of wild-type cells; Table I) and a

significant frequency of cell bending and lysis (Figure 1C).

The reduced cell width has been seen previously for mutants

affected in cell envelope systems (e.g., Carballido-López et al,

2006), but its significance is not yet understood. In mem-

brane-stained preparations, it was evident that the elongated

appearance was at least partly due to an effect on cell

division, with long aseptate regions occurring at irregular

B
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Figure 2 Effect of metal ion concentration on the viability of wild type and ltaS mutants. (A) Growth of wild type (168) and ltaS mutant (strain
4286) on NA plates (left panel) containing 0.05 mM Mg2þ (middle panel) or 0.5 mM Mn2þ (right panel). The strains were grown to mid-
exponential phase and spotted onto the plates in the dilutions as indicated. (B) Growth of ltaS mutant (strain 4283, left) and wild type (strain
168, right) on minimal medium plates containing 10, 100 and 500 mM Mg2þ as indicated.
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Table I Effects of mutations in lta genes on cell diameter

Strain Genotype Average cell diameter (mm)±s.d. Range (mm)

168 wt 0.85±0.07 0.67–1.04
4283 DltaS 0.75±0.08 0.57–0.98
4287 DyfnI 0.84±0.06 0.66–1.02
4292 DyqgS 0.84±0.05 0.67–0.99
4295 DyvgJ 0.87±0.04 0.73–0.98
4610 DltaS DyfnI 0.78±0.09 0.54–1.10
4611 DltaS DyqgS 0.76±0.07 0.54–0.96
4612 DltaS DyvgJ 0.74±0.05 0.60–0.93
4613 DyfnI DyqgS DyvgJ 0.81±0.06 0.68–1.00
4620 DltaS DyfnI DyqgS DyvgJ 0.85±0.09 0.66–1.16
4298 DltaS Dmbl 0.80±0.06 0.67–0.97

Cells were grown in PAB medium to exponential phase, stained with Nile Red, and cell width was measured using ImageJ.

C DA B

E HF G

I J

Figure 3 Effects of ltaS mutation on FtsZ ring formation, cell division and cell separation. The strains were grown to mid-exponential phase in
PAB medium at 301C (A–H) or 371C (I, J). (A–H) Samples of wild type (strain 2020; A–D) and ltaS mutant (4605; E–H) carrying gfp-ftsZ under a
xylose-inducible promoter were stained with DAPI (for DNA) and FM5-95 (for the membrane), and additionally imaged for
FtsZ–GFP localization. (D, H) Overlays of the membrane (red), DNA (blue) and GFP (green) signals. Scale bar 5 mm. (I, J) Transmission
electron microscopic images of transverse sections of two representative septa each of wild type (168; I) and ltaS mutant (strain 4284; J).
Scale bar 100 nm.
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intervals in the chains (compare images of wild type and

mutant in Figure 3B and F). Interestingly, the effect on

division was exerted at an early step in the process.

Assembly of FtsZ protein into a ring at sites of impending

division is the earliest marker for cell division (reviewed by

Dajkovic and Lutkenhaus, 2006). In wild-type cells, bands

(which correspond to rings seen edge-on) of FtsZ–GFP are

formed at regular positions between segregating nucleoids

(Figure 3C). In contrast, FtsZ–GFP localization was deranged

in the ltaS mutant (Figure 3G). When clear bands of FtsZ–

GFP were observed, they were usually correctly positioned

between well-separated nucleoids (arrowheads). However,

FtsZ–GFP bands were either missing or only present as

faint bands (arrows) at many potential division sites, and

there appeared to be a higher than normal background of

non-localized fluorescence. DAPI staining showed that chro-

mosomes were replicating and segregating more or less

normally in the mutant, suggesting that the division defect

was not secondary to a chromosome segregation defect

(Figure 3A and E).

Transmission electron microscopy (TEM) revealed that the

morphology of the division septa formed in ltaS mutants was

abnormal. In the typical examples shown in Figure 3I and J,

the wild-type septum was of fairly uniform thickness and the

membranes at the nascent sister cell poles were rather

flattened, curved only near their outer edges at the junction

with the lateral wall (Figure 3I). In contrast, the mutant septa

were abnormally thick, especially towards their outer edges,

with unusual triangular wedges of wall material (Figure 3J).

Furthermore, it appeared that the autolytic activity that leads

eventually to cell separation (Blackman et al, 1998) and

which usually begins at the outer edges of the septa (arrowed

for the wild-type cell in Figure 3I), was delayed in the ltaS

mutant. Autolytic enzyme activity has previously been sug-

gested to be regulated by anionic polymers and the ionic

environment of the cell wall (Cheung and Freese, 1985;

Wecke et al, 1997; Smith et al, 2000). ltaS mutants therefore

have important defects in both formation of the cell division

septum and subsequent cell separation. We suggest that these

defects occur, at least in part, because the impaired cation

homoeostasis interferes with proper regulation of the activ-

ities of the enzymes that carry out the synthesis and turnover

of the wall at division sites.

Partial functional redundancy of LtaSs in B. subtilis

A most likely explanation for the viability of the single ltaS

mutant was that B. subtilis has three paralogues of ltaS,

namely yfnI, yqgS and yvgJ. These genes encode products

predicted to be about 53, 44 and 41% identical to LtaS,

respectively (based on BLAST searches run on the SubtiList

web server (Moszer et al, 2002). Only expression of ltaS,

however, restored LTA synthesis in an S. aureus ltaS deletion

strain (Gründling and Schneewind, 2007b). We constructed

null mutants for each of the three paralogues and examined

their microscopic and growth phenotypes. None of the

single mutants had a discernible effect on growth rate

or cell morphology (Supplementary Figure 1B, D–H).

Combinations of mutations were then made. All double

mutants combining with ltaS were comparable in growth

and morphology to the single ltaS mutant, and a triple

DyfnI DyqgS DyvgJ mutant did not differ noticeably from

the wild type (data not shown).

Surprisingly, we were readily able to construct a strain in

which all four ltaS paralogues were disrupted, indicating that,

in contrast to S. aureus, LTA is not essential in B. subtilis.

However, the phenotype of the quadruple mutant DltaS DyfnI

DyqgS DyvgJ was more severe than that of the ltaS single

mutant: the mutant strain grew very slowly with a doubling

time of about 48 min in PAB medium at 371C, whereas the

doubling time of the ltaS single mutant was around 31 min,

and the wild type doubled every 26 min under the same

conditions (Supplementary Figure 1C). The quadruple mu-

tant also had a severe cell division and cell separation defect,

resulting in the formation of filamentous clumps of cells; the

cell filaments were tightly twisted around their long axis and

lysis of cell compartments was common (Supplementary

Figure 1I). Taken together, these observations support the

idea of a partial functional redundancy of the four LtaS-like

proteins.

Interestingly, the coiling and clumping of the strain lacking

LTA were reminiscent of the mbl mutant phenotype. We

suggest, that in both strains an imbalance of processes

involved in cell wall synthesis or modifications of the elec-

trostatic properties of the wall lead to twisting and macrofibre

formation (Mendelson et al, 1985).

Analysis of the expression of these genes through fusions

to lacZ revealed that ltaS was expressed much more strongly

than the other genes under normal growth conditions

(Supplementary Figure 1A). In previous proteomic studies

(Hirose et al, 2000), LtaS and YfnI, but neither YqgS nor YvgJ,

were detected in growing cells. Transcription of yfnI is

dependent on the extracytoplasmic sigma factor sM (Jervis

et al, 2007), which is involved in salt stress resistance.

However, we did not detect any effect of salt stress on the

yfnI single mutant, nor on the ltaS yfnI double mutant (not

shown).

These results indicate that LtaS is the major LTA synthase,

whereas the other three paralogues have a minor function

and might be required for adaptation to specific environmen-

tal or developmental conditions.

Specific and essential requirement for LtaS during

stages II–III of sporulation

Although the four single mutants (DltaS, DyfnI, DyqgS and

DyvgJ) were sporulation proficient, we were surprised to find

that the ltaS yqgS double mutant did not form spores, as

Table II Effects of lta mutations on sporulation frequency

Strain Genotype % sporulation
(no. of cells counted)

168 wt 57 (2415)
4283 DltaS 47 (1425)
4287 DyfnI 57 (2719)
4292 DyqgS 56 (3796)
4295 DyvgJ 61 (1972)
4610 DltaS DyfnI 41 (2719)
4611 DltaS DyqgS o0.07 (1536)
4612 DltaS DyvgJ 2.1 (3676)
4613 DyfnI DyqgS DyvgJ 45 (4043)
4627 DltaS DyqgS Pxyl gfp-ltaS 43 (2083)
4628 DltaS DyqgS Pxyl gfp-ltaS T297A o0.03 (3578)

Cells were grown in Schaeffer’s medium for 24 h, and then sporula-
tion efficiency was determined by microscopic counting.
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judged by phase-contrast microscopy (Table II). In contrast,

the other double mutants in combination with ltaS did

sporulate, although the ltaS yvgJ mutant had a reduced

efficiency (Table II). The triple mutant DyfnI DyqgS DyvgJ

sporulated almost similar to the wild type. Remarkably, when

a more sensitive method was used to measure the spore

frequency (numbers of heat- or chloroform-resistant spores

formed in liquid culture), spores could not be detected for the

ltaS yqgS double mutant (o10�7 spores per viable cell; under

the same conditions we observed over 0.6 spores per viable

cell for the ltaS single mutant). Such a severe sporulation

block is normally associated only with mutations that elim-

inate key regulatory proteins or proteins involved in critical

morphological or structural changes that occur during spore

development (Piggot and Coote, 1976; Errington, 1993).

These results suggested that LTA is essential for sporulation

and that expression of the minor LtaS, yqgS, provides suffi-

cient activity to compensate for loss of the major LtaS, ltaS.

Disruption of both genes results in the severe sporulation

defect.

Preliminary microscopic examination suggested that spor-

ulation was arrested at stage II, when a division septum is

formed near one pole of the cell. Activation of a key tran-

scription factor, the sigma factor, sF, is dependent on the

formation of the septum (reviewed by Errington, 1993;

Hilbert and Piggot, 2004), so we tested whether the synthesis

and activation of sF were affected by ltaS yqgS disruption.

lacZ and mCherry fusions to the spoIIA promoter, which

drives expression of the operon that encodes sF, showed

that spoIIA was efficiently activated to similar levels as in the

ltaS single mutant (Figure 4A and data not shown). In

contrast, expression of a lacZ reporter gene fusion to a

promoter that is dependent on active sF (that of spoIIQ)

was completely blocked in the double mutant (Figure 4B).

Similarly, the natural reporter enzyme alkaline phosphatase

(AP), which depends on sF indirectly through activation of
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sE (Glenn and Mandelstam, 1971; Piggot and Coote, 1976;

Stragier et al, 1984; Illing and Errington, 1991) was also

blocked by the ltaS yqgS double deletion (Figure 4C). This

effect was not due to a failure in translocation of the prespore

chromosome (Wu and Errington, 1994), based on (i) DAPI

staining (data not shown) and (ii) the fact that the spoIIQ–

lacZ fusion was located at amyE, which is captured in the

prespore compartment even when chromosome translocation

fails (Wu and Errington, 1994).

A key player in the machinery regulating sF activation is

SpoIIE. This protein has a dual role in sporulation, being

required for proper formation of the polar septum and for the

correct spatial and temporal activation of sF (reviewed by

Errington, 2003; Hilbert and Piggot, 2004). Expression of

spoIIE is turned on during the early stages of sporulation

(stage 0) and its product is targeted to the polar division sites

(Arigoni et al, 1995; Barak et al, 1996; Wu and Errington,

1998). We therefore examined the effects of the ltaS yqgS

deletion on synthesis and targeting of SpoIIE through a

spoIIE-gfp fusion. As expected, SpoIIE–GFP was expressed

in both single and double-mutant cells (Figure 4D and E). The

SpoIIE–GFP fusion also appeared to target to the polar septa

that were formed in the double-mutant cells as well as in the

single mutant. However, in the ltaS yqgS double mutant,

SpoIIE–GFP remained static at the asymmetric septa

(Figure 4E), whereas in the ltaS single mutant it progressed

rapidly to the next step of spore development, engulfment of

the prespore (ovoid GFP signals in the 2 h image in

Figure 4D). Taken together, these results suggest that the

block in sporulation occurs in the signalling pathway for sF

activation, but downstream of SpoIIE synthesis and recruit-

ment to the polar septum.

As sF activation is thought to be coupled to polar septation

and vegetative division septa were abnormal in the ltaS single

mutant, we questioned whether the double mutant might be

affected in the ultrastructure of the polar septum. TEM

images of culture samples taken 4 h after initiation of spor-

ulation showed that the ltaS single mutant formed apparently

normal, thin asymmetric septa, similar to those of wild-type

cells (cell marked ‘a’ in Figure 4F) (Hilbert and Piggot, 2004).

We also noticed that many cells went on to engulf the

prespore in a typical manner (Figure 4F, cell ‘b’). In contrast,

the septa of the ltaS yqgS double mutant were highly abnor-

mal. In the typical example shown (Figure 4G), the septum

was much thicker than normal, almost the same as in

vegetative cells (compare to Figure 3I), and is reminiscent

of the abnormal septa of spoIIE mutant cells (Illing and

Errington, 1991; Khvorova et al, 1998; Carniol et al, 2005)

or a divIB mutant (Thompson et al, 2006). The presence of

highly abnormal polar septa in the double mutant, but not in

the ltaS single mutant, provided a likely explanation for the

failure in sF activation and suggests that LTA is a key

component in the polar sporulation septum upon which the

pivotal cell-specific sF activation mechanism is strictly de-

pendant. Therefore, these results point to an important role

for LTA synthesis in cell division of both vegetative and

sporulating cells. The results also suggest that the ltaS para-

logues contribute to LTA function differently, with yfnI sup-

porting ltaS function during vegetative growth and yqgS and

yvgJ acting in stationary phase. The molecular basis for the

block in sF activation remains to be resolved.

LtaS and YqgS localize predominantly at division sites

in both vegetative and sporulating cells

The results described above suggest an important role for LTA

in cell division, of both vegetative and sporulating cells. If

true, the synthases ought to be localized at division sites, at

least in part. A range of predictive bioinformatic tools, such

as TMpred (Hofmann and Stoffel, 1993) predict that LtaS and

its paralogues have five transmembrane domains near their N

termini, followed by a large C-terminal extracellular domain,

which contains the catalytic centre responsible for

poly(GroP) synthesis (see below). GFP fusions to LtaS and

YqgS were at least partially functional as judged by restora-

tion of wild-type growth rate and cell shape (GFP–LtaS) and

sporulation proficiency (both fusions expressed in the appro-

priate deletion backgrounds). Although the fusions gave

relatively weak fluorescence signals, they were clearly asso-

ciated with the cell periphery. Importantly, both proteins

appeared to be enriched at division sites, in both vegetative

and sporulating cells (Figure 5A and B). As the double-

mutant cells produced septa that resembled those of spoIIE

mutants (see above) it was possible that the SpoIIE pheno-

type was due to delocalized YqgS. However, GFP–YqgS still

localized to polar septa in a spoIIE deletion background

(Figure 5C). Indeed, fluorescence was often clearly visible

at polar septa near both cell poles; a phenotype characteristic

of spoIIE mutants (Piggot and Coote, 1976; Illing and

Errington, 1991). These results support the idea that LTA

synthesis is particularly important for cell division.

A B C

Figure 5 GFP–LtaS and GFP–YqgS localization. Fluorescence microscopy of strains 4607 and 4609 carrying inducible alleles of gfp-ltaS (A) and
gfp-yqgS (B) at the amyE locus. Localization of GFP–YqgS in an spoIIE mutant background (strain 4626 (C)). Of each strain two fields are
shown, all strains were grown in S-medium containing 0.5% xylose at 301C. Scale bar 5 mm.
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Evidence that LTA and WTA have specialized functions

in cell morphogenesis

The phenotype of cells devoid of LTA differs clearly from that

previously reported for deficiency in WTA. The latter mu-

tants, for example in tagO or tagF, typically become bloated

and spherical (Wagner and Stewart, 1991; D’Elia et al, 2006a),

but are still capable of division, as can many other mutants

with a specific defect in cell elongation (Henriques et al,

1998; Wei et al, 2003; Leaver and Errington, 2005). Consistent

with this role, the localization of several Tag proteins, parti-

cularly TagG and TagH, suggests that they might be asso-

ciated with the cell elongation machinery (Formstone et al,

2008). In contrast, the above results showed that LTA-defi-

cient mutants have a distinct and almost complementary

phenotype, in efficiently elongating along a longitudinal

growth axis (albeit with a considerable level of twisting)

but clearly impaired in cell separation and cell division.

We were now in a position to test the effects of loss of both

TA systems in B. subtilis. First, we introduced a deletion in

the major LtaS gene, ltaS, into a tagO deletion strain. The

resultant strain was viable and phenotypically resembled the

tagO single mutant in being rounded and growing in clumps

(Figure 6B; compare with Figure 6A) (D’Elia et al, 2006a).

Attempts to combine all four ltaS mutations and tagO failed,

suggesting that this combination might be lethal. We there-

fore constructed a strain in which ltaS was controlled by a

xylose-inducible promoter. We then deleted the other three

ltaS paralogues, and were able to introduce the tagO deletion

in the presence of xylose. Results shown in Figure 6E con-

firmed that inactivation of both the LTA and WTA systems

was indeed lethal. The Pxyl-ltaS strain (4622) grew well in the

presence or absence of xylose. Combined with the triple

deletion of the other ltaS paralogues (strain 4623), growth

was still reasonable, though slightly reduced in the absence of

xylose. The tagO Pxyl-ltaS mutant (strain 4624) grew poorly

on both the xylose and non-xylose plates, but when the triple

deletion was also present (strain 4625), growth in the absence

of xylose was abolished. The two tagO Pxyl-ltaS-containing

mutants (with and without the triple deletion) were then

cultured in liquid PAB medium (þMg2þ ) with and without

xylose (Figure 6F). The growth rate of the tagO Pxyl-ltaS

mutant was reduced but still detectable in the absence of

xylose (open triangles), but the pentuple mutant failed to

grow at all in the absence of inducer (open circles). Figure 6C

shows that the morphological appearance of the pentuple

mutant in the presence of xylose was similar to that of the

other tagO mutants, except that the cells were somewhat

larger and even more clumped. Cells cultured for several

hours in the absence of xylose showed little differences in

morphology, suggesting that growth was arrested without

any further change in morphology (Figure 6D). The lethality

arising from loss of both TA systems shows that synthesis of

anionic polymers is essential for B. subtilis. There are two

ways in which this lethality might arise, which we cannot yet

distinguish. The first possibility is that complete loss of

anionic polymer synthesis affects divalent cation homoeo-
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stasis so badly that multiple enzyme systems are inhibited

resulting in growth arrest. The second is that impairment of

both the elongation- and division-associated wall synthetic

systems eliminates all routes to growth.

Crystal structure of LtaS215–649

LtaS has an important function in the morphology and

physiology of B. subtilis. To gain insights into the enzymatic

function performed by LtaS, we solved the structure of the

extracellular domain (residues 215–649, LtaS215–649) by X-ray

crystallography using a selenomethionine-substituted sample

and anomalous scattering procedures. The experimental SAD

electron density maps were of such quality that the entire

structure of the domain, bar the last 14 amino acids, could be

built and refined to convergence. The two independent

molecules in the asymmetric unit are indistinguishable and

can be considered equal. Details of the data collection,

structure solution and refinement are in Table III.

Globally, LtaS215–649 belongs to the AP superfamily

(Millán, 2006), despite sharing only B15% sequence identity

to its closest structural neighbours in the PDB (Figure 7A).

The core of LtaS215–649 is an a/b-fold, common to all its

structural homologues. The nearest homologue is an unpub-

lished output from a structural genomics effort (PDBid 3ed4),

which is annotated as a putative arylsulphatase from

Escherichia coli. The two structures can be superimposed

which an r.m.s.d. on 310 matched Ca atoms of 2.8 Å. The

AP superfamily also comprises eukaryotic and prokaryotic

sulphatases, as well as phosphodiesterases, mutases and

dehydratases, examples of which are all found by SSM in a

search of the PDB for structural homologues of LtaS215–649.

The overall similarity of LtaS215–649 to biochemically char-

acterized enzymes enables the location of the active centre of

LtaS to be deduced. First, it was clear immediately on solving

the structure that Thr297 is phosphorylated in the crystal

(Figure 7; Supplementary Figure 2A). This feature has been

refined satisfactorily with unit occupancy and with B-factors

similar to nearby, but non-bonded atoms. Second, there is a

single metal ion found adjacent to the phosphoryl group that

was modelled and refined satisfactorily as magnesium. This

metal ion was also present in the crystallization conditions.

These electron density features allowed the identification of

the active site of LtaS, which resides in the centre of the a/b-

domain, with Thr297 situated at the N-terminal end of the

central a-helix. The active site is in a cleft on the surface that,

in the context of the full-length native protein, would oppose

the cell membrane (this is depicted schematically in

Figure 7C), the source of phosphatidyl glycerol for LTA

synthesis.

To test whether Thr297 was important for LtaS function,

we made a mutation that would generate a Thr297Ala sub-

stitution. Purification and analysis of the mutant protein

showed that phosphorylation was prevented (only one peak

at 49.71 kDa, the expected mass for the protein carrying the

point mutation). Western blotting of mutant B. subtilis cells

showed that the protein accumulated to similar levels as the

wild-type protein (data not shown). Functionality was as-

sayed by examining the sporulation efficiency when the

protein carrying the point mutation was expressed in an

otherwise sporulation-deficient ltaS yqgS double deletion

strain (Table II). The mutant protein was not able to rescue

the sporulation-deficient phenotype. We therefore conclude

the phosphorylatable Thr297 is essential for LtaS function.

Sequence analysis of the amino acids that are in direct

contact with the phosphothreonine at position 297 (His412,

Glu253 and Trp350) revealed that they are among the most

conserved in LtaS orthologues, suggesting their importance

for LTA synthesis. The single magnesium ion in LtaS lies in a

distorted octagonal coordination geometry (Figure 7B), co-

ordinated in the equatorial plane by the Ne2 atom of His472,

the ether oxygen of phospho-Thr297, and in a bidentate

manner by the carboxylate of Glu253, whereas the apical

positions are filled by Od2 of Asp471 and O1P of phospho-

Thr297. A single metal ion is also observed in structures of

arylsulphatases (Boltes et al, 2001), whereas AP contains

three metal ions, only two of which (both zinc) appear to

be catalytically active and which straddle the phosphate in a

non-covalent enzyme:Pi complexes (reviewed in Galperin

and Jedrzejas, 2001). The second of these zinc ions—equiva-

lent in position to the magnesium in LtaS—also coordinates

the ether oxygen of the phosphoserine, and is involved in the

hydrolysis of the phosphoseryl intermediate (Galperin and

Jedrzejas, 2001).

The arylsulphatase group of enzymes are characterized by

the unusual requirement for the post-translational formyla-

tion of an invariant cysteine, forming Ca-hydroxyformyl-

glycine, to become the active site nucleophile (e.g., Jonas

et al, 2008). As has been described for alkaline phosphatases,

the reaction cycle of the sulphatase subfamily of the AP

superfamily also proceeds through a covalent enzyme inter-

mediate—here the nucleophilic Ca-hydroxyformylglycine be-

comes sulphated (e.g., lysosomal sulphatase; Bond et al,

1997). Phospho-Thr297 is spatially equivalent to the

Table III Crystallographic data collection

Data collection

Wavelength (Å) 0.9763
Space group P 1 21 1
Unit cell parameters a¼ 56.63 Å, b¼ 54.41 Å,

c¼ 140.78 Å, b¼ 90.971
Resolution (Å) 70.36–2.35 (2.48–2.35)
No. of observations 704196
No. of unique reflections 35 957
Multiplicity 19.6 (7.7)
Anomalous multiplicity 10.1 (3.9)
Completeness (%) 100 (100)
Anomalous completeness 100 (100)
Average I/sigma I 22.1 (3.8)
Rsym 0.124 (0.361)

Refinement
No. of reflections 34148
Rwork (%) 17.1 (21.2)
Rfree (%) 23.3 (29.9)
No. of atoms 7080

r.m.s.d.
Bond lengths (Å) 0.012
Bond angles (deg) 1.382

Ramachandran plot
Favoured (%) 96.1
Allowed (%) 99.9

Mean B-factor
Wilson B (Å3) 39.5
Main chain (Å3) 48.3
Side chain/water (Å3) 47.3
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Ca-hydroxyformylglycine in sulphatases (Supplementary

Figure 1B) and the nucleophilic serine in APs and given

that a constellation of Thr297-surrounding amino acids

(Glu253, Asp471 and His472) are also conserved in the AP

superfamily, we propose that the reaction cycle of LtaS also

proceeds through a covalent enzyme intermediate, the adduct

of which is likely to be glycerol phosphate. The electron

density in the crystallographic maps clearly shows that

Thr297 is modified by phosphorylation, not glyceropho-

sphorylation, and MALDI-TOF mass spectroscopy of the

protein shows two peaks with a mass difference of 79 Da

(peaks at 49 741 and 49 819 kDa, respectively), consistent

only with phosphorylation of Thr297. Adjacent to phospho-

Thr297 are three water molecules, the positions of two of

which may mimic the hydroxyls of a covalently attached

glycerol phosphate. One water is in hydrogen bond contact

with the side chains of His343, Asn345 and Arg352, the

second is in contact with the guanidinium group of Arg352

and the O3P of phospho-Thr297 and the third water contacts

the carboxylate of Glu253 and the main chain carbonyl of

Thr408. His343, Asn345, Arg352 and Trp350—which sits

directly above the phosphoryl group—are highly conserved

in LtaS homologues, suggesting that these amino acids have a

more important function in catalysis than a simple hydration

sphere. Trp350, whose Ne atom contacts two of the phos-

phoryl oxygens and thus presumably participates in

poly(GroP) formation (Figure 7B), is replaced in AP by

Arg166, which makes contact with the phosphoryl group

during all steps of the reaction cycle (Galperin and

Jedrzejas, 2001).

The phosphorylation of Thr297 appears to mimic an

intermediate state of the formation of poly(GroP). The source

of the phosphorylation, however, is not known. The depth of

the pocket in which Thr297 is situated at the base reduces the

possibility that LtaS is phosphorylated by a kinase, but

instead the source of phosphorylation is likely to be a small

molecule phosphodonor, which can phosphorylate two-com-

ponent response regulators (McCleary et al, 1993). The

presence of a phosphoryl group on the active centre of the

enzyme appears to inhibit LtaS effectively as we could not

produce poly(GroP) from glycerol phosphate. LtaS thus

seems to have evolved to retain some features of alkaline

phosphatase-type enzymes (e.g., covalent phosphoryl en-

zyme intermediate) and others from the arylsulphatase fa-

mily (e.g., one-metal hydrolysis, not two or three metal

hydrolysis). In fact, the absolute biochemical reaction cata-

lysed by LtaS is not known: most likely the 30 hydroxyl of an

incoming glycerol phosphate moiety attacks the threonyl-

glycerophosphate adduct to effect the elimination reaction.

Such an in-line attack also invokes a role in catalysis for

Lys296, invariant in LtaS homologues, yet its side chain is

directed away from the active site ion in our structure. The

pocket that is lined by His343, Asn345 and Arg352 is of ideal

volume for only a single glycerol (Supplementary Figure 2A, B),

Figure 7 Crystal structure of LtaS215–649. (A) The protein backbone is rendered as a secondary structure cartoon colour ramped from blue at
the N terminus to red at the C terminus. Orthogonal views are shown with the secondary structure elements highlighted in the middle panel.
(B) The active site of LtaS shown in two views, with residues coordinating the magnesium ion in the active site drawn as sticks with the final
REFMAC-weighted Fobs�Fcalc electron density map contoured at 1.5sigma and shown as blue wireframe. (C) The domain arrangement of full-
length LtaS is illustrated schematically. The N-terminal, trans-membrane spanning helices are modelled, and coloured grey, in the context of a
biological membrane. The structure of the C-terminal, catalytic domain of LtaS is drawn as a cartoon, colour-ramped in rainbow manner from
N (blue) to C terminus (red). The location of the active site is highlighted by a dotted circle.
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implying that the growing chain of poly(GroP) is the nucleo-

phile in the second stage of the reaction. However, the precise

role (indeed, its actual identity) of the bound metal ion in

catalysis, how the growing chain is recognized by LtaS and the

enzymatic mechanism of poly(GroP) formation and its elimina-

tion from LtaS remain unknown and are the subject of further

biochemical experimentation.

Conclusions

Despite their importance as almost ubiquitous and abundant

components of the walls of Gram-positive bacteria, the func-

tions of TAs have remained the subject of speculation for

several decades. Why organisms such as B. subtilis produce

two distinct forms of TA, linked to the wall and the mem-

brane, has also been unclear. We have now taken several

major steps towards answering these questions. First, we

have established that although both WTA and LTA are

dispensable in B. subtilis, jointly, they are essential. This

together with recent evidence that LTA is essential in

S. aureus (which relies largely on the cell division apparatus

to enlarge; Pinho and Errington, 2003; Gründling and

Schneewind, 2007b) reinforces the notion that TA synthetic

enzymes are good potential targets for antibiotics against

Gram-positive pathogens. Elucidation of the crystal structure

of the catalytic domain of LtaS and identification of its active

site residue provide an important framework from which to

launch drug discovery programmes. Second, we have shown

that the major function of the LTA system lies in divalent

cation homoeostasis, in accordance with earlier speculations

(Fischer, 1988; Neuhaus and Baddiley, 2003). Third, we have

discovered that the WTA and LTA systems have distinct roles

in B. subtilis cell morphogenesis. It is well known that

B. subtilis and many other rod-shaped bacteria have distinct

morphogenetic systems involved in cell elongation and cell

division (e.g., Begg et al, 1990; Daniel and Errington, 2003;

Claessen et al, 2008). Previous work on the WTA system has

pointed to a specialized role in elongation, manifested by

both a rounded cell phenotype (Wagner and Stewart, 1991;

D’Elia et al, 2006a) and association of the synthetic enzyme

complex with the elongation machinery (Formstone et al,

2008). We now show that the ltaS mutants are more affected

in processes associated with cell division. As WTA and LTA

have identical structures in B. subtilis, apart from their

linkage to PG and membrane, respectively, we assume that

it is the spatial distribution of the two polymers that deter-

mines their specialized functions. In principle, this means

that LTA remains tethered close to the cell membrane surface,

whereas the WTA should migrate out through the wall as it

matures. As cell division involves ingrowth of the septal

membranes, LTA may be especially important in ensuring

the availability of Mg2þ to synthetic enzymes acting at or

near the leading edge of the invaginating septum.

To conclude, this study opens up a number of important

new areas of research on the role of LTA and TAs generally, in

cell morphogenesis, the cell cycle, sporulation and adaptation

to environmental conditions, as well as providing new op-

portunities for drug discovery.

Materials and methods

For more information on Materials and methods, see Supplemen-
tary data. Strains and plasmids are listed in Supplementary Table 1.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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