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The use of simple calibrations of individual locations in

making transshipment decisions in a multi-location

inventory network

T. W. Archibald1, D. P. Black2 and K. D. Glazebrook2,3

1University of Edinburgh Management School, Edinburgh UK;
2Lancaster University Management School, Lancaster University, Lancaster UK;
3Department of Mathematics and Statistics, Lancaster University, Lancaster UK

Abstract

Demands occur at each location in a network of stock-holding retail outlets. Should a location run out of
stock between successive replenishments, then subsequent demands may be met either by transshipping
from another location in the network or by an emergency supply from a central depot. We deploy
an approximate stochastic dynamic programming approach to develop a class of interpretable and
implementable heuristics for making transshipment decisions (whether and from where to transship)
which make use of simple calibrations of the candidate locations. The calibration for a location depends
upon its current stock, the time to its next replenishment and the identity of the location needing
stock. A numerical investigation shows strong performance of the proposed policies in comparison with
standard industry practice (complete pooling, no pooling) and a recently proposed heuristic. It points
to the possibility of substantial cost savings over current practice.

Keywords: dynamic programming; inventory; stochastic process

Introduction

We consider a network of M stock holding locations (retail outlets), at each of which demands occur
at random. Stock at a location is replenished independently of the other locations according to a peri-
odic review policy. Should a stock-out occur at a location between replenishment epochs, subsequent
demands must be met either by transshipping stock from another location in the network or by an
emergency supply from a central depot. The paper describes how (cost) effective transshipment policies
(i.e. rules for determining whether, and from where transshipments should be made in the interests
of the network as a whole) may be developed. Our models have been developed in conjunction with a
retailer of car parts which has a network of 50 service depots within the UK. They reflect its practices
regarding periodic review and transshipment.

While it is true that many models supporting the study of transshipments have been proposed in
the literature (Burton and Banerjee, 2005; Kukreja et al, 2001), we believe that much past research
has failed to fully satisfy the demands of contemporary retailing. In our experience, transshipment in
a retail network is often considered as a remedial action taken only when a stock-out occurs. When
considering this type of transshipment, one should really weigh the benefit of meeting the demand
using inventory held in the system against the cost of transshipment and the increased likelihood of
future stock-outs at the location providing the transshipment. This requires an accurate estimate
of the marginal value of inventory at each location in the network. This value is a function of the
stock level and time to replenishment at each location in the system and is extremely difficult to
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assess due to the uncertainty of demand and the potentially large number of locations in the network.
Consequently, managers often resort to simple heuristics such as “complete pooling” or “no pooling”.
While convenient to implement, these simple policies take little account of the stock levels at locations
and are completely independent of the replenishment times.

Faced by the formidable technical challenge to analysis posed by the problem of making trans-
shipment decisions which fully exploit available information at all network locations, it is perhaps not
surprising that some studies have resorted to imposing unrealistic limits on network size (Archibald et
al, 1997; Rudi et al, 2001) while others have imposed restrictions on the timing and frequency of trans-
shipments (Jönsson and Silver 1987; Tagaras and Cohen 1992; Burton and Banerjee 2005). It has not
been uncommon to assume that transshipments are made (as it were) retrospectively, once the demand
within a review period has been realised. Under this assumption, the inventory network can either be
centrally managed (Wee and Dada, 2005; Hu et al, 2005; Herer et al, 2006) or decentralised (Granot
and Sosic, 2003; Hu et al, 2007) and the transportation links can have limited capacity (Özdemir et
al 2006). In contrast to the above contributions, our model places no restriction on the number of
locations in the network and allows transshipments each time a stock-out occurs.

Studies allowing transshipments in response to stock-outs have generally adopted one-for-one re-
plenishment policies (Lee, 1987; Grahovac and Chakravarty, 2001; Wong et al, 2005) or other continuous
review replenishment policies (Asäter, 2003; Minner et al, 2003; Kukreja and Schmidt, 2005). A major
difference between these papers and our research is the assumption of a periodic review replenishment
policy in our model. Zhao et al, 2006 propose a model with periodic replenishment in which trans-
shipment is considered whenever a demand occurs. However, in sharp contrast to our work, their
model assumes a decentralised network in which each location has no information about the inventory
level at other locations in the network. Models of retail networks with periodic replenishment often
assume simultaneous replenishment of all locations (Cao and Silver, 2005; Herer et al, 2006; Archibald
et al, 2007). This can be difficult to achieve in practice in large retail networks. Our model allows
independent periodic replenishment in the network.

The model we propose is a stochastic decision process with a finite action space and uncountable
state space. A standard proposal would apply the techniques of stochastic dynamic programming
(DP) to a suitably designed finite state approximation. However, the high dimensionality of the
state space (related to M , the network size) renders this unrealistic in problems of practical size. A
recently proposed (pairwise) heuristic, derived by the authors (Archibald et al, 2007), is based on the
decomposition of the network into M(M −1)/2 two-location systems. Each two-location subproblem is
modeled as a two-dimensional stochastic DP and solved using a finite state approximation. A heuristic
transshipment policy for the M -location system is then constructed from the optimal value functions of
the DP models. In contrast, we deploy an approximate DP approach in which a simple approximation to
the DP problem’s high dimensional value function is developed by optimizing costs over a class of static
(state independent) transshipment policies for the M -location system, each of which is determined by
an M × M stochastic matrix P . Our proposal, a fully dynamic policy, is then obtained by applying
a single DP step which utilises our approximating value function. This broad approach has been used
previously in designing dynamic controls for queueing systems (Krishnan, 1987), but to our knowledge
opens up a new avenue to the development of dynamic policies for transshipments. The analysis results
in a policy which is expressed in terms of a collection of calibrating indices, one for each location, and
which operates as follows: should a demand arise at location k which has no stock then for each stock-
holding location j a simple quantity Ij(ij , tj, k) is computed which depends upon j’s current stock
level (ij) and the time to its next replenishment (tj). This quantity will also take account of the cost
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of transshipping from j to k. The policy nominates the location to supply k as that with the smallest
calibrating index, unless this minimal value exceeds the cost of supplying k by emergency order which
then becomes the nominated option. We would argue that the policy has the considerable virtue of
interpretability in addition to its (cost) effectiveness.

The paper presents the model and develops our index-based dynamic transshipment policy in the
next section. A numerical investigation is described in which the cost performance of our proposal
(which we denote by SPI) is compared with the optimum for small problems (M = 3) for which a
(close to) exact analysis via stochastic DP is possible, if expensive. SPI is then compared with that
which arises from standard industry practice (complete pooling, no pooling) and from the pairwise
heuristic (denoted PW) of Archibald et al (2007) in larger problems (M = 10, 20) including some
in which the depot locations are assumed to be clustered in centres of population. This latter set of
comparisons utilises Monte Carlo simulation.

Our findings are summarised as follows:

• SPI was found to be very close to optimal in the small problems (M = 3) on which it was tested;

• SPI results in cost savings over competitor heuristics in the large majority of cases studied.
Typically these savings are at the level 2 − 3% over the best performing competitor. These
savings are recurrent and hence can be significant;

• SPI copes easily with situations in which the locations are not all replenished simultaneously. This
is in contrast with the heuristic PW which was developed under an assumption of simultaneous
replenishment. While SPI outperforms PW (even) when locations are replenished simultaneously,
cost savings tend to be greater when this is not the case;

• SPI is considerably easier to compute than PW. A simple version of SPI (called SPI I) is particu-
larly convenient to compute and performs very well. SPI has a structure which is straightforward
to understand and interpret.

The Model and Methodology

An inventory network consisting of M locations is required to meet demands which occur at random.
The inventory at each of the locations is replenished periodically by a common supplier. Periodic
replenishment is often used in large networks because of the supplier’s need to coordinate deliveries.
We shall suppose that all depots are replenished at equally spaced time points with Tj the time
between successive replenishments of location j. Please note that we do not require replenishments at
all locations to occur with the same frequency or, indeed, simultaneously. The model assumes that the
inventory level at location j is restored to level Sj at each replenishment. However, the very simple
structure of the proposed heuristic means that it can easily be used as an approximation to inform
transshipment decisions in cases where this is not always possible due, for example, to scarcity of supply
or non-zero replenishment lead time. We shall suppose the vector S of replenishment levels to be given.
In practice it will be determined by a post-hoc optimisation.

One unit of inventory is required to satisfy each instance of demand in the network. This can be
supplied from stock held at the location facing the demand, from stock held at another location in
the network via transshipment or by emergency order. It is assumed that the supplier is always able
to provide an emergency order. Hence, demand can always be met, even when there is no stock in
the inventory network. It is also assumed that the customer accepts whatever method of supply is
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offered. This would be the case if, for example, the lead times for transshipment and emergency order
are negligible. However, it could also be an appropriate assumption if the lead times are relatively
short and the customer is compensated by a discount or free delivery.

The aim of the analysis is to determine the most cost effective way of satisfying each instance of
demand in the network. It is therefore necessary to model the demand process at the network locations.
If we assume a large population of independent customers each of which experiences demand generating
events at a constant rate then it is appropriate that instances of demand in the system occur according
to a Poisson process with rate λ. Further we assume that an instance of demand occurs at location
j with probability φj, 1 ≤ j ≤ M . Successive determinations of location are independent. It follows
that location j faces a Poisson process of local demand which is of rate λφj , with demand processes
for distinct locations being independent.

Costs are incurred as follows:

1. Purchase cost. We shall assume that all demands are indeed met. Here an assumption of fixed
unit purchase cost per item (C, say) means that these costs will be incurred at rate Cλ under all
policies and hence may be ignored in the analysis. Hence, we set C = 0.

2. Transshipment (fixed) costs. We suppose that certain fixed costs arise when satisfying a demand
arising at location k with an item from location j and this is written Rjk. We write REk for the
fixed cost arising in meeting such a demand by an emergency order. Typically,

REk ≫ Rjk, j 6= k ≫ Rkk = 0, 1 ≤ k ≤ M.

3. Holding costs. The cost per item per time unit of holding inventory at location j is hj , 1 ≤ j ≤ M .

The goal of analysis is the identification of a policy (rule for making decisions) for determining
which location should meet each demand arising so that the total average cost incurred in operating
the network per unit time is minimised. The theory of stochastic dynamic programming (see, for
example, Puterman 1994) tells us that (optimal) decisions can be based on the current system state
only. Here we take the current system state to be the vector whose components are the current inventory
levels and the times to next replenishment of all locations. We can therefore restrict attention to the
class of stationary policies in which decisions are made on the basis of the current state

(i, t) ≡ ({i1, i2, ..., iM}, {t1, t2, ..., tM}) (1)

only. In (1), ij is the current inventory level at depot j with tj the time until depot j’s next replen-
ishment, 1 ≤ j ≤ M . Even under the restriction to stationary policies, determination of an ǫ-optimal
policy via

(i) the development of a finite state approximation, and

(ii) direct application of dynamic programming (DP)

is unrealistic other than for very small problems. Hence, our search is for heuristic policies which come
close to minimising the total system cost rate. We shall propose and implement an approach which
develops and modifies a proposal of Krishnan (1987) who utilised it in the context of the dynamic
routing of incoming customers to parallel queues for service.
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Stage 1: Static location determinations

Our methodology first requires the development of an optimal (or good, at least) static policy (i.e. state
independent policy) for determining which locations should satisfy each demand. Any such policy will
be assumed to be determined by an M ×M stochastic matrix P. The (j, k)th component of P, written
Pjk, gives the probability that any demand arising at location k is met from location j. If j 6= k, this
will be a transshipment. Successive determinations are made independently using P. We assume that
when the supply route indicated by P is not implementable because of a stock-out (zero inventory),
the demand is satisfied via an emergency order to the location at which the demand originated.

Write

v
Tj

j (Sj, P)

for the total expected cost incurred under static regime P at depot j during time [0, Tj) given that at
time 0 the inventory level at j is Sj, 1 ≤ j ≤ M . An optimal static policy P∗ minimises the aggregate
cost rate

ΣM
j=1v

Tj

j (Sj , P)/Tj (2)

over the M(M − 1)-dimensional space of stochastic matrices. We generalise the above notation to

vt
j(i, P) (3)

in the obvious way and proceed to obtain closed-form formulae for these quantities. To do this, we shall
consider costs arising from transshipments, emergency supplies and holding costs in turn and write

vt
j(i, P) = vt

j(i, P, trans) + vt
j(i, P, emerg) + vt

j(i, P, hold) (4)

for the corresponding decomposition of aggregate costs.

First, observe that, under P, requests to supply stock arrive at location j according to a Poisson
process with overall rate

λj(P) = λΣM
k=1φkPjk ≡ ΣM

k=1λjk(P).

The transshipment/emergency costs in (4) are those arising when location j is nominated by P as
supplier. We compute the three terms on the r.h.s. of (4) in turn.

1. Transshipment costs. We use the fact, based on properties of the Poisson process, that given a
demand of size d overall at location j (i.e. d requests for supply arriving at j in a time period
of length t), then the demand arising from requests to transship from j to k has a conditional
binomial

Bin{d, λjk(P)/λj(P)}

distribution. We then obtain

vt
j(i, P, trans) =

[

exp{−λj(P)t}

M
∑

k=1

Rjkλjk(P)/λj(P)

] [

i−1
∑

n=0

n
{λj(P)t}n

n!
+ i

∞
∑

n=i

{λj(P)t}n

n!

]

. (5)
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2. Emergency costs. Similarly, the expected emergency costs incurred on occasions when location j
is nominated supplier are given by

vt
j(i, P, emerg) =

[

exp{−λj(P)t}
M
∑

k=1

REkλjk(P)/λj(P)

] [

∞
∑

n=i+1

(n − i)
{λj(P)t}n

n!

]

. (6)

3. Holding Costs. In order to compute the holding cost contribution to (4), we consider an initial
inventory of i at location j and a time horizon t. Policy P is in operation. We first condition on
the event that the number of requests for supply arriving at location j during [0, t) is n ≤ i. The
consequential holding cost rate at time s ∈ [0, t) will be hj(i − m) with probability

(

n

m

)

(s

t

)m (

1 −
s

t

)n−m

, 0 ≤ m ≤ n. (7)

From (7) we infer that the conditional expected holding cost incurred over the period [0, t) is
given by

∫ t

0

n
∑

m=0

hj (i − m)

(

n

m

)

(s

t

)m (

1 −
s

t

)n−m

ds = hj

∫ t

0

(

i −
ns

t

)

ds

= hj

(

i −
n

2

)

t, n ≤ i, (8)

where in the first equality in (8) we use properties of the binomial distribution. If we now
condition on the event that the number of requests for supply arriving at location j during [0, t)
is i + n, n > 0, utilisation of standard integral identities yields that the conditional expected
holding cost over period [0, t) is given by

∫ t

0

i−1
∑

m=0

hj (i − m)

(

i + n

m

)

(s

t

)m (

1 −
s

t

)i+n−m

ds

= hjt
i−1
∑

m=0

(i − m)

(

i + n

m

)

m!(i + n − m)!

(i + n + 1)!

= hjt
i−1
∑

m=0

(i − m)

(i + n + 1)
=

hji(i + 1)t

2(i + n + 1)
, n > 0. (9)

From (8) and (9) we infer that

vt
j(i, P, hold) =

hjt exp{−λj(P)t}

[

i
∑

n=0

(

i −
n

2

) {λj(P)t}n

n!
+

∞
∑

n=i+1

i(i + 1)

2(n + 1)

{λj(P)t}n

n!

]

. (10)
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We now obtain vt
j(i, P) by aggregating the quantities in (5), (6) and (10). We are now equipped

with explicit formulae for expected costs incurred under P which facilitate the optimization in (2).
Details of how we approach the optimization numerically are given in the next section describing our
numerical investigation.

Stage 2: Policy Improvement Step

We now take the static policy P∗ which optimizes (2) and apply a single dynamic programming (DP)
policy improvement step to it. The result is a dynamic policy which takes account of current inventory
levels and time to next replenishment at each location before determining how (i.e. from where) any
particular demand should be met. This policy will be constructed in such a way that it enjoys the
following property: suppose that a demand arises which cannot be met while the system is in some
state (i, t), defined in (1). The policy will take the decision (either to transship from a specified location
or to make an emergency supply) such that expected costs incurred over any horizon τ ≥ maxj tj are
minimised under an assumption that all future decisions are made according to optimal static policy
P∗. We now show how to design a policy to achieve this.

Consider the situation described in the preceding paragraph, namely that a demand has arisen at
some location k which cannot be met with the system in state (i, t). Hence we must have ik = 0. Call
the current time 0. Now consider some time horizon τ ≥ maxj tj and write

τ = tj + NjTj + r(tj, τ), 1 ≤ j ≤ m, (11)

where the Nj are integers and 0 ≤ r(tj, τ) < Tj . The expression in (11) disaggregates horizon τ into
(a) time until the next replenishment at j (tj), (b) a whole number of replenishment cycles for j (NjTj)
and (c) a remainder (r(tj, τ)). Observe that Nj + 1 is the number of replenishments at location j over
the time period [0, τ).

Suppose now that the demand arising at time 0 at location k is met by transshipment from location
j (where ij > 0) and that all subsequent decisions up to τ are made according to P∗. Deploying the
notation in (3) we can use (11) to write the expected cost arising at location j during [0, τ) as

Rjk + v
tj
j (ij − 1,P∗) + Njv

Tj

j (Sj ,P
∗) + v

rj(tj ,τ)
j (Sj ,P

∗). (12)

The first term in (12) is the cost of the transshipment at time 0, the second term is the expected
cost until the next replenishment once the transshipment is made, the third term is the expected cost
of Nj complete replenishment cycles, and the fourth term is the expected cost incurred during the final
time rj(tj, τ) of the horizon. Similarly, the expected cost arising at location l 6= j during [0, τ) is

vtl
l (il,P

∗) + Nlv
Tl

l (Sl,P
∗) + v

rl(Tl,τ)
l (Sl,P

∗). (13)

Combining the expressions in (12) and (13), we can write the aggregate system cost incurred over [0, τ)
when the decision at time 0 is a transshipment from location j to location k as

Rjk + v
tj
j (ij − 1, P∗) +

∑

l 6=j

vtl
l (il, P∗) +

M
∑

l=1

Nlv
Tl

l (Sl, P∗) +

M
∑

l=1

v
r(tl, τ)
l (Sl, P∗)

= Rjk + v
tj
j (ij − 1,P∗) − v

tj
j (ij ,P

∗)

+

M
∑

l=1

{

vtl
l (il,P

∗) + Nlv
Tl

l (Sl,P
∗) + v

r(tl, τ)
l (Sl,P

∗)
}

, 1 ≤ j, k ≤ M. (14)
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Suppose now that the demand arising at time 0 at location k is met by an emergency order and that
all subsequent decisions are made according to P∗. We see from a similar calculation to the above that
the resulting aggregate system cost over [0, τ) is then given by

REk +

M
∑

l=1

{vtl
l (il, P∗) + Nlv

Tl

l (Sl, P∗) + v
r(tl ,τ)
l (Sl, P∗)}, 1 ≤ k ≤ M. (15)

Now compare the expressions in (14) and (15). After some straightforward algebraic manipulation
we deduce that the cost minimising choice at time 0 (and hence the choice made by our dynamic policy
for transshipments) will be to meet the demand arising at location k by a transshipment from location
j if ij > 0 and

Rjk + v
tj
j (ij − 1, P∗) − v

tj
j (ij , P∗) = min

l
{Rlk + vtl

l
(il − 1, P∗) − vtl

l
(il, P∗)} ≤ REk. (16)

If the inequality in (16) is not satisfied then the cost minimising choice at time 0 will be to make an
emergency order.

We draw together this discussion in the statement of Theorem 1. From (16), we introduce the
location index Ij(ij , tj, k), used by our policy to assess the cost implications of a transshipment from j
to k when (ij , tj) summarises the current state of location j, as

Ij(ij , tj , k) = Rjk + v
tj
j (ij − 1,P∗) − v

tj
j (ij ,P

∗)

= Rjk + exp{−λj(P
∗)tj}

({

M
∑

l=1

(REl − Rjl)λjl(P)/λj(P
∗)

}





∞
∑

n=ij

{λj(P
∗)tj}

n

n!





−

ij−1
∑

n=0

hjtj
{λj(P

∗)tj}
n

n!
−

∞
∑

n=ij

hjijtj
(n + 1)

{λj(P
∗)tj}

n

n!

)

. (17)

Note that we obtain expression (17) by substitution from (4)-(6) and (10).

Theorem 1 (DP policy improvement from static policy P∗).

The dynamic policy which results when a single DP policy improvement step is applied to the optimal
static policy P∗ is constructed as follows: Suppose that a demand arises at location k when the system
is in state (i, t), where ik = 0. For each location j such that ij > 0 compute the index Ij(ij , tj , k) in
(17). If

min
j

{Ij(ij , tj, k)} ≤ REk (18)

where the minimum in (18) is taken over all stock holding locations then the dynamic policy chooses to
supply location k from any j achieving the minimum. If

REk < min
j

{Ij(ij , tj , k)}

the dynamic policy chooses to supply location k via an emergency order.

Proof.

The proof is given in the discussion to (17) above.
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Comments

1. Note that the quantity vtl
l (il,P

∗)−vtl
l (il−1,P∗) can be interpreted as the marginal value of a unit

of inventory (from a total of il) at location l when time tl remains until the next replenishment.
From (17), the index Ij(ij , tj , k) assesses the cost impact of transshipping from j to k by combining
the direct transshipment cost Rjk with the loss in value of the inventory at j occasioned by the
surrender of a single unit.

2. We have described above the construction of a dynamic policy developed by applying a single pol-
icy improvement step to the optimal static policy P∗. We do not apply a second (or subsequent)
policy improvement step for (at least) three reasons. First, the simplicity and interpretability
of the policy structure described in (18) will be lost under further steps. Second, in solutions
to dynamic programs developed via policy improvement, much the biggest cost improvement is
invariably achieved by the first step. See, for example, Puterman (1994). Third, the implementa-
tion of further policy improvement steps will be computationally prohibitive other than for very
small networks.

3. We have found that implementation of the above heuristic can be achieved comfortably even with
modest computing resources. As is reported below, a competitive P∗ can be found quickly on a
standard PC for problems of reasonable size. An on-line implementation of the heuristic will then
call for (at most) M calculations of the form in (17) whenever a stock-out occurs. Alternatively,
a library of values of vtl

l
(il,P

∗)−vtl
l
(il−1,P∗) may be constructed where 1 ≤ il ≤ Sl and tl = rα,

1 ≤ r ≤ Tl/α for some discrete time quantum. Good approximations to index values may then
be easily inferred from look ups in the library, which is of size

∑M
l=1 SlTl/α.

Numerical Investigation

An extensive numerical investigation has been undertaken to explore the quality of the allocation
heuristic developed in the previous section in relation to policies either in current use or proposed in
the literature. These are

• Complete Pooling (CP): If a depot cannot meet a demand, a transshipment is made from the
nearest location in the network with available stock. If there are none, an emergency supply is
mandated.

• No Pooling (NP): No transshipments are used. If a depot cannot meet a demand, an emergency
supply is mandated.

• Pairwise Heuristic (PW): This is a heuristic which is based upon the solution of M(M − 1)/2
dynamic programs, one for each pair of locations in an M -location network. Suppose that depots
j, k have current stock levels ij , ik and that both will be replenished in t time units. We write

vt
jk(ij , ik) (19)

for the expected cost incurred at depots j and k alone during the time up to the next replenishment
when an optimal allocation policy is used between them. The quantity vt

jk(ij , ik) is determined
by a dynamic programming recursion. Consider now a situation in which a demand occurs at
depot k, which has no stock and time t to go until it’s next replenishment. PW was developed
under an assumption of simultaneous replenishment across all locations so, to apply the heuristic,
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it is necessary to assume that there is t to go until the next replenishment at each location. If
depot j has stock, ij > 0, then the index

Rjk + vt
jk(ij − 1, 0) − vt

jk(ij , 0) (20)

is computed and has an interpretation as an indifference emergency cost. If emergency cost REk

were equal to the quantity in (20) then one would be indifferent (when considering depots j
and k alone) between sourcing the demand from location j and via an emergency order. The
heuristic PW meets the k-demand from whichever stock-holding location has the smallest value
of the index in (20) unless this smallest value exceeds REk. In the latter case PW mandates an
emergency order.

• Static Policy Improvement Heuristic (SPI): This is the heuristic developed in the preceding sec-
tion. Note that, while it has a similar index-based structure to PW, it is more flexible in applica-
tion in that it easily accommodates quite general delivery (replenishment) patterns through the
network. The index is also simpler in nature and exhibits an interpretable closed form. See (17)
above.

One issue which arises in the design and deployment of SPI is the determination of optimal P∗. See
(2) and following. We have adopted a standard approach to this optimization problem in the form
of hill-climbing from a large number of initial points in P-space, with our estimate of P∗ chosen as
the resulting local minimum with the smallest associated cost rate. The search for an optimal P∗ is
not computationally expensive. For a 10 location problem a competitive P∗ can be found within 2
seconds using a standard PC with a 2.2 GHz processor. We have found, unsurprisingly, that when
cost parameters are realistically chosen, our estimates of P∗ are reasonably close to the identity I.
Moreover, extensive numerical investigation has demonstrated that the performance of SPI is affected
very little if (an estimate of) P∗ is replaced by the identity I in the formula for the indices Ij(ij , tj, k)
in (16). See, for example, Table 1 in which average costs per unit time from an optimal transshipment
policy (OPT) are compared with those of versions of SPI utilising the identity matrix (SPI I) and the
above estimate of P∗ (SPI P∗). The results given are all for three depot problems and hence are small
enough for average costs (including optimal) to be computed by means of DP value iteration. Each
entry in the table is a cost rate averaged over ten configurations for transshipment costs among the
depots (all in the range (10, 30)) with emergency costs ranging from 20 to 100. Please note that the
theory does not guarantee that SPI P∗ will always yield lower costs than SPI I. Indeed, there are cases
in Table 1 where this is not the case.

Note from Table 1 that the cost rates for the two versions of SPI are virtually indistinguishable.
They are also never more than 0.56% in excess of the optimal rate. In the bulk of the remaining report
of numerical results (Tables 2-7 and 9-11) we shall assume a version of SPI which uses the identity
M × M matrix I.

In part to facilitate easy comparison between PW and SPI, the first phase of the numerical investi-
gation (Tables 2-4) concerns set-ups in which deliveries at all locations are made simultaneously and at
equally spaced intervals. We shall take the interval between successive delivery epochs to be the unit of
time (T = 1). Tables 5-7 concern set-ups in which deliveries are staggered. All cases reported in Tables
2-7 and 9-11 are for networks with ten locations (M = 10). The resulting allocation problems are
considerably beyond the scope of exact (or even ǫ-approximate) solutions via dynamic programming.
Further problem details for the results in Tables 2-7 are as follows:
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RE OPT SPI I SPI P∗

20 69.2407 69.2628 69.2663

30 77.0127 77.1206 77.1296

40 79.6126 79.841 79.8471

50 81.8432 82.1387 82.1425

60 83.9798 84.3342 84.3341

70 86.0734 86.4767 86.4753

80 88.1429 88.5892 88.5855

90 90.1972 90.6781 90.6753

100 92.2413 92.7532 92.7497

Table 1. Average costs per unit time incurred by an optimal transshipment policy and two versions of SPI (I
and P∗) for a range of three depot problems.

• Demand patterns. We write di = λφi for the demand rate (equivalently, mean demand between
replenishments) at location i, 1 ≤ i ≤ 10, and d for the corresponding 10-vector. In all problems
d has the form

d = (d1, d1, d1, d2, d2, d2, d2, d3, d3, d3),

where possible choices of d1, d2 and d3 are

d1 = d2 = d3 = 20,

d1 = 25, d2 = 20, d3 = 15 and

d1 = 30, d2 = 20, d3 = 10.

• Replenishment levels. The inventory levels after replenishment are taken to have the form

Si = ⌊λφi +
√

λφi⌋, 1 ≤ i ≤ 10,

where ⌊u⌋ is the largest non-negative integer less than or equal to u. Hence replenishment levels
are approximately one standard deviation above the mean demand. This means that, if left to
it’s own devices, each location would have a roughly 16% chance of exhausting it’s stock between
replenishments. The reader is referred to comments at the end of this section regarding choice of
replenishment levels.

• Emergency costs. These are assumed to be common to all locations (REi = RE , 1 ≤ i ≤ 10) and
in the range [20, 100].

• Transshipment costs. These are assumed to have a “fixed plus variable” structure, written as

B + [0, D] (21)

in what follows. In (21), B is a base (fixed) cost, taken to be 10 throughout. The variable
element of the cost of transshipping is distance related and is represented [0, D] in (21) and, for
any problem instance, is structured as follows: A map of 10 locations is obtained by sampling
uniformly within a square grid. The pair of locations at greatest distance from each other (distance
xmax say) are given a variable transshipment cost of D. Other variable transshipment costs are
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Figure 1. Plots of average cost per unit time against RE for four allocation heuristics for the case d1 = d2 =
d3 = 20.

proportional to distance. Hence two locations distance x apart have total transshipment cost
given by

B + Dx(xmax)−1.

In the tables following, we take D = 40 throughout.

• Holding costs. The cost of holding one unit of inventory for one unit of time is taken to be one,
namely the unit of cost.

In Tables 2-4 below find the values of the average cost per unit time in operating the inventory network
under the four allocation heuristics CP, NP, PW and SPI. In each case, the estimate of average cost
(AVE) is based upon 1, 000 simulation runs. Each simulation consists of a burn-in period of 20 cycles
before a further 50 cycles are observed. In all cases, the standard errors of the estimates of average
cost are placed alongside (SE). Each row of each table corresponds to a value of the emergency cost
RE which increases from 20 (top row) to 100 (bottom row). The optimising cost rate is highlighted in
bold for every RE value.

The primary feature of the numerical results are consistent across Table 2-4. In order to make them
more transparent, plots of average cost per unit time against assumed emergency order cost for each
allocation heuristic are given in Figure 1 for the Table 2 results.

The reader should note that the heuristic NP becomes hopelessly uncompetitive at even quite
modest levels of RE . Given that under NP each location operates autonomously, the system plainly
becomes vulnerable to a serious accumulation of costs from emergency orders. CP stands at the opposite
extreme, free as it is to go hunting for available stock at the nearest place which has it. The average
cost rate under CP increases very little as RE goes from 20 to 100. That said, it’s operation is still
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CP NP PW SPI

RE AVE SE AVE SE AVE SE AVE SE %

20 247.1006 1.1784 237.9020 0.8713 226.1010 0.7953 226.2461 0.799 -0.0641

30 247.3056 1.1893 286.6520 1.3258 237.3255 0.9744 236.9229 0.9812 0.1699

40 247.5106 1.2017 335.4020 1.7807 240.7875 1.0446 239.1421 1.0420 0.6880

50 247.7156 1.2157 384.1520 2.2358 242.7654 1.0827 239.6532 1.0650 1.2986

60 247.9206 1.2311 432.9020 2.6910 244.4316 1.1157 240.0239 1.0825 1.8364

70 248.1256 1.2479 481.6520 3.1463 245.8827 1.1457 240.4275 1.1024 2.2690

80 248.3306 1.2661 530.4020 3.6015 247.2587 1.1792 240.8621 1.1237 2.6557

90 248.5356 1.2855 579.1520 4.0568 248.4768 1.2099 241.3288 1.1476 2.9619

100 248.7406 1.3062 627.9020 4.5121 249.5451 1.2386 241.7654 1.1725 2.8851

Table 2. Estimates of average cost per unit time under four allocation heuristics for the case d1 = d2 = d3 = 20.

CP NP PW SPI

RE AVE SE AVE SE AVE SE AVE SE %

20 246.2437 1.1602 237.5915 0.8675 225.6918 0.7878 225.8524 0.7923 -0.0711

30 246.4487 1.1725 286.1815 1.3201 236.6558 0.9603 236.2876 0.9661 0.1558

40 246.6537 1.1864 334.7715 1.7733 239.9969 1.0276 238.4239 1.0261 0.6597

50 246.8587 1.2018 383.3615 2.2265 241.9349 1.0672 238.9218 1.0509 1.2611

60 247.0637 1.2186 431.9515 2.6799 243.6112 1.1023 239.2834 1.0707 1.8087

70 247.2687 1.2369 480.5415 3.1333 245.0871 1.1380 239.6967 1.0937 2.2488

80 247.4737 1.2564 529.1315 3.5868 246.3675 1.1713 240.1547 1.1165 2.5870

90 247.6787 1.2772 577.7215 4.0402 247.4626 1.2025 240.5802 1.1412 2.8608

100 247.8837 1.2992 626.3115 4.4937 248.4908 1.2340 240.9976 1.1675 2.8573

Table 3. Estimates of average cost per unit time under four allocation heuristics for the case d1 = 25, d2 =
20, d3 = 15.

CP NP PW SPI

RE AVE SE AVE SE AVE SE AVE SE %

20 239.3448 1.1347 232.4121 0.8536 220.9445 0.7770 221.0861 0.7824 -0.064

30 239.5498 1.1481 278.4281 1.2991 230.6964 0.9419 230.3306 0.9492 0.1588

40 239.7548 1.1631 324.4441 1.7451 233.9382 1.0128 232.1196 1.0078 0.7835

50 239.9598 1.1796 370.4601 2.1913 237.8522 1.1499 232.5930 1.0321 2.2611

60 240.1648 1.1975 416.4761 2.6375 238.2355 1.1671 232.9565 1.0524 2.2661

70 240.3698 1.2168 462.4921 3.0838 238.6835 1.1866 233.3544 1.0747 2.2837

80 240.5748 1.2373 508.5081 3.5302 240.2858 1.1587 233.8097 1.1005 2.7698

90 240.7798 1.2592 554.5241 3.9766 241.4084 1.1909 234.2101 1.1254 2.8050

100 240.9848 1.2822 600.5401 4.4229 242.4576 1.2220 234.6009 1.1518 2.7212

Table 4. Estimates of average cost per unit time under four allocation heuristics for the case d1 = 30, d2 =
20, d3 = 10.
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more costly than either PW or SPI which take more careful account of current inventory levels when
choosing whether and how to transship. When RE is small (≤ 30, say), there is very little difference
between average cost rates incurred by PW and SPI. However, SPI’s relative performance becomes
increasingly strong as RE increases above these levels.

Closer numerical investigation of the indices in (18) and (20) which underlie the operation of PW
and SPI lead to the following conclusions: the indices seem to coincide when the inventory ij held by the
potential sourcing location j is either very large or very small. The exclusive attention which the PW
index in (20) gives to the relation between sourcing location j and the currently needy location k leads
to slightly strange behaviour of this index for mid-range values of ij . Deployment of the static policy
P∗ to approximate future commitments yields a rather more balanced analysis and a more soundly
based calibration from (17).

The strong relative performance of SPI is even clearer for problems in which replenishments are
not assumed to be simultaneous. The problems summarised in Tables 5-7 have the characteristics of
those above save only that in each problem the 10 locations are grouped (randomly) in 5 pairs of two.
Locations in the same pair have the same delivery times chosen randomly from 5 equally spaced times
within the replenishment cycle. The time between successive replenishments is common to all locations
and is again taken to be the unit of time.

The qualitative properties of heuristics NP and CP are much as above. NP’s vulnerability to large
costs incurred from an excess of emergency orders is much as before, while staggered replenishments
means that CP’s earlier small exposure to emergency costs is reduced further. PW is not designed
for general delivery configurations and consequently performs poorly in comparison to SPI. The latter
heuristic is the clear winner in all problem instances.

We conclude the account of the numerical evidence in support of the transshipment heuristic SPI
with a brief description of results from a study of larger (20 depot) problems in which the depots
are clustered in centres of population. Each row of Table 8 has a summary (AVE, SE) of cost rates
arising from the application of five transshipment heuristics (CP,NP,PW, SPI I and SPI P∗) to 100
problems, each with an assigned value of the emergency cost RE. The 100 problems generated for
each row combine a choice from among 10 randomly generated 20-vectors of depot demand rates (each
component of which is chosen independently from the uniform U(10, 30) distribution) with a choice
from among 10 patterns of transshipment cost, each one arising from a clustered depot geography as
follows:

The positions of five hub depots (which might, for example, be thought to be located in city
centres) were obtained by sampling independently and uniformly within the unit square. The positions
of the remaining fifteen depots were obtained by first determining the hub to which they belonged
(independently, with equal probabilities) and then establishing their position relative to the chosen
hub. In all cases the latter determination was achieved by sampling uniformly from within a circle
centred at the hub. Finally, transshipment costs in all cases were given by

Rjk = 10 + 70djk, j 6= k,

where djk is the Euclidean distance between depots j and k. The cost rate for each of the 100 problem
instances underlying each entry in the table was obtained from a simulation involving 1,000 runs, as
described above. Other assumptions concerning times between deliveries, replenishment levels and
holding costs are as in the earlier study reported in Tables 2-4. The results in Table 8 confirm our
earlier numerical findings in this larger and more complex context. As in Table 1, the cost performance
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CP NP PW SPI

RE AVE SE AVE SE AVE SE AVE SE %

20 261.9085 0.2189 237.1313 0.1196 242.4200 0.1605 229.3017 0.1166 3.4145

30 261.9085 0.2189 285.1499 0.1819 255.1086 0.1929 241.5704 0.1447 5.6042

40 261.9085 0.2189 333.1686 0.2442 256.0314 0.1945 244.1097 0.1517 4.8837

50 261.9085 0.2189 381.1873 0.3066 255.9251 0.1933 245.3469 0.1532 4.3115

60 261.9085 0.2189 429.2057 0.3690 255.9080 0.1926 246.5922 0.1546 3.7778

70 261.9085 0.2189 477.2244 0.4313 255.9232 0.1922 247.8756 0.1560 3.2466

80 261.9085 0.2189 525.2430 0.4937 255.9417 0.1920 249.1573 0.1575 2.7229

90 261.9085 0.2189 573.2617 0.5561 255.9756 0.1919 250.3957 0.1591 2.2284

100 261.9085 0.2189 621.2804 0.6185 256.0155 0.1919 251.5887 0.1604 1.7595

Table 5. Estimates of average cost per unit time when deliveries are staggered for four allocation heuristics for
the case d1 = d2 = d3 = 20.

CP NP PW SPI

RE AVE SE AVE SE AVE SE AVE SE %

20 261.1774 0.2174 236.7129 0.1191 241.1615 0.1576 228.8315 0.1156 3.4442

30 261.1774 0.2174 284.5380 0.1812 253.9632 0.1893 241.0827 0.1439 5.3428

40 261.1774 0.2174 332.3631 0.2432 254.9104 0.1908 243.5898 0.1509 4.6474

50 261.1774 0.2174 380.1884 0.3054 254.8273 0.1897 244.8014 0.1523 4.0955

60 261.1774 0.2174 428.0136 0.3675 254.8301 0.1891 246.0301 0.1535 3.5768

70 261.1774 0.2174 475.8389 0.4296 254.8657 0.1889 247.2475 0.1549 3.0812

80 261.1774 0.2174 523.6640 0.4918 254.8890 0.1887 248.4617 0.1562 2.5868

90 261.1774 0.2174 571.4891 0.5539 254.9385 0.1886 249.6773 0.1576 2.1072

100 261.1774 0.2174 619.3144 0.6161 254.9967 0.1885 250.8266 0.1590 1.6625

Table 6. Estimates of average cost per unit time when deliveries are staggered for four allocation heuristics for
the case d1 = 25, d2 = 20, d3 = 15.

CP NP PW SPI

RE AVE SE AVE SE AVE SE AVE SE %

20 254.1299 0.2089 232.4410 0.1172 237.6835 0.1597 224.7297 0.1135 3.4314

30 254.1299 0.2089 278.1615 0.1783 247.6632 0.1842 235.8340 0.1406 5.0159

40 254.1299 0.2089 323.8820 0.2394 248.1058 0.1843 238.0149 0.1466 4.2396

50 254.1299 0.2089 369.6022 0.3006 248.0503 0.1833 239.2037 0.1480 3.6984

60 254.1299 0.2089 415.3226 0.3618 248.0801 0.1827 240.3930 0.1491 3.1977

70 254.1299 0.2089 461.0434 0.4230 248.1434 0.1826 241.6293 0.1506 2.6959

80 254.1299 0.2089 506.7639 0.4842 248.2265 0.1825 242.8213 0.1521 2.2260

90 254.1299 0.2089 552.4844 0.5454 248.3040 0.1825 244.0122 0.1536 1.7588

100 254.1299 0.2089 598.2046 0.6066 248.3839 0.1824 245.1590 0.1552 1.3154

Table 7. Estimates of average cost per unit time when deliveries are staggered for four allocation heuristics for
the case d1 = 30, d2 = 20, d3 = 10.
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CP NP PW SPI I SPI P∗

RE AVE SE AVE SE AVE SE AVE SE AVE SE

20 470.584 0.5037 464.708 0.3821 431.687 0.3315 431.764 0.3336 432.025 0.3347

30 470.587 0.5038 557.634 0.5815 452.679 0.4051 451.246 0.4064 451.433 0.4078

40 470.589 0.5039 650.56 0.7811 459.79 0.4365 455.894 0.4338 455.937 0.4345

50 470.592 0.5039 743.486 0.9808 463.777 0.4526 457.275 0.4434 457.256 0.4439

60 470.595 0.5040 836.411 1.1805 466.796 0.4624 457.755 0.4454 457.676 0.4457

70 470.597 0.5041 929.337 1.3803 469.592 0.4711 458.104 0.4458 458.002 0.4460

80 470.6 0.5042 1022.26 1.5801 472.187 0.4797 458.478 0.4463 458.335 0.4463

90 470.602 0.5043 1115.19 1.7799 474.586 0.4878 458.854 0.4470 458.712 0.4470

100 470.605 0.5044 1208.11 1.9796 476.744 0.4952 459.275 0.4479 459.092 0.4478

Table 8. Estimates of average cost per unit time, averaged over 100 problem instances for clustered networks of
depots under five allocation heuristics.

of the two versions of SPI are very close. Moreover, as in Tables 2-4 both versions of SPI outperform
all other heuristics save only the single instance of the marginal superiority of PW in the case with low
emergency cost RE = 20.

Remark

In all of the numerical investigations reported in Tables 2-8, replenishment levels for all locations are
set at approximately one standard deviation above the mean demand between replenishments. The
implication of this choice is that, while individual locations have a significant chance (approximately
16%) of exhausting their stock between replenishments, the inventory network as a whole is very
unlikely to be depleted. This is precisely the kind of set up in which transshipments can play a valuable
role in meeting demands and reducing costs. In such scenarios such relatively low replenishment levels
are likely to be dictated by considerations of available storage space. This is often the case, for example,
when the network concerns the retail of car parts.

In order to explore this issue further, the computations of Tables 2-4 were repeated with replenish-
ment levels of the form

Si = ⌊λφi + α
√

λφi⌋, 1 ≤ i ≤ 10,

for a range of α between 0.5 and 2. The results are presented in Tables 9-11 for the case with emergency
cost RE = 70. At the bottom end of the α-range transshipments occur frequently under all of CP, PW
and SPI and emergency orders very occasionally. At the top end of the α-range transshipments occur
very occasionally and emergency orders almost never. See Figure 2.

In all cases the tables show that the average cost rate is minimised when the heuristic SPI is
applied at replenishment levels determined by taking α to be around 1.75. Should storage space be
more limited (as indicated above) a smaller α may have to be adopted thereby creating a greater role
for transshipments, as demonstrated in Figure 2. However, the evidence of Tables 9-11 is that SPI
outperforms the other heuristics at all α values within the range considered. SPI’s performance is
particularly strong in the range 0.5 ≤ α ≤ 1.25 for which transshipment plays a significant role.
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Policy Heuristic

CP NP PW SPI

α AVE SE AVE SE AVE SE AVE SE %

0.5 409.9400 3.0746 807.1223 4.5154 391.9529 2.7234 382.4474 2.7572 2.4854

0.75 304.3043 1.9054 621.2823 3.8056 297.3307 1.7079 289.2485 1.6818 2.7942

1.0 248.1256 1.2479 481.6520 3.1463 245.8827 1.1458 240.4275 1.1024 2.2689

1.25 217.5717 0.8690 381.0690 2.5609 217.0021 0.8168 213.7524 0.7764 1.5203

1.5 202.1929 0.6249 313.0155 2.0543 202.2273 0.6017 200.4500 0.5740 0.8694

1.75 196.0133 0.4548 268.5621 1.6195 196.1639 0.4454 195.2533 0.4267 0.3892

2.0 195.8645 0.3378 241.8095 1.2594 195.9209 0.3335 195.5088 0.3220 0.1819

Table 9. Estimates of average cost per unit time under four allocation heuristics for the case RE = 70, d1 = d2 =
d3 = 20

.

Policy Heuristic

CP NP PW SPI

α AVE SE AVE SE AVE SE AVE SE %

0.5 454.2394 3.5270 869.3237 4.7414 432.1395 3.1326 422.1207 3.1862 2.3734

0.75 326.6476 2.1685 667.7856 4.0100 317.4047 1.9416 308.4683 1.9256 2.8970

1.0 247.2687 1.2369 480.5415 3.1334 245.0871 1.1381 239.6967 1.0937 2.2488

1.25 216.5079 0.8471 380.2053 2.5420 216.2063 0.8040 212.9814 0.7610 1.5141

1.5 201.2212 0.6047 311.3294 2.0308 201.3145 0.5858 199.5993 0.5561 0.8125

1.75 195.3306 0.4413 266.9383 1.5986 195.3580 0.4299 194.5662 0.4121 0.3928

2.0 196.5525 0.3062 236.4795 1.1567 196.5421 0.2976 196.2492 0.2895 0.1492

Table 10. Estimates of average cost per unit time under four allocation heuristics for the case RE = 70, d1 = 25,
d2 = 20, d3 = 15.

Policy Heuristic

CP NP PW SPI

α AVE SE AVE SE AVE SE AVE SE %

0.5 444.5052 3.5048 847.4459 4.7076 423.7336 3.1205 414.1330 3.1775 2.3182

0.75 294.5509 1.8682 598.3704 3.7314 289.0270 1.6759 280.6488 1.6454 2.9852

1.0 240.3698 1.2168 462.4921 3.0839 239.0264 1.1256 233.3544 1.0748 2.4306

1.25 219.0144 0.9180 392.1399 2.6368 218.7860 0.8647 214.9615 0.8187 1.7791

1.5 198.7155 0.5848 302.0420 1.9602 198.8731 0.5667 197.2359 0.5371 0.7501

1.75 193.2594 0.4216 259.3502 1.5417 193.4343 0.4168 192.5867 0.3959 0.3492

2.0 193.7812 0.3090 234.9930 1.1969 193.9233 0.3089 193.5003 0.2957 0.1451

Table 11. Estimates of average cost per unit time under four allocation heuristics for the case RE = 70, d1 = 30,
d2 = 20, d3 = 10.
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Figure 2. Plot of average number of emergency order and transshipments per unit time under four allocation
heuristics for the case RE = 70, d1 = d2 = d3 = 20.

Conclusions

We have argued that much of the current literature on transshipments does not meet the needs of
contemporary retailing. Our proposed model takes full account of inventory and transshipment costs
and adopts a realistic view of demand uncertainty and the size of the network. The resulting stochastic
decision process has a finite action space and an uncountable state space of high dimension rendering
unrealistic any direct application of stochastic DP. We implement an approximate DP approach which
applies a single policy improvement step to an optimal static stochastic proposal for transshipments.
The result is a simple, interpretable and easily implementable class of policies which make transship-
ment decisions in terms of calibrations of the candidate (stock holding) locations in the network. A
numerical study has shown these policies to be close to optimal for small networks and to outperform
standard proposals in large ones. A further inference from the numerical work is that the first stage
optimization over the static class is really unnecessary and that the simple ‘no pooling’ choice of the
identity I at this stage yields outstanding results.
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