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ABSTRACT
In recent years, Arm-based processors have arrived on the HPC
scene, offering an alternative the existing status quo, which was
largely dominated by x86 processors. In this paper, we evaluate
the Arm ecosystem, both the hardware offering and the software
stack that is available to users, by benchmarking a production HPC
platform that uses Marvell’s ThunderX2 processors. We investigate
the performance of complex scientific applications across multiple
nodes, and we also assess the maturity of the software stack and
the ease of use from a users’ perspective. This papers finds that the
performance across our benchmarking applications is generally as
good as, or better, than that of well-established platforms, and we
can conclude from our experience that there are no major hurdles
that might hinder wider adoption of this ecosystem within the HPC
community.
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•General and reference→ Performance; •Computingmethod-
ologies → Massively parallel algorithms; Distributed programming
languages.
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1 INTRODUCTION
There is an established ecosystem of server-level processors suitable
for computational simulation and machine learning applications
built around traditional x86 architectures from processor manu-
facturers such as Intel and AMD. However, recently, alternative
processor technologies have been developed; foremost amongst
these are Arm based processors from manufacturers such as Mar-
vell (ThunderX2), Ampere (eMAG), Huawei (Kunpeng 920), Fujitsu
(A64FX) and Amazon (Graviton).

The first server class processor to be commercially available
in large volume is the ThunderX2 processor from Marvell. The
ThunderX2 processor uses the Armv8 instruction set and it has
been designed specifically for server workloads. The design includes
eight DDR4 memory channels to deliver measured STREAM triad
memory bandwidth in excess of 220 GB/s per dual-socket node.

However, hardware only represents one part of the ecosystem
that is required to deliver a usable High Performance Computing
(HPC) platform for the varied workloads of computational simula-
tion andmachine learning applications. Operating system, compiler,
and library support is required to provide a functional environment
that supports large scale HPC applications and to ensure applica-
tions can both be easily ported to such new hardware as well as
efficiently exploit it.

In this paper we will evaluate a range of computational sim-
ulation applications on a HPC system comprised of nodes with
ThunderX2 processors connected together with an Infiniband net-
work. Our paper makes the following contributions to deepening
the understanding of the performance of a production HPC system
that is based on the Arm ecosystem:

(1) We outline performance measurements of the interconnect
network, using established MPI benchmarks, allowing us
to assess the potential scaling performance of distributed
memory applications.

(2) We present and evaluate the multi-node performance of sci-
entific applications with varying performance characteristics
and compare it to the established x86 ecosystem.

(3) We evaluate the portability of applications onto this new
system, compared with equivalent systems based on other
processor technologies.

(4) We discuss the causes for the performance and scalability
results that have been observed, and based on this we draw

https://doi.org/10.1145/3324989.3325722
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conclusions with regards to the maturity of the current gen-
eration of Arm-based systems for HPC.

2 RELATEDWORK
Some initial porting and performance evaluation work on Thun-
derX2 processors has been documented [16], outlining performance
and cost benefits for some applications using ThunderX2 compared
to other available Intel processors. However, these results only con-
sider single node performance, using at most two processors, and
do not consider the performance, behaviour, or functionality asso-
ciated with multi-node applications. The majority of computational
simulation applications [2] on large scale HPC systems require
many nodes for simulations. The Mont-Blanc project has published
a detailed energy usage study for a ThunderX2-based system, using
specialist on-node hardware to measure the energy to solution of a
number of benchmarks and mini-apps [7]. This paper investigates
the performance of distributed memory communications (MPI), as
well as scientific applications that use MPI, on a ThunderX2 based
system, and the associated libraries required for functionality and
performance.

HPC platforms are evaluated using a wide range of benchmarks,
each targeting a different performance aspect; popular benchmark
suites include [17] [9] [6]. These include application specific bench-
marks [1], and have included benchmarking application across
multiple systems [18].

3 BENCHMARKING METHODOLOGY
In order to fully evaluate the performance of the Arm-based HPE
Apollo 70, we execute a range of benchmarks and applications that
stress different aspects of the architecture and the software stack,
and compare our results with well established HPC systems. Our
benchmarking methodology adheres to the following principles:

MPI performance. The scalability of multi-node workloads re-
lies on a high-performance interconnect and efficient inter-node
communication. As the majority of HPC workloads rely on MPI
to distribute work across compute nodes, we use MPI benchmarks
to assess the communication performance on the HPE Apollo 70.
There are a range of MPI libraries and implementations available
on the benchmarking systems we are using.

Reproducibility. We use process and thread pinning to cores to
ensure our results are not impacted or skewed by the operating
system’s process/thread management policies, and are reproducible.
We also list the compiler versions and flags, as well as the libraries
used, in Table 8.

Applications. The applications chosen for this benchmarking
study cover different scientific domains, programming languages,
libraries and performance characteristics (i.e. compute intensive,
memory-bandwidth limited, etc). They also represent widely used
real-life applications. GROMACS and OpenSBLI are part of the UK
HPC benchmarks[1]. As we are chiefly interested in the compute
performance of the applications, we disabled or reduced I/O (in
particular output) as much as possible.

Multi-node benchmarks. The scaling behaviour of the applica-
tions is benchmarked and analysed, starting from a single node to

up to 32 nodes in total. This allows for the identification of perfor-
mance bottlenecks caused by the network or the communication
libraries.

Performance comparison. The results that were achieved on the
HPE Apollo 70 are compared with those from three well-established
and widely deployed platforms in order to assess the relative per-
formance of the system. The results are generally compared on a
per-node basis (rather than per-core) and the test cases configura-
tions are the same across systems.

4 BENCHMARKING SYSTEMS
The system under evaluation, an Arm-based HPE Apollo 70, is com-
pared against well established HPC system architectures with very
mature software ecosystems. This not only enables us to compare
performance due to difference in the hardware, but also allows us to
assess the ease of porting applications and to evaluate the relative
maturity of the software stack that is available on the Arm system.
Details on each of the systems used for this benchmarking activity
are given below, and Table 1 summarises their compute node specifi-
cations. We have also include a calculated node memory bandwidth
result for each system, collected using the STREAM benchmark, to
allow comparison of the achievable memory bandwidth between
the different hardware solutions.

HPE Apollo 70. The Arm-based system under evaluation is an
HPE Apollo 70 cluster with dual-socket compute nodes connected
with Mellanox EDR Infiniband (IB) using a non-blocking fat tree
topology. Each compute node consists of two 32-core Marvell Thun-
derX2 processors running at 2.2GHz, and 256GB DDR4 memory.
The processors on this system are set to use 1 hardware thread
(SMT) per core.

SGI ICE XA. The SGI ICE XA system has compute nodes each
with two 2.1 GHz, 18-core, Intel Xeon E5-2695 (Broadwell) series
processors. They have 256 GB of memory shared between the two
processors. The system has a single IB FDR fabric with a bandwidth
of 54.5 Gb/s.

Cray XC30. This system has 24 cores (two Intel Xeon 2.7 GHz,
12-core E5-2697v2 processors) and 64 GB of DDR3 memory per
node (128 GB on a small number of large memory nodes). Nodes
are connected by the Cray Aries network.

Dell EMC. The Dell EMC PowerEdge system has two 16-core
Intel Xeon Gold Skylake processors per compute node, running at
2.6GHz, and with up to 384 GB of DDR4 memory shared between
to processors. The system uses Intel’s OmniPath interconnect.

5 MPI PERFORMANCE
We have used the Intel MPI Benchmark suite to compare the MPI
performance on the HPE Apollo 70 with that of the other systems
evaluated, including the Cray XC30, which is known to demonstrate
excellent interconnect performance. We present both point-to-
point and collective performance, focussing on theMPI_Sendrecv
benchmark for point-to-point message and theMPI_Alltoallv and
MPI_Allдatherv collectives. We focus on these collectives specifi-
cally as they are generally expensive operations that are important
to a range of HPC applications. We report results for the Alltoallv
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Table 1: Compute node specifications.

HPE Apollo 70 SGI ICE XA Cray XC30 Dell EMC

Processor Marvell
ThunderX2

Intel Xeon
E5-2695

Intel Xeon
E5-2697 v2

Intel Xeon Gold
6142

(ARMv8) (Broadwell) (IvyBridge) (Skylake)
Processor clock speed 2.2GHz 2.1GHz 2.7GHz 2.6GHz
Cores per processor 32 18 12 16

Cores per node 64 36 24 32
Threads per core 1, 2 or 4 1 or 2 1 or 2 1

Vector width 128bit 256bit 256bit 512bit
Double Precision (DP) FLOPS per cycle 8 16 8 32

Maximum node DP GFLOP/s 1126.4 1209.6 518.4 2662.4
L1 cache (core) 32KB 32KB 32KB 32KB
L2 cache (core) 256KB 256KB 256KB 1024KB

L3 cache (shared) 32MB 45MB 30MB 22MB
Memory per node 256GB 256GB 64GB/128GB 192GB/384GB
Memory per core 4GB 7.11GB 2.66GB/5.33GB 6GB/12GB

Memory channels (processor) 8 4 4 6
Specified memory bandwidth (processor) 160GB/s 76.8GB/s 59.7GB/s 119.2GB/s

Specified memory bandwidth (core) 5.0GB/s 3.3GB/s 6.4GB/s 7.5GB/s
Measured memory bandwidth (node) 221.48GB/s 97.85GB/s 72.86GB/s 144.26GB/s

and Allgatherv benchmarks for two message sizes: 128 KiB and
1 MiB. The Sendrecv benchmark was run in the on-cache mode,
meaning MPI processes on the same processor can utilise the last
level cache for communicating data.

For each of the systems we used the following MPI libraries:

• HPE Apollo 70: HPE MPT 2.20
• HPE Apollo 70: OpenMPI 4.0.0
• SGI ICE XA: SGI MPT 2.16
• Cray XC30: Cray MPICH2 7.5.5
• Dell EMC: Intel MPI 2017.4

Tables 2 and 3 show the Alltoallv test results for the 128KiB and
1MiBmessage sizes respectively. Tables 4 and 5 show the Allgatherv
test results for the 128KiB and 1MiB message sizes.

The results from the MPI benchmarks highlight that the perfor-
mance of some collective operations on the HPE Apollo 70 system
are poor when compared to the Cray XC30. Initial investigations
point towards possible configuration issues with the Infiniband
interconnect and MPI library, and work is ongoing to resolve this
situation, as poor performance on MPI collectives will have a nega-
tive impact on the scalability of applications that heavily rely on
these operations.

We can see from the point-to-point performance, outlined in Ta-
ble 6, that the Apollo 70 system has similar performance to the SGI
ICE XA system, both using Infiniband networks. It is interesting
that the MPT library on the Apollo 70 system achieves significantly
higher bandwidth and lower latency for the on-node communi-
cation benchmarks when compared to OpenMPI. It is likely that
the MPT library is taking advantage of communicating through
the cache, an optimisation that does not appear to be enabled for
OpenMPI, but which should be configurable to enable achieving
similar performance for OpenMPI. It is also worth noting that this
benchmark was using only 2 MPI processes on the node, providing

an uncontested environment for the benchmark. It is likely different
performance would be observed if larger numbers of MPI processes
were occupying the node. We also see that the Cray XC30 exhibits
better performance that the other, Infiniband or Omnipath-based,
systems.

6 OVERVIEW OF BENCHMARKING
APPLICATIONS

To evaluate the performance of the Apollo 70 system we have
chosen a set of application and benchmarks that have a range of
different performance characteristics, functionalities, and imple-
mentations.

We have chosen codes that span the main programming lan-
guages typically used within parallel computing (i.e. C, C++, and
Fortran) and that have MPI, OpenMP, and hybrid (for our chosen
applications MPI and OpenMP) parallel implementations.

We have also ensured that we have a range of different perfor-
mance characteristics in the applications, from memory bandwidth
bound codes, to those dependent on the network for good perfor-
mance when using multiple nodes. We describe each application in
turn in the following paragraphs, together with the test cases and
the configuration used for benchmarking.

6.1 HPCG
High Performance Conjugate Gradients (HPCG [10]) is a bench-
mark for large-scale parallel systems that aims to represent the
computational and data access patterns of a broad set of important
computational simulation applications. The conjugate gradients
algorithm used in the benchmark is not just floating point per-
formance limited, it is also heavily reliant on the performance of
the memory system, and to a lesser extend on the network used
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Table 2: Mean Alltoallv Intel MPI Benchmark test time (ms) for a message size of 128 KiB as a function of node count.

Nodes HPE Apollo 70 (MPT) HPE Apollo 70 (OpenMPI) SGI ICE XA Cray XC30 Dell EMC
2 99.531 105.189 74.264 11.731 10.852
4 385.304 322.071 142.151 37.512 36.380
8 887.104 784.300 283.167 117.046 86.948
16 1,863.269 1,679.783 692.317 293.256 278.481

Table 3: Mean Alltoallv Intel MPI Benchmark test time (ms) for a message size of 1 MiB as a function of node count.

Nodes HPE Apollo 70 (MPT) HPE Apollo 70 (OpenMPI) SGI ICE XA Cray XC30 Dell EMC
2 754.835 833.083 231.816 95.763 89.888
4 2,966.812 2,583.005 2,135.086 307.588 307.026
8 6,971.923 6,086.923 14,811.546 977.187 783.750
16 15,544.344 13,065.089 Out of Memory 2,263.569 2,237.830

Table 4: Mean Allgatherv Intel MPI Benchmark test time (ms) for a message size of 128 KiB as a function of node count.

Nodes HPE Apollo 70 (MPT) HPE Apollo 70 (OpenMPI) SGI ICE XA Cray XC30 Dell EMC
2 18.840 10.061 29.106 4.016 7.452
4 39.174 18.182 16.394 7.893 14.658
8 86.769 36.039 30.127 19.706 29.214
16 190.696 70.600 70.542 44.222 60.268

Table 5: Mean Allgatherv Intel MPI Benchmark test time (ms) for a message size of 1 MiB as a function of node count.

Nodes HPE Apollo 70 (MPT) HPE Apollo 70 (OpenMPI) SGI ICE XA Cray XC30 Dell EMC
2 163.610 101.678 59.093 32.400 50.102
4 339.137 190.665 119.589 65.496 93.327
8 740.027 352.193 237.253 147.087 188.210
16 1,611.643 689.009 552.725 297.995 375.877

to connect the processors together. The following functionality is
implemented in benchmark:

• Sparse matrix-vector multiplication.
• Vector updates.
• Global dot products.
• Local symmetric Gauss-Seidel smoother.
• Sparse triangular solve (as part of the Gauss-Seidel smoother).
• Multigrid pre-conditioned solvers.

This functionality helps to ensure it must provide a performance
assessment that is more comparable to the performance that real
applications could achieve for a given system, compared to other
benchmarking kernels used for assessing HPC systems, such as
High Performance LINPACK (HPL[11]). For this reason, HPCG
is rapidly becoming the second most important benchmark for
evaluating HPC system performance, and is now included in the
Top500 list1.

There is a reference implementation of HPCG available, written
in C++ with MPI and OpenMP support. However, there are also
optimised versions of HPCG available for a range of hardware,

1https://www.top500.org/hpcg/lists/2018/11/

including Intel processors 2 and Arm systems 3. These generally
provide improved performance over the reference implementation.
For this study we used the optimised versions of HPCG.

6.1.1 Test Case. The HPCG benchmark can be configured to run
different size problems by providing the size of the local data block
each process works on. To ensure consistency across the systems
the same local block size was used for all the benchmarks: --nx=64
--ny=64 --nz=64. This size of local domain block was used because
the optimised Arm version of HPCG is restricted to using sizes that
are divisible by 2 at all grid scales. This block size may not give the
best performance across all systems, but it does provide a consistent
benchmark.

6.1.2 Configuration. We are using version 3.0 of HPCG for these
benchmarking. For all systems a range of pure MPI and hybrid
(MPI + OpenMP) configurations were tested to evaluate which gave
the best performance. We used the optimal configuration for each
system to run the benchmarks, outlined in Table 7.

2https://software.intel.com/en-us/mkl-linux-developer-guide-overview-of-the-intel-
optimized-hpcg
3https://developer.arm.com/products/software-development-
tools/hpc/resources/porting-and-tuning/building-hpcg-with-arm-compiler
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Table 6: Mean Sendrecv Intel MPI Benchmark test time (ms) and bandwidth (MB/s)

Mean test time (ms) (Bandwidth GB/s)

Configuration HPE Apollo 70
(MPT)

HPE Apollo 70
(OpenMPI) SGI ICE XA Cray XC30 Dell EMC

within a node
same socket 0.46 (21,114.09) 0.33 (13,655.82) 0.58 (21,342.88) 0.38 (26,196.39) 0.42 (18,796.07)

within a node
different sockets 0.75 (18,751.15) 0.70 (12,402.8) 0.78 (21,346.13) 0.69 (26,329.70) 0.87 (18,902.10)

between nodes 2.17 (10,646.78) 2.04 (11,082.26) 1.67 (12,517.62) 1.42 (14,506.03) 1.52 (17,886.42)

Table 7: HPCG process and thread configuration

System MPI processes
per node

OpenMP threads
per MPI process

HPE Apollo 70 32 2
SGI ICE XA 18 2
Cray XC30 12 2
Dell EMC 32 1

6.2 COSA
COSA supports steady, time-domain (TD), and frequency-domain
(harmonic balance or HB) solvers, implementing the numerical
solution of the Navier-Stokes (NS) equations using a finite volume
space-discretisation and multigrid (MG) integration. It is imple-
mented in Fortran [13] and has been parallelised using MPI [12],
with each MPI process working on a set of grid blocks (geometric
partitions) of the simulation.

In the HB solver there exists an additional dimension compared
to the steady and TD solvers, which can be viewed as a harmonic
varying from 1 to Nh, a user specified number of elemental flow
harmonics. However, the code does not solve directly such elemen-
tal harmonics, but rather Nh equally time-spaced snapshots of the
required periodic flow field, linked to the Nh elemental harmonics
using a Fourier transform.

The code is structured so that the core computational kernels
can, for the most part, be reused for the steady solvers and HB
simulations, with HB simply requiring an outer loop over the Nh
snapshots using the steady solver kernels. COSA has been shown
to exhibit good parallel scaling to large numbers of MPI processes
with a sufficiently large test case [14].

6.2.1 Test Case. For the benchmarking of COSA we used a HB
test case with 4 harmonics and a grid composed of 16, 384 blocks,
encompassing a total of 47, 071, 232 grid cells. This limits the MPI
domain decomposition to, at most, 16, 384 MPI processes. This test
case requires a minimum of 1 Terabyte (TB) of memory across the
MPI processes running the simulation, meaning it is not possible
to run using a single process or node from the test systems we had
access to. To enable fast benchmarking the simulation was run for
20 iterations, which is a significantly smaller number of iteration
than a production run would typically use but is enough to provide
sufficient simulation functionality to evaluate performance.

6.2.2 Configuration. Writing output data to storage can be a sig-
nificant overhead in COSA, especially for simulations using small

numbers of iterations. To ensure variations in the I/O hardware
of the platforms being benchmarked does not affect the results
collected we disabled output functionality for benchmark runs of
COSA.

The benchmark was run with a single MPI process per core, and
all the cores in the node utilised for the benchmarks (i.e. we were
not under-populating nodes except for the case of the Cray XC30
using 512 MPI processes, as this left one node with 16 free cores).

6.3 GROMACS
GROMACS [5] is a versatile package to perform molecular dynam-
ics, i.e. simulate the Newtonian equations of motion for systems
with hundreds to millions of particles.

It is primarily designed for biochemical molecules like proteins,
lipids and nucleic acids that have a lot of complicated bonded inter-
actions, but since GROMACS is extremely fast at calculating the
non-bonded interactions (that usually dominate simulations) many
groups are also using it for research on non-biological systems, e.g.
polymers.

6.3.1 Test Case. The GROMACS 1400k atom benchmark is taken
from the HEC BioSim website [4] and has also been used within
the ARCHER benchmarks with results freely-available online [1].
This strong-scaling benchmark represents a Pair of hEGFR Dimers
of 1IVO and 1NQL and we would expect this benchmark to scale
well up to 16-32 compute nodes (depending on the performance of
the MPI library and interconnect). This benchmark case performs
minimal I/O.

6.3.2 Configuration. The single-precision version of GROMACS
was used for all benchmark runs. The GROMACS mdrun command
line option -noconfout was specified for all benchmark runs. Per-
formance of the GROMACS benchmark is measured in ns/day read
directly from the GROMACS output log file.

For all systems, 1 MPI process was used per physical core with
1 OpenMP thread per MPI process. A single hardware thread was
used in all cases. All compute node cores were used in all benchmark
runs (i.e. all compute nodes were fully populated).

6.4 OpenSBLI
OpenSBLI [15] is a Python-based modelling framework that is
capable of expanding a set of differential equations written in Ein-
stein notation, and automatically generating C code that performs
the finite difference approximation to obtain a solution. This C
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Table 8: Compilers, Compiler Flags and Libraries.

Compiler Compiler flags Libraries
COSA

HPE Apollo 70 GNU Fortran v8.2 -g -fdefault-double-8 -fdefault-real-8 -fcray-pointer
-ftree-vectorize -O3 -ffixed-line-length-132

HPE MPT MPI library (v2.20)
ARM Performance Libraries (v19.0.0)

SGI ICE XA GNU Fortran v8.2 -g -fdefault-double-8 -fdefault-real-8 -fcray-pointer
-ftree-vectorize -O3 -ffixed-line-length-132

SGI MPT 2.16
Intel MKL 17.0.2.174

Cray XC30 GNU Fortran v7.2 -g -fdefault-double-8 -fdefault-real-8 -fcray-pointer
-ftree-vectorize -O3 -ffixed-line-length-132

Cray MPI library (v7.5.5)
Cray LibSci (v16.11.1)

GROMACS

HPE Apollo 70 Arm Clang 19.0.0 -std=c++11 -mcpu=native -O3 -DNDEBUG -funroll-all-loops
-fexcess-precision=fast -fPIC -O3

OpenMPI 4.0.0
FFTW 3.3.8

SGI ICE XA GCC 6.2.0 -march=core-avx2 -std=c++0x -O3 -funroll-all-loops
-fexcess-precision=fast

SGI MPT 2.16
FFTW 3.3.5

Cray XC30 GCC 6.3.0 -mavx -static -O3 -ftree-vectorize -funroll-loops -std=c++11
-O3 -funroll-all-loops -fexcess-precision=fast

Cray MPICH2 7.5.5
FFTW 3.3.6

Dell EMC Intel 17.4
-xCORE-AVX512 -mkl=sequential -std=gnu99 -std=c++11
-O3 -ip -funroll-all-loops -alias-const -ansi-alias
-no-prec-div -fimf-domain-exclusion=14 -qoverride-limits

Intel MPI library 17.4
Intel MKL 17.4

HPCG

HPE Apollo 70 Arm Clang 19.0.0 -O3 -ffast-math -funroll-loops -fopenmp
-std=c++11 -ffp-contract=fast -mcpu=native

OpenMPI 4.0.0
ARM Performance Libraries (v19.0.0)

SGI ICE XA Intel 17.0.2.174 -xCORE-AVX2 -qopenmp -std=c++11
-O3 -DNDEBUG

SGI MPT 2.16
Intel MKL 17.0.2.174

Cray XC30 Intel 17.0.0.098 -qopenmp -std=c++0x -O3 -DNDEBUG Cray MPICH2 7.5.5
Intel MKL 17.0.0.098

OpenSBLI

HPE Apollo 70 Arm Clang 19.0.0 -O3 -std=c99 -fPIC -Wall OpenMPI 4.0.0
HDF5 1.10.4

SGI ICE XA Intel 17.0.2.174 -O3 -ipo -restrict -fno-alias SGI MPT 2.16
HDF5 1.10.1

Cray XC30 Cray Compiler v8.5.8 -O3 -hgnu Cray MPICH2 (v7.5.2)
HDF5 (v1.10.0.1)

Dell EMC Intel 17.4 -O3 -ipo -restrict -fno-alias Intel MPI 17.4
HDF5 1.10.1

Nektar++

HPE Apollo 70 GNU 8.2.0 -O3 -fPIC -DNDEBUG

OpenMPI 4.0.0
ARM Performance Libraries (v19.0.0)
FFTW 3.2.2
Boost 1.6.7

HPE Apollo 70 ARM Clang 19.0.0 -O3 -fPIC -DNDEBUG

OpenMPI 4.0.0
ARM Performance Libraries (v19.0.0)
FFTW 3.2.2
Boost 1.6.7

SGI ICE XA GCC 6.2.0 -O3 -fPIC -DNDEBUG
SGI MPT 2.18
FFTW 3.2.2
Boost 1.6.7

code is then targeted with the OPS library towards specific hard-
ware backends, such as MPI/OpenMP for execution on CPUs, and
CUDA/OpenCL for execution on GPUs.

The main focus of OpenSBLI is on the solution of the compress-
ible Navier-Stokes equations with application to shock-boundary

layer interactions (SBLI). However, in principle, any set of equations
that can be written in Einstein notation may be solved.

6.4.1 Test Case. The benchmark test case setup using OpenSBLI
is the Taylor-Green vortex problem in a cubic domain of length 2π .
For this study, we have investigated the strong scaling properties
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for the benchmark on grids of sizes 512×512×512 and 1024×1024×
1024. The larger benchmark should be more demanding in terms of
both computation and memory access. The smaller benchmark is
included to allow comparisons between single nodes of different
architectures as the larger benchmark requires a minimum of 2
compute nodes. This benchmark performs minimal I/O.

6.4.2 Configuration, Compilation and Libraries. Performance is
measured in ’iterations/s’. The total runtime and number of iter-
ations are read directly from the OpenSBLI output and these are
used to compute the number of iterations per second.

For all systems, 1 MPI process was used per physical core with
1 OpenMP thread per MPI process. A single hardware thread was
used in all cases.

6.5 Nektar++
Nektar++ [8] is a tensor-product based finite-element framework
designed to allow construction of efficient, classical, low polynomial
order h-type solvers (where h is the size of the finite-element) as
well as higher p-order piece-wise polynomial order solvers. Written
in C++, Nektar++ is run here as pure-MPI code but can run in a
hybrid MPI-OpenMP mode, can make use of hyperthreading and
supports use of PGAS communications models via extensions to it’s
communications library. It is under active development by Imperial
College London and the University of Utah.

6.5.1 Test Case. The geometry used for this test case is a 3D seg-
ment of a rabbit’s descending aorta with two pairs of intercostal
arteries branching off. The inlet has a diameter D = 3.32mm. The
solver used is the incompressible Navier Stokes solver and run
for 4000 timesteps of 1 µs giving 4 ms simulated runtime with a
backward Euler time integration method. The output is limited to a
single write of the flow fields at the end of the simulation.

6.5.2 Configuration, Compilation and Libraries. Performance is
measured from the code’s "time integration" output which maps
to the time spent running the solver routines for the test case. For
both systems tested, a single MPI process per physical core was
used without shared memory processing; this was run as a purely
MPI code to limit the differences between systems.

7 RESULTS AND EVALUATION
This section presents and evaluates the benchmarking applications
on a range of node counts to investigate both performance and
scalability across the different systems. For HPCG, COSA, OpenSBLI
and GROMACS, the HPE Apollo 70 results are contrasted with all
three comparison platforms. Nektar++ is compared to the SGI ICE
XA only. At the end of this section, we present our evaluation of
portability and the Arm software stack maturity.

7.1 HPCG
HPCG is considered to be a more representative HPC benchmark
than HPL as it has a more complex resource usage pattern, more
akin to real HPC applications. As such, HPCG performance will
take into account memory bandwidth, floating point performance
and to some extent network performance.

Table 9 shows the HPCG performance for a single node across
the test systems. The Dell EMC system was tested with different

Table 9: Single node HPCG GFlop/s.

System Performance
HPE Apollo 70 30.529
SGI ICE XA 21.115
Cray XC30 15.650

Dell EMC (AVX512) 34.581
Dell EMC (AVX2) 28.120

compilation options targeting the wide vectorisation functional-
ity. The table demonstrates that a significant performance benefit
(2̃0%) is achieved on the Skylake processors in the Dell EMC system
when specifically targeting the AVX-512 instruction set. The table
also demonstrates that the Apollo 70 nodes are performing very
well, providing around 2.7% of theoretical total GFlop/s of a node
compared to 1.3% for the Dell EMC system (with Intel Skylake
processors) and 1.7% for the ICE XA system (with Intel Broadwell
processors). The XC30 system has slightly better single node per-
formance (3.0% of theoretical GFlop/s), albeit with a much lower
total floating point capability than the other systems compared.

Table 10: Multi-node HPCG GFlop/s.

Nodes HPE
Apollo 70

SGI
ICE XA Cray XC30 Dell EMC

(AVX2)
2 61.185 40.491 32.048 56.505
4 120.972 80.317 61.617 111.598
8 241.363 158.774 120.749 214.358
16 482.202 305.534 245.870 400.320
32 939.109 602.092 491.101 747.066

Table 10 presents HPCG results when using multiple nodes. Prob-
lems with running the AVX-512 version of the benchmark on the
Dell EMC system have restricted us to providing only the AVX2
numbers. We see that the Apollo 70 maintains nearly twice the
total GFlop/s when compared to the Cray XC30 across a range of
node counts, and outperforms both the SGI ICE XA and Dell EMC
system. If we were to assume linear scaling for the AVX-512 results
from a single node up to 32 nodes on the Dell EMC system, this
translates to around 10% more GFlop/s than the Apollo 70.

We undertook a Pearson correlation analysis of HPCG perfor-
mance on the various systems against the theoretical peak floating
point performance per node, the measured memory bandwidth per
node (both detailed in Table 1), the inter-node Sendrecv latency
and bandwidth (both detailed in Table 6). The Pearson correlation
analysis assesses the level of correlation between the values from
two datasets, reporting correlation that varies between -1 (absolute
negative correlation) and +1 (absolute positive correlation). Whilst
we only have a limited number of data points in our datasets, the
correlation analysis does provide some indications of the impact of
various performance characteristics of the various systems. The re-
sults of this analysis, detailed in Table 11, demonstrate the impact of
aggregate memory bandwidth on multi-node HPCG performance,
and the importance of floating point capability for the single node
results. It is also noted that MPI message latency seems to have a
reasonable correlation with the multi-node HPCG performance.
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Table 11: HPCG Correlation values with theoretical peak
GFlop/s per node, measured memory bandwidth per node,
off-node MPI latency and bandwidth.

Nodes Node DP
GFlop/s

Memory
bandwidth

MPI
latency

MPI
bandwidth

1 0.83 0.76 0.42 0.25
8 0.56 0.95 0.74 -0.14

7.2 COSA
Table 14 presents the performance of COSA for each of the four
systems under consideration using the benchmark outlined in sec-
tion 6.2.1. The number of MPI processes used in each of the tests
is listed in Table 12. Each benchmark was run three times and
the fastest run is presented. For all the benchmarks the variation
between the best and worst is less than 2% of the best runtime.

Table 12: COSA benchmark MPI process counts.

Nodes HPE
Apollo 70

SGI
ICE XA Cray XC30 Dell EMC

4 256 144
8 512 288 256
16 1024 576 512
21 512
22 528
32 2048 1152 1024
40 960

It is important to note that Table 14 outlines the performance as
the number of nodes increases. With reference to Table 12 it can
be seen that this equates to different numbers of MPI processes
on the different systems. For instance, using 512 MPI processes on
the Cray XC30 system gives better performance than on the HPE
Apollo 70 system, but at the cost of using significantly more nodes
(i.e. 21 nodes vs 8 nodes). If we compare using MPI process counts
across the systems it is evident that the performance is generally
similar with the SGI ICE XA exhibiting the best performance at
lower process counts, although it does not maintain this advantage
at higher process counts.

However, if we compare on a node to node basis, it is evident that
the performance is generally similar between the HPE Apollo 70
and the Dell EMC systems, with the SGI ICE XA and Cray XC30 not
providing as quick a time to solution for similar numbers of nodes.
Indeed, the Dell EMC and HPE Apollo 70 systems exhibit around
50% increased performance compared to the SGI ICE XA system.
The ability to achieve comparable performance using significantly
lower numbers of nodes provides potentially lower costs in terms
of hardware and energy.

As with the HPCG benchmarks, we undertook a correlation of
COSA performance at 8 and 32 nodes on the Apollo 70, ICE XA, and
Dell EMC systems (we did not have results from the Cray XC30 for
these node counts) against theoretical floating point performance
and measured memory bandwidth. Table 13 shows that COSA has
a strong correlation with available memory bandwidth (the neg-
ative correlation observed is because we are comparing time to

Table 13: COSA Correlation values with theoretical peak
GFlop/s per node and measured memory bandwidth per
node.

Nodes Node DP GFlop/s Node memory bandwidth
8 -0.34 -0.86
32 -0.37 -0.86

Table 14: COSA performance. On the Cray XC30, the test
case cannot be run on the same number of nodes as on the
other systems, but the results are nevertheless presented as
a relative indicator of overall performance. The Dell EMC
system does not have enough memory per node to run at
fewer than 8 nodes.

Walltime in seconds (Speedup factor)

Nodes HPE Apollo
70 (MPT)

SGI
ICE XA Cray XC30 Dell EMC

4 2036 ( 1.00) 3159 ( 1.00)
8 1005 ( 2.03) 1591 ( 1.99) 1083 ( 1.00)
16 484 ( 4.21) 771 ( 4.10) 540 ( 2.01)
21 896 ( 1.00)
22 873 ( 1.03)
32 239 ( 8.52) 496 ( 6.37) 265 ( 4.09)
40 482 ( 1.86)

solution numbers to performance metrics, which have an inverse
relationship, as time to solution decreases as performance metrics
like memory bandwidth increase).

7.3 GROMACS
Table 15 shows the performance of GROMACS for each of the
systems as a function of number of nodes for the 1400k atom bench-
mark.

The ordering of the GROMACS performance on the different sys-
tems up to 32 compute nodes matches the ordering of compute node
performance. It is well known [5, 18] that GROMACS performance
at low process counts for the simulation size is well-correlated with
floating point performance so this behaviour is as expected. The
majority of MPI time for this GROMACS benchmark is spent in
point-to-point communication rather than collective communica-
tion. This is underlined by the fact that the scaling behaviour from
GROMACS on the Apollo 70 is comparable with that on the other
systems, and indeed shows the best scaling performance for the
higher node counts. Further investigations is needed to establish
what hardware feature(s) are enabling this improved scaling per-
formance, but it could be attributed to the ratio of on-node and
off-node MPI communications that the large core counts on the
ThunderX2 based systems facilitate.

7.4 OpenSBLI
Table 16 shows the performance of OpenSBLI for each of the sys-
tems as a function of number of nodes for the 512×512×512 bench-
mark and Table 17 shows the performance for the 1024×1024×1024
benchmark.
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Table 15: GROMACS performance results, shown both as the total wallclock time in seconds, together with parallel efficiency,
and the application’s own performance metric (ns/day), together with the speedup factor for increasing node counts.

Walltime in seconds (Parallel efficiency %) Performance in ns/day (Speedup factor)

Nodes HPE Apollo 70 Cray XC30 SGI ICE XA Dell EMC HPE Apollo 70 Cray XC30 SGI ICE XA Dell EMC
1 1340.54 (100%) 1685.88 (100%) 1017.40 (100%) 696.54 (100%) 1.29 ( 1.00) 1.03 ( 1.00) 1.70 ( 1.00) 2.48 ( 1.00)
2 681.69 ( 98%) 826.78 (102%) 523.95 ( 97%) 353.66 ( 98%) 2.54 ( 1.97) 2.09 ( 2.04) 3.30 ( 1.94) 4.89 ( 1.97)
4 345.09 ( 97%) 452.64 ( 93%) 275.21 ( 92%) 183.59 ( 95%) 5.01 ( 3.89) 3.82 ( 3.72) 6.28 ( 3.70) 9.41 ( 3.79)
8 178.49 ( 94%) 246.71 ( 85%) 140.86 ( 90%) 101.29 ( 86%) 9.68 ( 7.51) 7.01 ( 6.83) 12.27 ( 7.22) 17.06 ( 6.88)
16 93.50 ( 90%) 169.33 ( 62%) 72.55 ( 88%) 64.76 ( 67%) 18.48 (14.34) 10.21 ( 9.96) 23.82 (14.02) 26.69 (10.76)
32 62.85 ( 67%) 96.56 ( 55%) 69.12 ( 46%) 35.68 ( 61%) 27.50 (21.33) 17.90 (17.46) 25.00 (14.72) 48.44 (19.53)

For the smaller of the two benchmarks, the Cray XC30 is the
lowest performing in terms of absolute runtime; the SGI ICE XA
and HPE Apollo systems are very evenly matched. The Dell system
shows the best outright runtime performance. The test case scales
well on all systems, achieving 27-28x speedup on 32 nodes (com-
pared to a single node), and the parallel efficiency is at or above
85%.

The larger benchmark requires a minimum of 2 nodes to satisfy
its memory requirements (4 nodes on the XC30). It shows very
similar performance trends, although the Apollo 70 system now
marginally outperforms the SGI ICE XA (on the order of a few %).
As scalability for this test case is even better than for the smaller
test case (in fact it is mostly superlinear), the network and commu-
nication patterns are evidently not a performance bottleneck here.
Taking into account the memory requirements of this test case, as
well as the fact that the ThunderX2 CPU does not outperform an
Intel Xeon Broadwell CPU on a per-core basis in terms of pure com-
pute performance, the gain for the Apollo70 almost certainly stems
from the increased memory bandwidth the Arm-based processor
offers.

7.5 Nektar++
Table 18 shows the performance of Nektar++ running on both the
SGI ICE XA and HPE Apollo 70 systems, represented as runtime to
solution, and showing both the parallel efficiency and the speedup
relative to one node. Comparing the performance on a per-node
basis, the Apollo 70 system displays better performance than the
SGI ICE XA at low node counts, however the gap closes at 8 nodes
and the Arm-based system falls behind. One potential explanation
is that the test-case does not provide sufficient work which limits
the performance with higher core-count on the ARM based sys-
tem. Unfortunately, a larger test-case was not available at the time
of writing. It is also evident that the ARM compiler is providing
performance benefits at two to eight nodes when compared to the
GNU compiler. This, coupled with the super-linear speed up in
those regions, suggests that the ARM compiler is better utilising
the cache compared to the GNU compiler.

7.6 Application Portability and Maturity of the
Software Stack

The HPE Apollo 70 system offers a range of compilers, including
the GNU and Arm compiler suites, supporting C, C++, and Fortran
applications. These are complemented by the Arm performance

libraries [3], which provide optimised implementations of BLAS,
LAPACK, FFT and standard maths routines. There are also a number
of different MPI implementations available for use on the system,
including OpenMPI and MPICH, with MVAPICH2 shortly to be
available. The availability of this combination of libraries and com-
pilers has made porting the applications we have benchmarked for
this paper straightforward, requiring no code modification, and
only simple adaptations of the build processes for the applications.

The software stack that is available on the Apollo 70 is mature
and no major problems were encountered when building the appli-
cations or evaluating the benchmarks. The only performance issue
that we discovered is the disappointing performance of the MPI col-
lective operations, and this is under active investigation. All in all,
we found the software stack to be complete and sufficiently mature
to be able to build and run complex real-life applications without
difficulties. It is worth noting however that the Apollo 70 system
used for the experiments in this paper does not have access to a
high performance parallel file system yet (this part of the system
is still under development), and the benchmarks therefore do not
include any IO; as such we cannot assess that aspect of the system.

Finally, although we did not encounter any significant issues
when porting applications to the Arm-based system, the same is not
true for performance profiling, in particular with regards tomemory
access and usage. The tools that are available on the Apollo 70 focus
largely on CPU and network performance. However, as discussed
above, the additional memory channels available on the Apollo 70
are key to delivering improved performance for applications that
are limited by memory bandwidth, but there are no profiling tools
available on the system that would allow us to quantify the effect
directly. This is a limitation that should be addressed in order to
allow application developers to fully understand the performance
of their codes in the Arm ecosystem.

8 CONCLUSIONS
This paper gives a first overview of the performance of scientific
applications running at scale on a production HPC system that
is based on Arm processors. Our experience gained from porting
a wide range of applications to the ThunderX2 processors and
using the Arm supported software ecosystem demonstrates that
this is possible with minimal effort. We have also demonstrated
that applications can achieve similar, or better, performance on
such a system when compared with a range of existing HPC system
architectures, as highlighted by Figure 1. Due to the additional
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Table 16: OpenSBLI performance for TGV512ss (100 iterations).

Walltime in seconds (Parallel efficiency %) Performance in iterations/second (Speedup factor)

Nodes HPE Apollo 70 Cray XC30 SGI ICE XA Dell EMC HPE Apollo 70 Cray XC30 SGI ICE XA Dell EMC
1 793.65 (100%) 999.91 (100%) 739.89 (100%) 509.92 (100%) 0.13 ( 1.00) 0.10 ( 1.00) 0.14 ( 1.00) 0.20 ( 1.00)
2 375.94 (106%) 488.33 (102%) 386.07 ( 96%) 257.84 ( 99%) 0.27 ( 2.11) 0.20 ( 2.05) 0.26 ( 1.68) 0.39 ( 1.99)
4 207.04 ( 96%) 288.80 ( 87%) 218.82 ( 85%) 131.90 ( 97%) 0.48 ( 3.83) 0.35 ( 3.46) 0.46 ( 3.29) 0.76 ( 3.88)
8 105.60 ( 94%) 142.35 ( 88%) 101.65 ( 91%) 68.05 ( 94%) 0.95 ( 7.51) 0.70 ( 7.02) 0.98 ( 7.00) 1.47 ( 7.50)
16 53.05 ( 94%) 65.85 ( 95%) 51.93 ( 89%) 34.26 ( 93%) 1.89 (14.96) 1.52 (15.18) 1.93 (13.79) 2.92 (14.89)
32 28.59 ( 87%) 35.09 ( 89%) 26.75 ( 86%) 18.64 ( 85%) 3.50 (27.76) 2.85 (28.50) 3.74 (26.71) 5.36 (27.33)

Table 17: OpenSBLI performance for TGV1024ss (10 iterations). The memory requirements of this test case are such that a
minimum of 2 nodes are needed for all systems (apart from the Cray XC30, which needs 4 nodes). The efficiency and speedup
factors are provided relative to the lowest possible node count for each system.

Walltime in seconds (Parallel efficiency %) Performance in iterations/second (Speedup factor)

Nodes HPE Apollo 70 Cray XC30 SGI ICE XA Dell EMC HPE Apollo 70 Cray XC30 SGI ICE XA Dell EMC
2 312.50 (100%) 309.33 (100%) 213.47 (100%) 0.03 ( 1.00) 0.03 ( 1.00) 0.05 ( 1.00)
4 158.73 ( 98%) 301.07 (100%) 174.44 ( 89%) 105.91 (101%) 0.06 ( 1.97) 0.03 ( 1.00) 0.06 ( 2.00) 0.09 ( 2.02)
8 80.00 ( 98%) 104.95 (143%) 75.88 (102%) 53.14 (100%) 0.12 ( 3.91) 0.09 ( 2.87) 0.13 ( 4.33) 0.19 ( 4.00)
16 30.02 (130%) 49.10 (153%) 39.05 ( 99%) 25.05 (107%) 0.33 (10.41) 0.20 ( 6.13) 0.26 ( 8.67) 0.40 ( 8.52)
32 20.80 ( 94%) 28.27 (133%) 22.19 ( 87%) 13.14 (102%) 0.48 (15.02) 0.35 (10.65) 0.45 (15.00) 0.76 (16.25)

Table 18: Nektar++ performance.

Walltime in seconds
(Parallel Efficiency & Speedup factor)

Nodes HPE Apollo 70
(GNU+OpenMPI)

HPE Apollo 70
(ARM+OpenMPI) SGI ICE XA

1 1751
(100% & 1.00)

1800
(100% & 1.00)

2621
(100% & 1.00)

2 1362
( 64% & 1.29)

842
(107% & 2.14)

1227
(107% & 2.13)

4 466
( 94% & 3.76)

364
(124%& 4.94)

502
(131% & 5.22)

8 185
(118% & 9.46)

172
(122% & 10.46)

159
(206% & 16.48)

16 109
(100% & 16.06)

109
(103% & 16.51)

88
(186% & 20.45)

memory channels available to them, the ThunderX2 processors
provide clear benefits for applications that are memory bandwidth
bound. However, when comparing on a per-node basis, the Apollo
70 also exhibits good performance on applications that are compute
rather than memory intensive. Our conclusion is that the Arm
ecosystem, both the hardware and the softwar stack, is already
proving itself to be a viable alternative to the status quo.
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