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Abstract
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consumer default. Lenders typically have data wisabf a panel format. This allows
the inclusion of time varying covariates into madef account level default by
including them in survival models, panel modelsamrrection factor models. The
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Time Varying and Dynamic Modelsfor Default Consumer

Risk in Consumer loans

1 Introduction

The aim of this paper is to critically review aftative dynamic approaches to
consumer credit risk modelling. By ‘dynamic’ we meaodels that relate aspects of
credit risk to determining factors that vary ovend. We use the term ‘consumer
credit’ generically; we mean both unsecured creslith as that extended on credit
cards, personal loans, payment after use of weSlitand secured loans such as
mortgages. Virtually allapplication risk models used by lenders have, until very
recently, been static in the sense that they halated the probability that an
applicant defaults in the first 12 or 18 monthsolding a fixed term loan or a credit
card to an applicant’s characteristics which wenewkn at the time of application
only. Behavioural models include predictors thatyvaver time, notably recent
repayment and account activity, but they rarelyevker, include indicators of the
macroeconomy. However there is considerable eveltémat the state of a country’s
macroeconomy affects, on average, the chance dicaupwill default in the future
and the ranking in terms of risk of individuals wéwaply for a loan (Crook & Banasik
2005, Whitely et al 2004). It may also affect tredue at risk of a portfolio of loans.
The importance of such concerns is evidenced byetent banking crises throughout
the world. Consumer default modelling shows pasallevith other statistical
application areas such as medicine or educatiotialnment at the level of an
individual but differs at the aggregate level. Emample at the level of the individual,
survival of credit worthiness parallels cancer stalvin medicine. At the aggregate
level (for example loan portfolio versus cancer vatence), unlike medical
applications default models have been used in a¢guy requirements and this has

led to different statistical models.

In this paper we firstly discuss models that prethe risk of default of an individual
account and secondly, models of the risk associaféd portfolios of loans. We
conclude that consumer risk models can be made avorgate in their predictions of

the probability a borrower will default and moréamnmative about the level of value



at risk when states of the economy and dynamic \betia are included,

appropriately, in models of consumer risk.

2. Notational Conventions

Throughout the paper we adopt the following notaloconventions. The lettdr
denotescalendar time andt = a +7, where a, is origin time (date of account
opening) andr, is durationtime for borrowei, i = 1...N. Time has different possible

granularities, for example, typically, monthly amraally. A term with a subscript
varies between cases but not over time; a termcsapbsdt varies over calendar time
but not cases; and a term subscriptethay vary both over time and between cases.
The termx, denotes a vector of characteristics of an apmiica time period that

are observed to vary over time, e.g. balance oudstg on a credit card. The term

denotes a vector of characteristics that are dpewfa borrower but which are
observed at only one point in time, and are olidervedto change over time, e.g.
variables from an application form (everd# factotheir values do change over time).

The term z, denotes a vector of variables that vary over tiimg, which are not
specific to an individual borrower e.g. macroecoimmariables. The termg,

denotes an individual borrower specific constaftte term g, is a vector of
parameters to be estimated with the convenfipmelates to vectow,, B,relates to
vector x,, and B, relates to vectorz,. The termsy,,y,,y; denote matrices of

parameters to be estimated. With one exceptiomghesvariable is represented by a
letter in upper, non-bold, case and its realisationower, non-bold, case. The

exception is capital letter K which will refer tocanstant. Later in the paper we write
the general forr®P(.|Z, =z) as p(z, ) for convenience. Whilst we express
relationships mathematically, the finance literatsometimes uses imprecise terms.

One example is to use capitalised symbols becatisgheomnemonic. We have
followed this usage, for example PD, in sectioalBeit sparingly.

3 Credit Risk Modelsat the Leve of the Individual Account
31 Generic Model



We begin by describing a very general and simplifegatistical model of the
probability of default of a borrowet, during a discrete time periddLet d; be a
latent continuous variable that represents ‘utitigm default’ of borrower, in period

t. Define the default eventl, = I d, >0 and non-defaultd, = Of d; <0.

Suppose
dy = By + W] By +XiBy +Z{Bs + XpY.W, + X752 + W YaZ, +17; (1)
and define
PD, = P(d; =1|x;,w;,z,), (2)
SO

P(d;, =1|x;,w;,z,) =F(B, W By X By 2By XYW XY ,Z H W YRZ,),
3)
whereF is a cumulative distribution function af. The x{ y,w., X{y,z, andw/y,z,

terms are linear combinations of interaction temmdgtiplied by their coefficients .

The time subscripted variables may involve lagdifiéring lengths.

Suppose we know this model. By imposing restridjar making assumptions about
various aspects of this model, we can show howouaripredictive models that
currently are, or might be, used by lenders arempassed within it (for a review of
current methods see Crook et al: 2007 and Thomad. &002). For example, by

restricting the elements in each of thematrices and each of tifevectors, except for
those inp,, to be all zeros and restricting, to be a constant for all we gain a

typical applicationrisk model
P(d, = 1|w,) = F(8, +w]B.), (4)

where in this casd,is a period extending, typically, from 0 to 12 rtiminto the
future, the w, vector is of application characteristics, or ctelireau variables
measured only at the time of application for credlitd d, is as in equation (3). The

functionF is typically logistic (see Hosmer and Lemeshow 30@2actitioners often
apply a linear transformation to the term on theHand side of equation (4) to gain a



‘score’, known as a ‘credit score’. Alternativehety may gain a score by multiplying

a predicted logit value by a constant.

In general there are three types of reasons whygrwer defaults. One reason is
strategic, where the value of the debt outstandktgeds the value of the asset which
the debt was incurred to buy, plus transactionscddte second is that an unexpected
negative net income shock occurs, for example ddgsb, divorce, health expenses,
increases in interest payment etc. The third iglimmismanaging one’s expenditure
(see Chakravatti and Rhee (1999)). Equation (3)m@oses the variance BD;; into
that due to (a) variables the values of which mary between cases but not over
time, and variables whose values may vary betwesmes and over time but in

practice are observed only at one point in timke-viariables inw, ; (b) variables that
vary over time, are observed to do so and whosgesahre specific to the case — the

variables inx, ; and (c) time varying variables that avet specific to the case — the
variables inz,. Examples of category (a) variables are time atrest and net

income. It is possible that both affect the chatheg a borrower will default and both
vary over time. But in practice neither is observextcept at the time of application.
Examples of category (b) variables include, in tase of credit cards, balance
outstanding in the previous period. Examples ofegaty (c) variables include

measures of the state of the economy. Thus ifestaates rise and this affects all
borrowers, and we do not have a variablejnthat describes the interest rate paid at

time t by casd, then the increase in the interest rate is likelwaffect all borrowers
includingi and so should be included. Similarly a rise in gmemployment rate is
likely to be correlated with the chance that ang case becomes unemployed and
less able to repay his/her debts. In addition, wmacroeconomic variables change

this may affect some applicants differentially awdinteractions betweew, and z,

and betweerx, andz, are appropriate.

Returning to equation (4), the assumption thatvidrgables inw, can appropriately
represent the effects of thg, z, variables and interaction terms is highly unlikely

be valid, yet in practice is often made.



Now consider equation (3) but suppose we restnietedements in th@ vectors and

vy matrices that relate ta, to be zero, so that the right hand expression dedwnly
the covariates irw; andx, , and restricts, to be a constant for dll. If the variables

in w, and x, include covariates that represent aspects of ppécant’s borrowing

behaviour in periods prior to that for which we lwia prediction ofPD;, then we
have a typicabehavioural modelThe covariatesas used in practigeconsist of two
types of variables: exogenous, like income andrésterates on borroweis loans,
and also endogenous behaviour. Note also thattypis of model, which is used
extensively by banks for borrowers of some standirigpmas et al: 2002), omits the
effects of changes in the economy, which may natiteztly represented by variables
in X .
It is important to notice that the model represériig equation (3) can be applied to

an unbalanced panel dataset albeit with many Jasalthe variables inw,,
remaining constant across all time periods and wWith variables inz, remaining

constant across all of the cases. This is, of euwsactly the format of data typically
held by lenders. The panel is unbalanced in that calendar time some borrowers
will be charged off and their subsequent perforneand! be missing and some will
enter the data set at different calendar timesrél'hee alternative ways of estimating
the model represented by equation (3) and usifag firediction. One possibility is to

use survival analysis (see Kalbfeisch and Pre2fi@3® and Cox and Oakes 1984).

3.2 Survival Moddls

On the rare occasions in which survival analysisiged in practice for consumer
credit risk modelling, time is regarded as contusjowhilstde factoit consists of

discrete intervals. We begin by discussing theinopus time case. In a continuous
time survival model we are interested in the prdiiglat an instant in time of leaving

one state, such as ‘being up to date with paymeatsl moving into another state
such as ‘90 days overdue’. LBtdenote the amount of time until a borrower defaults
The probability of default during the next instacinditional on not having defaulted

before, is given by the hazard function (wherés duration time)



P(T. O[r,r +A1)|T, 27)
AT '

A (1) = Lim (5)

The probability of surviving (i.e. not being in thdefault state) can be written in terms
of the hazard function

S() =P 21) = exn[—jA. (q)qu. ©)

Several papers have used Cox proportional hazat)l ifi®vdels to model the hazard

function and associated survival probabilities. Ph€ model can be written as
A (T, w;,By) = Ao (7) expiw]B,). (7)

where the baseline hazard,(r is)a function only of duration time and is the sam
for all borrowers. This is dynamic only in the sernbat the predicted hazard value,
and corresponding predicted survival probabilitgryvwith duration time, with the
entire baseline hazard function being shifted atiogr to the staticw, variables,
which in the credit risk modelling context are detmed at the time of application
(see Banasik et al: 1999, Stepanova & Thomas: 280dreeva et al: 2005, 2007, Ma

et al: 2009). However Cox PH models also allow th&usion of time varying

covariates. Then such a model can be written as

Ai (a‘l ’ T)Xi !Wi IZ)B) = /10(1-) exp{ﬂm + +WiTBl + Xi (T)T BS + Z(al + Z-i )TBG + (8)
X (1) v W, +x, (1) v52(a +1,) +Wly.z(a +1,)},

where covariate; (r }ake on values specific to the case and vary dueation

time, and z(a +7,) are covariates that vary over calendar time, suash

macroeconomic variables. The terfis p,and g are vectors, ang¢,,y.,andy, are

matrices, of parameters to be estimated. In thesipation predicted changes in the
economic environment after the opening of an actafiact the predicted hazard and

survival probability in each future time periodtdraction terms, involving,, for



examplew; y,z(a, +7, ) allow changes in the macroeconomic variablesiter ¢he

ranking of the hazards and of the survival prolidsl.

This model, albeit without the, (r) variables, has been used by Bellotti and Crook

(2008). Using a range of costs of type | and ofetyperrors they compared the
predictive performance of three types of model whieed to predict whether an
applicant defaulted within 12 months of openingredd card account. The three
types of model were a survival model with sevennmaconomic variables, a survival
model and a logistic regression, each without sumtiables. They found that the
survival model with the macroeconomic variablegpedibrmed the other two models.
The most influential variables were interest rate=gl earnings and consumer

confidence respectively.

Survival models have a number of advantages owic dbgistic regression (LR)
models. First they allow the prediction of the pablity of default over any time
horizon not just that for which the dependent Jdaafor the LR was defined. In
addition they predict the probability of defaultnciitional on not having defaulted
before, static LR does not do this. Third, becalmsesurvival probability for each
period can be predicted it can be used to predaditability (see Ma et al: 2009).

3.3 Panel Models

Equation (3) is a binary choice panel model wheeetiime periods ardiscrete As
mentioned earlier, financial institutions typicalyve data which is in panel format.
One might then use the time variation in the pawoelincorporate time varying

covariates.

In panel models, the dependent variable can hamedr#erent definitions compared
to survival models or models of the occurrence ofee only event (See Diggle et al,
2002 and Baltagi, 2008 for explanations of paneflel®). In a panel we may attempt
to predict whether a borrower will miss a singlgmpant in a time period, conditional

on w,, x, and z, covariates (though not necessarily conditionatrenevent never

having happened before). Missing a single paymeas shot necessarily imply being



three payments behind, a common definition of defabough it would if in the
previous period the borrower was already two paymdmehind. Conventional
predictions from random effects models assume tteob training sample random

effects term (3, in equation (1)) is zero.

Another possibility is that the dependent variabldicates whether the borrower
reached 3 payments overdue in a month, and we ntbeebccurrence of a missed
third payment (though not necessarily in successmnmths) conditional on never

having missed a third payment before.

Given that panel data are measured at discreteini@evals, with an appropriately set
up data matrix we can estimate a discrete survivadel. To see this, (and omitting

thez variables for simplicity), the discrete hazarddtion is

S(r,wi,X,)

S(r-Lw,,X;,,) ®)

h=P(T O[r-17)|T,27-1)=1-

where h® denotes the discrete hazard for casandS(-) denotes the probability of

survival. One specification of this relationshiglige to Cox (1972):

logit(h? (7, w;,x;,)) = logit(h (7)) + W/ B, +x/B,, (10)

whereh{ (7 )is a discrete baseline hazard function.

One way of estimating the parameters in the fesinton the right hand side is to
represent it by a series of dummies, one for eanh interval (Jenkins 1995), but
functions of the duration time index itself arecalegitimate (Singer and Willett:
1993). The value of the default indicator is sezeco for all intervals in which default
is not observed. The value of the indicator is étuane in the single period in which

default is observed and the case is removed frenddtaset thereafter.

The papers referred to in the previous section halvestimated survival models

assuming time is continuous. But lenders hold tlstis measured over discrete time



intervals, typically months. Despite this Stepaneval Thomas (2002) found very
similar results when they compared models thatrasducontinuous time with those
based on discrete time. Note also that as theadestime intervals tend to zero the
discrete time model tends to the continuous timedehdKalfeisch and Prentice
2002).

No parameterisations of these two models have pabhished using consumer loan
data. A variant, followed by Saurina and Truchg@807), is to use yearly time
periods and to model the probability of missing tihied monthly payment in a year.
Saurina and Trucharte used as predictors whetleebahrower had defaulted in the
past, whether the borrower is liquidity constrairsedl the GDP growth rate, all of
which vary with time. They used a sample of 2.94liom mortgages in Spain, but
pooled the data across cases and time. A furtha@talion of this work is that to

predict risk, lenders typically require monthly frat than annual predictions.
Nevertheless they gain an area under the receiperabng characteristic curve
(AUROC) of 0.78. (This curve plots the proportiohdefaulters predicted to default
against the proportion of non-defaulters who aredjgted to default, for every

possible cut-off score. Thatkgs |ill defaatainstF(s |i non-default) (See
Crook et al: 2007).

In another example Vallés (2006) used a randonttsfiganel estimator to model the
probability of default (90 days overdue) in a yeaing corporate data. A random

effects model has the form of equation (3) but whgy is a random variable with an

assumed common distribution. GDP growth and thatioh rate were significant and
negatively related to default probability wheredwe tunemployment rate was
positively related. She found that there was toatmuariation in the estimated model
parameters between years to build a Through-ThéeGyicTC) model (where PD
does not vary over the business cycle — see setti)nHowever she did not include
interaction terms between borrower characterigticé macroeconomic variables and

it is not clear how well her model would predict ofisample.

We estimated a model of the first definition: mmggia single payment in a month.

The data, from a financial institution, were a ramdsample of holders of a credit

10



card that were issued with the card sometime betwezlate 1990s and early 2000s.
The duration in the panel per borrower varied fromder 10 to around 100 months.
The cases joined and departed the panel at varmas and so it is unbalanced. Since
we wished to make predictions for borrowere assumed a random effects model.
The results for a model which has, as covariately, iaformation known at the time

of application (v,variables), linear and quadratic terms for durattone, and

macroeconomic variables that could, in principle predicted at the time of
application. The variables were chosen for includiased on a priori reasoning and
previous estimates of credit scoring models. Theulte showed that the
macroeconomic variables all have the expectedasigihare significant. When interest
rates or unemployment are high, so is the prolglalborrower will miss a payment.
We found that when house prices are high the pibtyabf missing a payment is
low. This may reflect the state of the economy mtran the value of wealth
householders have, since houses are not normailidéted to pay a credit card bill.
Duration time (and squared) were both highly sigaiit. The proportion of variance
which was explained by the random effect was lg#f6) and highly significant
indicating that pooling the data across time andesawould have resulted in

inefficient estimates.

We subsequently also added behaviouxal, variables, for example (balance/credit

limit). These were all highly significant and halhysible signs. Again high interest
rates and unemployment index increase the changayaent is missed. The

estimated value ofp indicated that pooling the data would have resulie

inefficiently estimated parameters. Further detaflthese results are available from

the authors on request.

34 Correction Factor Models

The common characteristic of these methods isttiegt involve taking a score that
has been predicted from an estimated model anagqubstly applying a “correction”

which is specific to the state of the economy atttime the predicted PD is required.
Two approaches have been suggested. Zandi (1968¢sted estimating a two stage

model:

11



CS, = o{F (B, +W| B, +x;B,)}
and PD, =5, + B,CS + B, X, (11)

where CS, is the predicted ‘credit score’ for borrowey beginning of period and

X, is a leading regional macroeconomic indicator forrbwer i at timet with

it
B,.B,, 5, and S,to be estimated. Thegefunction is typically a linear transformation of
a PD, into a ‘credit score’. F would typically be logistHere amadditive correction
factor, S,X, , for the economy is a term which is separate ftbenpredicted credit

score. The first equation is parameterised befbee gecond. A weakness of this
functional form is that it does not allow a re-rangkof probabilities when there are
changes in the macroeconomic indicators; instedy the intercept for all cases
changes. In addition it is highly likely that theodel is misspecified since time
varying macroeconomic variables should be includedctly in the function that

represents CS.

In a second approach de Andrade (2007) built umoAmtdrade and Thomas (2007).
Here the estimated probability of default for casa segments, in timet, PDis |

conditional on the state of the economy, is modedie

d, ) 1-PDs
PD_ =F[x.p.+In S — , 12
ist |: |stﬁs (1_dst][ PDst j} ( )

whered,, denotes the estimated default rate in a risk segse.g. mortgage loans,

periodt; PD« equals the mean predicted PD for a portfolio gnsents, periodt;

X is a vector of covariates in the scoring mpHet the cumulative logistic

ist
distribution function. Bothd,, and PD_, are parts of the, vector defined in section

2.

The B, vector, if estimated conventionally, will be affed by the economy in several

ways (Kelly et al 1999, de Andrade 2007). For exiantipe B, values may vary with

12



the cycle as, conceivably, previous repayments rbheconore influential in a
macroeconomic downturn than in a period of growthstability. Second, the

distribution of the observed covariate values magnge over the cycle, affecting the

PDs«. Third, the average level of the predicte®,_ values may change, analogous to

ist
a change in the prior probabilities of default. Bgon (12) effectively alters the
intercept of the logistic regression according toether, for a specific segment, the
observed default rate relative to the predictedauléf rate (predicted using

macroeconomic variables) is high or low.

De Andrade (2007) estimates an autoregressiveitditgd lag (ADL) function of
correction factors for each segment using up tankéroeconomic variables to gain
PDis: by applying the factors to the scores gained fronknown models (the

X p terms).The predicted values®D;, using equation (4), were applied to Brazilian

small and medium sized enterprises and testedeotrdming sample of 12 segments
(in this case industries) to reveal an increasthénAUROC when macroeconomic
variables were included. This particular approaak some scope for improvement.
For example the ADL was not a co-integrating relahip, simultaneity between the
variables was ignored and the equation does nowdhe economic variables to alter

the ranking of the borrowers, interaction beingyaatlthe level of the segment.

4 Portfolio Models

4.1 Loss Distributions

Lending institutions hold capital in case of lossesulting from unexpected default
behaviour. According to the Basel 1l Accord (BISOB) (see below) for any segment
s of similarly risky borrowers, the expected lasgperiodt, ELs, may be calculated
as the product of the average predicted probahifigt a borrower in segmest
defaults in period, denoted®Dg; the expected proportion of the debt outstantiyg
a typical borrower in segment s at time t thatesar recovered by a lender, denoted

LGD,; and the average expected exposure or debt ndistaby a borrower in

st

13



segment at the time of default, denotéd\D,,.A necessary condition for this to be

correct is that the random variables explainingrake terms are uncorrelated.

Realisedlosses may exceed thepeedictedamounts. For each borrower there is a
distribution of possible values &AD, LGD andPD. Taking every possible value of
each, finding their product and summing over alirbwers gives a distribution of
losses (see Bluhm et al 2003). Lenders are intteist this distribution for each
segment of a portfolio. This distribution is oftealled the ‘loss distribution” and its
mean ‘expected loss’, The ‘unexpected losses’ faosegment of a portfolio may be
represented by the difference between expectecalusthe value of losses such that
the probability of gaining a smaller loss than th&due isa (other definitions are
possible). This particular value of losses, thpercentile of the loss distribution, is
known as value at risk (ValR Figure 1 illustrates. In this section we arecmned
with the distribution of losses (or default fractsoif EAD andLGD are fixed for each

borrower) and in particular with VaR

In attempts to reduce the chance of systematic beihkes, the G10 countries have
adopted various capital requirements regulatidres Jatest being the Basel Il Accord
(BIS 2006). This allows banks to estimate the mumm amount of capital
(‘regulatory capital’) they are required to holdJbgect to regulatory approval.
Potential contributory factors to the current baugkcrisis include the possibility that
the Accord did not require lenders to hold suffitieapital in the event of their assets
falling in value. We note some theoretical weakasssf the Merton model which
may underlie the Basel Il formula, below.

The amount of regulatory capital that a bank madd o cover for defaults on loans

differs according to the types of loans held. Faait loans, the subject of this paper,
the regulatory capital to cover for credit risk is:

RC, = EAD, * LGD, *{®[g,(0).®™(PD,) + 9,(0).¢ ™ (0.999] - PD,} , (13)

where p is said to be the correlation between asset values borrowers and ™.

denotes the inverse of the cumulative distributionction for a standard normal

14



random variable. The valu®[+] represents the VaRs (as a multiplier of EAD,
LGD). The specified values gb are 0.15, 0.04 and a function of PD for mortgages,
revolving credit and other retail exposures, resipely. The final term of equation
(13) is included because banks are expected te [wans to include expected losses.

A bank then aims to build statistical models tedict PD,,, LGD, , and EAD,,if it

st? st ?

uses the Basel Il advanced internal ratings ba&d) @pproach.

We can classify empirical models that are concerméith the distributions of

probabilities of default and/or of default ratesoiMMerton-type models, econometric
models, actuarial models, markov chain models aodhastic intensity models.
Actuarial models vyield closed form distributions lokses and are exemplified by
Credit Risk+ (Credit Suisse:1997). We know of nblmhed applications of actuarial
models to consumer loans and for space reasonsmitetltem here. Merton-type
models are generally called ‘structural’ models #m&l remaining models are known

as ‘reduced form’ models.

4.2 Merton-type Models
4.2.1 TheVasicek Formula

Following Merton’s model for a bond (Merton 197&ghonbucher (2000) assumes a
borrower,i, defaults at the end of a given time horizén,if at that time the value of

his assetsV_., a random variable, falls below a threshd{d. That isV_. <K;.

Suppose the end of the horizon occurs in a calandarperiodt. Default then occurs

whenV, <K,. Suppose the current value of assets is indexeerat Then a value of
V, implies a return over periods Ottaand many recent papers are expressed in terms
of the return (V, -V, _,)/V,_,) rather thanV, . We explain them in terms &f, rather

than return, for simplicity. We initially assurkgto be the same for all borrowers.

A potentially major determinant of the default rdte a portfolio of loans is the
correlation between the default probabilities oé timdividual borrowers. Default
probabilities may be correlated because of indilie&s between them, for example

several borrowers may be employed by the same geplor by employers in the

15



same industry. They may also be subject to the smmezest rate changes or
legislative or bank policy changes. Many of thebecks can be represented by
observed changes in the state of the macroeconom¥pyodifferent regional
identifiers. We call a group of borrowers that subject to variations in the same risk
drivers a segment. From a pragmatic perspectitgpiaal retail portfolio simply has
too many borrowers for a lender to specify and @&l the complete set of joint

probabilities of default. Instead a simulation maday be used.

It is assumed that the value of the borrower’s tasse determined by a common

factor, Z , and a borrower specific noise componepgs follows:

Vi = \/;Zt tyl-p &, (14)

where Z, and g, are independent of each other and standard frigrichiatributed
with mean of zero and unit variance, are i.i.d. andZ, is serially uncorrelated.

Following Hamerle et al (2003, Hamerle et al 2084merle and Rosch (2005) we
make Z explicitly time dependent and we also ttma¢ as discrete. Notice that given
Z,V.

.» V, is independent between borrowe#.could be an observable macroeconomic

variable, Z[”!, or an unobservable latent variab@"!, that affects all borrowers
equally. The correlation betweevf, and V, is o (known as ‘asset correlation’) and
betweenV, and Z, is 4/ . Of course the assumption that the values are iid is

unlikely to be realistic. Note that if the rightrithside of equation (1) equals the right

hand side of equation (14) theh =V, .

Assuming that all borrowers in a risk segment havequal probability of default and

the same thresholdK, =K [, Schonbucher proves that the probability that

borroweri defaults, conditional on the realisatiamof Z; in periodt, is
K —
P.(2) =PV, <K1Z,=7) =@ =25 ], (15)
vi-p

where the denominator is due to a scale changg.in
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If, as is usually the case in a portfolio of rethdrrowers, the total number of
borrowers N, is very large indeed it may be more useful to weith the fraction of
borrowers that default. We now redefiBe a random variableo be this fraction.
Conditional on the realization of,, when N tends to infinity the law of large
numbers implies that the proportion of borrowersovdefault equals the probability
that any individual will defaultPD, so PD = B = n/N. It can then be shown

(Schonbucher op cit) by integrating over the derfsibction of Z, that the cumulative

distribution ofB, F(b), is given by

1 B}
F(b)=P(B<b)=®| —|/1- pd*(b)-K]|, (16)

from which, by differentiation, the density funatican be derived.

Lenders, policy makers and researchers are typicdkrested in the probability that

the fraction of loans that default is less thamagtigular numberp,, and, as shown

bySmithson (2003), by inverting equation (16) oae derive an expression for, :

b, = cD(\/qul(a) +CD‘1(PD)J’ an
1-p
where K in equation (15) i® ™" (PD .)Equation (17) is the Vasicek formula (Vasicek:
1987) in the Basel Il Accord (BIS 2006), tide{s function in equation (13), and
when multiplied by the proportion of loans thatniet recovered gives, after the
deduction of expected losses, the capital requinerioe unexpected losses per dollar
of exposure at default. In the Accord, for retaibesures,a=0.999. This type of
model is similar to the commercial product Crediths] which is used extensively
by commercial banks. Both assume that a borrowiidefault when the value of his
assets falls below a threshold where the valuesséta is related to a common risk

factor and an idiosyncratic, i.e,, term (Finger 1999, Bucay and Rosen 2001,

Gupton 1997).
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The model can be extended to include multiple lafactors, non-homogeneous
borrowers and multiple observable factors to ganants of equations (15) and (17)
(see Schonbucher: 2000) .For example Résch (20@Besnthe default threshold a

function of observable systematic factors — maanemic variablesz!”. Thus he
writes the default condition ag, <K, +K "z, where K is a (M x 1) vector of
parameters, and!” is a (M x 1) vector of observable systematic fextdrhen,

conditional on the realisation o' for z[!, the probability of default is

Tolol _ [u]
pt(Z{u]):q)(Ko'i'K :ZLt_p\/;Zt ] (18)

The zZM represents omitted correlations between borrovefaults and omitted

observables.
4.2.2 Estimation

Following Hamerle and Rdsch (2006) we assume barswmay not be
homogeneous. We write the probability of defautinditional on the realisation of

ZY forz!, equation (15), including lagged observable mamoemic factors and
allowing the threshold to depend on lagged obsédeviablividual risk factorsx,_,, as

well as time invariant individual factorsy, , thus

(19)

p(z) = CD( Ko +KIw, + K3, , +K32i% —y/p 2 J
it .

1-p
Notice that this is of the same form as equatigna(@ an additional termz and

scaling factory1-p .

The probability of default, unconditional ait’, is
P = [ p(@2")d2", (20)
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where p, (2" ) is as equation (19), and where we integrate ovempassible

realisations ofz[".

If we observe a default pattern over individualgime periodt of {d,,...d;...dy} ,
eachd, taking on a value of 1 if borrowerdefaults, and zero otherwise, which must

be conditional on the realisatiat’ of Z{*), we can write

Nt
P(dy,-....dy, [ Z{" =7") = I_l [P, () 1[1- p ()] ™. (21)
=1

By integrating over the realisatiorg”, taking logs and summing ovewe gain the

log-likelihood function.

Equation (20) is a random effects probit model (k&g and Zeger:1986 and
Verbeke and Molenberghs: 2000 for a descriptiomaoflom effects probit models).
But unlike conventional panel random effects modelsere the random effect
concerns the case, here it concerns the time pehodyeneral terms this is a
Generalised Linear Mixed Model, GLMM, (McNeil and eéndin 2007) and the
likelihood can be optimised using ML techniques nirowhich estimates of

0, Ky, K, K,andK ;and the likelihood can be derived.

Given estimates ofp,K,,K,,K, and K, in periodt+1, forecasts of individual
default probabilities conditional on values of,x, and z® can be made using
equation (19) (wherez!” has been included instead a®). The forecasts are
functions of Z!*} since Z!*] is unknown in period t. Unconditional expectedadef

probabilities can be found by integrating over iwsions of 2! as in equation (20).

The predicted loss distribution can then be estich&be periodt+1. To do this we
and LGD,

require values ofEAD, 41

it+1

as well as the predicted relative frequency of
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defaults. Hamerle and Rdsch (2006) assume theed &ik 1 and 100% respectively

for convenience.

Ni
In periodt+1 the number of defaultsy,,,, is de so the relative frequency of
i=1

defaults, or default rate, iB,,, =n,,,/N,,, and its distribution is found by integrating

equation (21) over all realizations &f"! (with t+1 replacing)

Ni+y

B 20T By (T 2l i (22)
1=1

Notice this distribution depends on both the obsérinacroeconomic variables and
the unobserved factd!", becaused, ., (Z )s given by equation (19) but with1

replacingt. This distribution can be simulated by Monte Caitaulation.

A weakness of Merton type models applied to consdoans is that the assumption
that a consumer will default on, say, a credit daeth, when his/her assets fall below
a threshold is questionable. It may be more applcto a mortgage loan. However
one might restore the plausibility of the barriezndition by interpreting it as

occurring when a borrower’s ‘credit worthinesslgdbelow a certain level.

An alternative Merton-type model was proposed byAddrade and Thomas (2007)
who assumed the ‘creditworthiness’ of a borrowdlofeed a jump diffusion process
of Zhou (1997) and where default occurred if a ®woer’'s credit worthiness fell
below a threshold. They simulated probabilities efadlt corrected for states of the
economy, where the latter were assumed to folldwstorder Markov chain between
four states. However the condition for defaultistionable and there are difficulties
in the empirical application of this model. The itigoation of jumps is difficult and
the assumption the economy is in one of only féates might be rather inaccurate.

4.3 Econometric Models

This type of model is a regression model with tlghtrihand side of similar form to

equation (3) but the dependent variable is the ultefate in a market segment,
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B, = B, and all of the coefficients in thg vectors andy matrices are constrained

to be zero except for those relating to the vector. The z, vector contains

macroeconomic variables, possibly lagged. The linkcfion could be logistic.
However the analysis is typically carried out a tbvel of a segment of borrowers,
which we assume here. Credit Portfolio Vievis an example of this type of model
(Wilson 1997a and b).

An autoregressive distributed lag function for eatlacroeconomic variable is

parameterised to give
L
Zst = zzst—lyl +,75t’ 123
|

where Z__, is the value, for segmest normally distributed, with lagand s, is a

random value assumé{0,}).

The default rate in a market segment in petio@s, is related to the vector of

macroeconomic variables using a logit link functidhus

S
exp(Y,) (24)
Yo = 2B, + £
whereYg is a ‘credit worthiness index’
B.tis a default rate in segmesperiodt (see previous section)
z,, is a [M x 1] vector of M macroeconomic variables $egment s, in
periodt;
Bsis a [M x 1] vector of parameters to be estimated,;

£, is a random variable assumed N(P,

The 3s vector is estimated for each segment separatelygusine series data on

default rates andsgvalues. See Hamilton (1994) for a review of tirrdes analysis.

Variants of this model are outlined by Bucay and&tn(2001). One variant is thét

is additionally made a function of variables that aspecific to the segment.
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Alternatively the entire analysis could be perfodmi®r an individual borrower
whereby eacls subscript would be replaced by asubscript and;; becomes the
individual borrower’s probability of default. A tta variant is thaZsin equation (24)
could be replaced by a vector of principal compéseextracted from the
macroeconomic variables. The distribution of loss&s be gained by Monte Carlo
simulation (Koyluoglu and Hickman: 1998) of thpe and & terms whilst preserving

their covariance.

A further variation is to relate a segment’s defaugte to both observableand

unobservable latent factors, but without assumhey Merton model. The Kalman
Filter (see Harvey: 1990) may be used to estimatkies of the latent factor
recursively and the default rate model subsequepdsameterised (Jiménez and

Mencia: 2007). To explain briefly, consider abservationequation, whereB, is a

vector of default rates and

B, =2{B;+(z") v, +v,, (25)

where zY =)0+ o, (26)

is called astate equationbecause it represents how states of the systetalin

transition into states ip and@ is a transition matrix. The termg and w, are vector

white noise. We observB, but notz!"'. Under suitable assumptions, the parameters

of the model can be estimated by ML (see Hamilt@94).
Notice that in econometric models the correlati@ween default probabilities of
borrowers is not modelled as a separate term, ounplicit in the model because

borrowers in a segment are subject to the sameo@@mnomic variables.

44  Empirical Results

4.4.1 Merton type models

Whilst almost all of the applications of these noetblogies have related to corporate
loans (Hamerle et al: 2004, Hamerle and Rdsch: 28@8ch: 2003, Dullman and
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Trapp: 2004) there are several examples of theiliGgtion to consumer loans. They
estimate asset correlations and VaR values. Coimcetime former Résch and Scheule
(2004) applied the Merton type model to the charfjeate (the proportion of loans
that are written off by lenders) for 100,000 borevsyfrom US commercial banks.
Using data from 1991 to 2001 the asset correlgtjonin equation (14)) was 0.012,

0.0098 and 0.0073 for credit card loans, real edtzns and other consumer loans
respectively when macroeconomic variables weretenitClearly all are well below
the correlations assumed in the Basel Il AccordeXVimacroeconomic variables were

included (so giving PIT correlations) the correlaiavere even lower.

Parameterisations of Merton-type models for consulmens generally suggest the
VaR values of predicted loss (or default rateridiiations are lower than are implied
by the Basel Il formula. This was found by Rosch &utheule (op cit) and by De
Andrade and Thomas (2007) who applied their jumfusibn process model to a
sample of Brazilian consumer credit loans. On tieohand, Perli and Nayda (2004)
. considered six market segments from two credill<éssued by Capital One. They
calculated economic losses making each term inr tba&iculation a function of

macroeconomic variables. They found the predicteld Was much lower (higher) for

the higher (lower) risk segments than was the requapital under Basel II.

442 Econometric Models

Different studies have addressed different issBasay and Rosen (2001) estimated
econometric models for a sample of credit cardseiddetween 1995 and 1999. The
portfolio was divided into 11 risk segments basadapplication score. They found,
using segment specific variables as well as maoramuic variables that the
proportion of the variance in the credit worthin@sdex that was explained by the
latter varied between 38% and 73% depending onsdgment. Macroeconomic
variables generally explained a greater proporidrthis variance in lower risk
segments. Values of the macroeconomic variableg wenulated and the predicted
loss distribution constructed for the portfolio. Vhéound that the estimated
VaR(99.9%) was 12.5% higher when the model includety segment specific

variables rather than both these and macroeconeaniables. They also estimated a
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Merton type model and found the VaR(99.9%) wasstrae as predicted by the CPV

model, but the expected loss was lower.

An example of the application of the Kalman Fil{&f) in a credit risk model is
Jiménez and Mencia (2007). Jiménez and Mencia assumector autoregressive
(VAR) model for the growth in the number of loansmontht and for the increase in
default frequency in month. In both cases lagged endogenous variables were
included as was an unobserved factor. Values fofabtors were estimated using the
KF and the parameters of the VARs estimated udieget values. Quarterly data,
1984 to 2006, relating to all loans owe8,000 in Spain for each of ten commercial
sectors plus consumer loans and mortgages were ligeéach sector the growth in
default rates was significantly negatively relatedlagged GDP and significantly
positively related to the latent factor; but reaterest rates, even with three lagged
terms, were not related. They then simulated the diestribution and found that when
the latent factors were included the VaR (99.9%grathree years was 5% and 2%
lower, respectively, for consumer loans and momtgafan when latent factors were

omitted.

Rodriguez and Trucharte (2007) follow Carey’s norapeetric simulation method
(Carey: 1998, 2001) to generate loss distributifmmsSpanish mortgages First they
pool the simulated loans across all years (199004 Pand compare the loss rate as a
percentage of exposure at the™9®9.5" and 99.9 percentiles to find that the
simulated rates were higher, except at the"™®®edcentile, than the rates implied by,
and so covered by, the Basel Il formula. When Iogkover an economic cycle the
distribution of losses implied by Basel had a fatédl than the simulated distribution
above the 99'% percentile. Second, they take a reference pastf@004, and stress
values of the predictors to gain a new distributadnPD:s and so of losses. They
found that the loss rates, at all the percentitasthe worst year in the data period are
considerably larger than those implied by the BHI&B approach using average PD

estimates over the cycle.

4.5 Point in Timeversus Through The Cycle Ratings Systems
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As Brough (2007) notes when calculating economjatahunder an IRB advanced

approach, ‘a firm must estimate PDs by obligor gradpool from long-run averages
of one year default rates (BIRU4.6.24)" and theglonn average must be calculated
from default rates in a representative sample afs/édrom throughout an economic
cycle. However there are alternative ways of caliod) the long run average PDs. A

lender is required to classify borrowers into rgglades according to the predicted

probability of defauItI5Dit . Two methods are possible. A TTC rating system is one

where thel3Dit used to allocate a borrower to a grade does rpemtkon the state of
the macroeconomy because this state has been byipatly fixed at a stressed level

representing a severe recession. We denotePh}8 ™. A PiT rating system is one
where theFA>Dit used to grade a borrowdoesdepend on the likely future state of the

macroeconomy. We denote thRDI"M*" . To explain further (following Heitfield:

2004 and 2005) we write equation (1) (omitting iat¢ion terms for simplicity) as
di = By + W By + X B, +(Z) By + /0 2" + 1= py &y, (27)

where p, denotes the correlation betweétD, and PD,, the z vector has been

partitioned into observed and unobserved comporaitshe sensitivity ofl” to the

unobserved time varying variable is determinedhgyvalue ofp,. We can represent
a stressed state of the economy by settidd) p+./0,2" =¢ where ¢ is a

constant. Then th&D, in a TTC system used to grade a borrower can beewiits

ey ¥

PDITTC = F{,Bo + Wi B, +xi B, + C] ’ (28)

and in a PiT system it is
PDHT = F (B, +W]B, +X]B, + (%) Bs). (29)
So a PiT risk grade is defined as
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QluslPiT ={i 1B, + W B, +xB, +(Z) B, =@}, (30)

wherew denotes a constant and a TTC risk grade is defimed a

+W'B. +x'B., +
QIsITTC — {i | ﬁo W;/l;_l_—pxnﬁz < =wTTC}'
d

In each case, all members of a grade have the samesponding PD.

(31)

Suppose that for each type of system a risk graddefined as a range of the

corresponding above probabilities. Consider borrewat are rated using a PiT
system. If the economy went into recessid®Dl""" for each borrower would

increase and borrowers would be allocated to argrede. But the mean observed
PD in any one grade would be unchanged; the gredelyshas a different set of
borrowers. The risk of the portfolio has increased ay equation (13) the capital

requirement has risen. Now consider borrowers @natrated using a TTC system.

The economic downturn does not affeeDI™ ™™ so no borrower would change

grade, but the mean observed PD in each gradeas®se In practice, according to
Heitfield, for corporate ratings, agencies oftee asTTC system where the grade is
altered in the light of the likely future statestioé economy.

Heitfield (2004) uses the above models to showetkigected pooled PDs for each
combination of rating methodology and stressed rstressed scenarios. He shows
that if a TTC system is used then the expected stigssoled PDs will be stable over
an economic cycle as will expected unstressed doBl@s if a PiT system is used.
However pooled PDs, which are estimated in a way itinakes their expected values

unstable, are difficult to estimate using obserpast default rates.

The FSA (2006) suggest that in practice lendersdfteto transform PDs estimated
by PiT models for a portfolio into long run averdgPs, instead of estimating long
run average default rates for individual gradesinganded in the Basel Il Accord.

One possible reason is a lack of long term histbriata on default rates by grade.
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According to the FSA (2006) the most common apgrdacthis transformation is to

use a variable scalar method.

The general variable scalar method is to preé’iBgT over time and for each period

apply an appropriate multiplier to transfofb; into the long run PD. An example is
Ingolfson and Elvarson (2007) who use a Kalman Fi#ehnique whereby they have

an observation equation relating to observed ‘sestiodefaults (defaults that

subsequently are written offy,: y, =(z")"A+v/R and a state-space equation
2 =Z"Y0+0 ,Q where zI' represents the time series pattern of the
unobserved default 'cycle’ and, and @,_, are vectors of random terms. The structure

of the 8 and Q matrices were set up assuming that the defaultléty.e. state
equation, has a cyclical component following a siweere, a long term trend and a
random element. The parameters of the matrices saimated using the usual KF

algorithm. The result is an extrapolative model led time series of defaults (as a
percentage of the number of loans). The predi(fta;is of the portfolio, where the

predictions are based on a PiT logistic regressiodat) is then multiplied by a scalar
for that time period which is derived from a paslationship between the predicted
default cycle and that predicted by the PiT logistigression models. The model was
fitted for loans to an Icelandic bank during 199B@ with a high degree of fit. A
weakness of this paper is that it does not makeections for each market segment
separately as preferred by the FSA (2007). A gémdialenge for scalar methods is
that according to the FSA (2007) they should adusthanges in the macroeconomy
only. Changes in the observed default rates duhamges in the mix of borrowers,
changes in the propensity to default or changebaracceptance policy of the lender
should not be averaged away. See Loffler (2003)@unalg (2005) for applications of
the KF to TTC ratings for corporate loans. Gordy &favells (2006) discuss how
regulators might adjust a PiT rating system to aethe minimum acceptable capital

required over time using a smoothed AR(1) function.

4.6 Markov Chain Modds
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Now supposed, is not restriced to (0,1) but can take on a ravfgeominal positive

integer values, each indicating a state of repayrdelinquency such as the number
of scheduled payments that are overdue. Let the@b1, 2, ..V possible states. (In
the credit risk modelling context the states coalternatively be aspects of a
borrower’s behaviour such as account balance, et tve would need a symbol
other than d to denote these). Consider a ma¥jxof transition probabilities for a
borrower,i, between delinquency staiat timet, and delinquency stateat timet+1.

A possible application is to have two of ¥gossible states as absorbing states, these
being the loan is paid off and the loan has misediany payments it is in default
(Cyert et al 1962). If

P(dtgl =V, |dtg,1 =V ey TV ) =P =V [ V) vy, (32)

then dl....dtg is a first order MC. See Putterman (1994) or St¢2@05) for

discussions of markov chains.

The transition matrix may be pre-multiplied by atee®f the number of accounts in
each state to gain the expected distribution ob@acts across all states in a future
period. If the matrix is stationary the probabilibat an account moves from stat®

statev overt steps is given by thev cell in theP' matrix.

Notice that panel data that contains a nominalsomeaof repayment behaviour (i.e.
delinquency) can be represented as a transitiomixn@bserved values of the
delinquency state are recorded in successive tigr@gs,t = 1 ...{;, for each
borrower. Notice also that the MC represented hyaggn (32) is analogous to a
linear model with an endogenous variable laggedrigyperiod.

Define p,,(t-1t) as equal toP(d, =v, |d_, =v,, Jor casei. If we make the

transition probabilities functions of covariatdsgm we may write

— T T T T T T
pluv (t - 11 t) - F (IBOuv + Wiuvﬂluv + XituvﬂZuv + ZtuvﬂSuv + Xitulequiuv + XituvYZuthuv + WiuvYSuthuv)

: (33)
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where the covariates of the right hand side aréefiged in equation (3) except that
they may be specific to the stateandv. If we consider the simple case\6f2 andv

is the default state andis any other state then equation (33) is the sasnequation
(3). If we consideu=0 andv=1 then to perfectly define the model, when2, we

require two equations, one with the Ihs beipg,(t -1t and the other with the Ihs
being p,(t -1t ), with corresponding changes to the rhs. For furthgcussion and

estimators see Gourieroux (2000). Note that tleeditire below has not estimated this

type of model.

Cyert et al (1962) gives one of the earliest ajgpilkons of Markov chains. Cyert and
Thompson (1968) estimate a different matrix for eatheight risk categories of
borrower. Frydman et al (1985) test the applicgbdf the Mover Stayer model (MS)
of Blumen et al (1962). The MS model assumes somi@iduals stay in their initial
state e.g. up to date with payments, (‘stayershilst others move between states
according to a stationary Markov chain (‘mover3gsts generally find that the MS
model gives predicted transition matrices that sigmificantly closer to observed
matrices than stationary Markov chains. For exarmjdleand Hand (2001) found this
for a sample of credit card holders and Frydmaal éund this for revolving credit

accounts.

Statistical tests of whether transition matrices stationary and first order are given
in Anderson and Goodman (1957). Both Till and Hamglng credit card accounts,
and Ho et al (2004), using a sample of current @ctsowith borrowing facilities, find
that the transition matrices are not first orddrg tprobability of an account
transitioning from one state to another dependswbith of at least one of the
previous states the account was in. Ho et al fiedr tMarkov chain was not stationary
whilst Till and Hand did not test for this. Ho etalllapsed their ten state transition
matrix into three states and rejected the hypashtisit the chain was second order
rather than third order. They went on to find thHa tnost significant segmentation
out of many considered is not just into movers st&yers but into those who stay,
those that move up to three times (‘twitchers'hsth that move four times (‘shakers’)

and those that move five times (‘movers’) in a 48nth period. Till and Hand find
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that if the assumption of stationarity is rejected, statistical tests in other work
suggest it should be, the time taken to reach thmeaths overdue from 0,1,or 2
payments overdue is 124, 108 and 69 months respigtimuch larger than if

stationarity is assumed.

More recent applications of Markov chains have beeembed them into a Markov

decision process (MDP) model to choose optimalteggias for each state so as to
maximise expected profits. A good example is Treetchl (2003). In this paper each
state is defined by a combination of (a) valuesnahagement control variables e.g.
credit line and (b) variables representing custorbehaviour. To reduce the

dimensions implied by the use of two control vakeaband six behavioural variables
cells were aggregated. Variables were defined igswa increase the chance the
transition matrix was first order. The MDP modeldmoose the optimal actiom,

from a set of A, possible actions for state of accouwas set up as

Vi(u) = Max{NCF(u,) + B P(v]U M (W} (34)

viou

whereV, (u )is the maximised discounted NPV of net cash flowstateu at timet,
NCF(u,)is the net cash flow in stai® when actiona is taken, S is a discount
factor, P(v|u, )is the transition probability giving the probalylibf transiting to state

v from stateu, Tests showed the MDP model increased NPV comparéd tive
model currently in use by a bank. See White (1969)dynamic programming
methods.

4.7  Stochastic Intensity Models

These models have almost exclusively been appliecbtporate loans and in this
context contributions have been made by JarrowTamdbull (1995), Lando (1998)

and Duffie and Singleton (1999). See also Crowde01) for discussions of intensity
models. The crucial point is that these models ¢sm lze applied to consumer loans

as well.
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A large number of models fit this category. Onetluté most influential is that of
Jarrow, Lando and Turnbull (1997) (JLT). JLT descréematrix of transition
probabilities between rating statein periodt and rating states in period t+1,

P, (t,t+1) over state spac€ = 1...\. Corporate ratings describe the chance the

company will default on loans. Applied to consurmans we could regard the states
as delinquency states. Stateepresents default or bankruptcy which is an dbsgr

state. Thus
Py (Gt +D) py (t,t+1)
Py (Lt +1)
P.(tt+1)= (35)
O TR 1

is aV x V matrix. Now move from discrete to continuous tindmnsider a Poisson
process which has valug; at timet whereN takes on integer values. Then the

probability of a change iN in some very small time intervdt is

P(Newgt - N = 1) = Adt, (36)
whereA is the Poisson intensity parameter.
We now regard the changehhas a jump from one stateto default,V. The time to
default can be modelled as the first time the Mar&loain ofV x V states reaches the

default state. The evolution of the chain can beesgnted by its generator matrix of

intensities:

A= : (37)

31



where A, —ZAUV =0 and eachl,,gives the probability that the chain is in staiat

uzv

timet, given it was in stata at time 0. Put another way, if the chain startsna¢ O in
stateu, it will stay in that state for length of time exf,,) and then jump t@ in the

next instant with probability\y / A,,. Clearly we are most interested in thg.

If the intensities,A s in equation (37), can be made functions of (thumatime we

have a non-(time) homogeneous Poisson processnBatioer (2000) shows that in

the period betweemn, andr,, the probability of one jump is

P(N, =N, =1 = [J'/}(s)dsJ ex;{— J'/}(s)ds}_ (38)
If we now also makel(r ¥tochastic, Schonbucher shows we have a Cox meces

so P(N, - N, = 1) equals the expectation of the right hand sidegabéon (38).

The intensities A, (7 ) can be modelled as functions of random hazardtiwms of
covariates, as explained in section 1. Thag(r is }he intensity of transitioning

from stateu to statev in the next instant of time, conditional on haviggnained in

stateu until that time. Thus we could write

P(r<T <1+Ar1,C=Vv,x (1) =X (1)|T =7)

Auv,i (T’Xi (T)) = I&IET(] AT

(39)
where x; (7 )is a realisation of the state variabiessector x; (r) andv is the state to

which the borrower transitions from state This is equation (5) with these two

conditions added. The process is described as ‘gatibthastic’ since thd , values

are determined from a stochastic model (a survimodel) and are then part of a

second stochastic model (a Poisson model).

Lando and Skodeberg (2002) modelled corporate tcarsitions in this way. They
related intensities to time varying covariates gsiessentially Cox Proportional

Hazards. They test to see if the firm was previouslgraded to the present class (an
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X,(71) covariate) to find it was significant. Of courdeettime varying covariates

could be non-case specific and so could be macnoeaic variables.

Kavvathas (2000) models stochastic intensitiesgusmmpeting risks. A competing
risks approach is appropriate because for anyalngiate, if the number of time
intervals is sufficient, the firm could transitido any of1...V states in the next
period. They model downgrade, upgrade and consteadegcorporate transition
intensities separately. They find that high spatriest rates are associated with higher
probabilities of downgrading. They also find thateimsities to downgrade are
positively related to advantageous credit statelsregatively related to stock returns.

See also Crowder (2001) for discussions of comgetgks models.

5. Conclusion

Considerable progress has been made in modellimguooer credit default risk in the
last decade. Whilst dynamic models in the form o&arkév chain models were
discussed in the literature in the 1960s and beliaai scoring models in the 1990s,
there has been considerable development in thediestde in the application of
techniques to predicting the changing risk of bimitividuals and of portfolios of
loans. The data that lenders collect is of a patnettsire, albeit with missing values
in certain places. This offers lenders consideraiyportunities to incorporate
covariates that vary over time, both those spetdithe borrower and those which
may affect everyone, and combinations of both.h&tlevel of the account the use of
survival analysis allows lenders to predict thebatality of default in the next month
taking into account predicted @x-postobserved macroeconomic indicators. The
panel data structure of lenders allows them inqgyie to use panel techniques to
estimate, for example, the probability of a misgayment in a particular month
where this may or may not be a one-off event. Tarstwe done more efficiently using
random effects models than by data pooling. Alteveatechniques, such as scalar
techniques, still require further methodologicalelepment since they currently do
not incorporate the possibility that changes indtate of the economy may alter the

risk ranking of applicants or borrowers.
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Models of the distributions of default probabilgievhich have been developed for
application to corporate loans can also be appieedonsumer loans. Corporate
models which allow for inter-company default coatedns in the form of unobserved

factors, have considerable potential to be appgiledonsumer loans. They may be
estimated using random (time) effects. The stasistgignificance of unobserved

factors, that represent omitted risk covariates asgkt correlations can be directly
estimated. On the rare occasions when they have dqggied to consumer loans we
see that the asset correlations are very low arldbew the correlations given in

the Basel Il formula. Macroeconomic variables canrtorporated into predictions of

default rate distributions and when they are thenedéed VaR values are likely to be
more accurate. It is also possible to estimateegfar latent unobservable factors in
additional to the effects of macroeconomic variahising Kalman Filter techniques
and on the few occasions on which it has been ddres been found that the implied
VaR values are lower than when they are omittedii\¢here is considerable scope
for developing this work further. Pooling the datad omitting latent factors has also
been tried as a way of incorporating macroeconaai@bles and when this has been

done it has been found that stressed loss ratexcarally higher than under Basel .

Finally, in the corporate literature stochasticemgity models have commonly
replaced Merton type models and there is consitkerpbtential for applying the
former to consumer loans. Consumer default trasitnatrices appear not to be first
or even second order. There is considerable opptrttm model the transition
probabilities in terms of macroeconomic variables & introduce macroeconomic
variables into intensity models to examine the iogtions of different states of the

economy for default distributions.
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