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Abstract 

We present detailed observations of rivers crossing active normal faults in the central 

Apennines, Italy, where excellent constraints exist on the temporal and spatial history 

of fault movement.   We demonstrate that rivers with drainage areas > 10 km2 and 

crossing faults that have undergone an increase in throw rate within the last 1 My, 

have significant long-profile convexities.  In contrast, channels that cross faults that 

have had a constant slip rate for 3 My have concave-up profiles and have similar 

concavities and steepness indices to rivers that do not cross any active fault structures.  

This trend is consistent across the central Apennines and cannot be explained by 

appeal to lithology or regional base level change. The data challenge the belief that 

active faulting must always be reflected in river profiles; instead, the long-profile 

convexities are best explained as a transient response of the river system to a change 

in tectonic uplift rate. Moreover, for these rivers we demonstrate that the height of the 

profile convexity, as measured from the fault, scales with the magnitude of the uplift 

rate increase on the fault; and we establish that this relationship holds for throw rate 

variation along-strike for the same fault segment, as well as between faults. These 

findings are shown to be consistent with predictions of channel response to changing 

uplift rate rates using a detachment-limited fluvial erosion model, and they illustrate 

that analysis of the magnitude of profile convexities has considerable predictive 

potential for extracting tectonic information.  We also demonstrate that the migration 

rate of the profile convexities varies from 1.5-10 mm/y, and is a function of the slip 

rate increase as well as the drainage area.  This is consistent with n > 1 for the slope 

exponent in a classical detachment limited stream-power erosion law, but could also 

be explained by incorporating an erosion threshold or an explicit role for sediment in 

enhancing erosion rates. Finally, we show that for rivers in extensional settings, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 3

where the response times to tectonic perturbation are long (in this case > 1 My), 

attempts to extract tectonic uplift rates from normalised steepness indices are likely to 

be flawed because topographic steady state has not yet been achieved. 

 

Keywords 

Rivers; long profile; tectonics; faults 

 

1.  Introduction 

 

The earth's landscape represents the time-integrated product of the interaction 

between tectonics and climate (Whipple and Tucker, 1999, Whipple, 2004).  In 

principle, therefore, a temporal record of these competing signals will be recorded in 

landscape through the production or modification of a range of geomorphic features 

(Willett and Brandon, 2002; Anders et al., 2006; Wobus et al., 2006).  This raises the 

prospect that by developing tools to decode this landscape record, we may gain access 

to a new archive of past tectonic and climatic signals, resolvable over the response 

timescale of the geomorphological feature studied and over a range of spatial scales. 

Amongst other things, this would allow us to improve our predictions of tectonic 

setting where direct structural or geodetic data are unavailable (Burbank and 

Anderson, 2001) and could be invaluable for refining hazard prediction (c.f., Roberts 

et al., 2004) and determining landscape sensitivity to future climate change (e.g., 

Molnar, 2001; Roe et al., 2002).  Moreover, the growing availability of high-

resolution digital elevation models (DEMs) in combination with sophisticated GIS 

software has revolutionised our ability to probe and quantify present-day topography, 

and seemingly provides the detailed data sets required to bring this goal within reach 

(Tarboton et al., 1991; Wobus et al., 2006a). 
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 Despite these technical advances, we remain a considerable distance away 

from achieving these aims.  Firstly, the interaction between climate, tectonics, and 

landscape is complex and non-linear over a range of time periods, making the 

isolation of any one of these signals difficult (Molnar and England, 1990; Finlayson 

et al., 2002; Dadson et al., 2003; Montgomery and Stolar, 2006).  Secondly, to 

extract information on tectonics or climate from discrete geomorphological features 

requires us to have detailed knowledge of how the long-term physical behaviour of 

landscape systems is expressed in the time-integrated morphologies they produce 

(Whipple and Tucker, 1999).  For example, we already know that some key surface 

systems, such as hillslopes, rapidly reach threshold gradients in areas of high uplift 

rate (Tucker and Bras, 1998; Montgomery, 2001) or where the rate of soil production 

is rapid (Roering et al., 1999), limiting their sensitivity to changes in boundary 

conditions, and hence restricting their use to specific climate or tectonic 

environments.  In contrast, the upland river system has become the major focus for 

study in this area (e.g., Lavé and Avouac, 2001; Snyder et al., 2000, amongst many 

others) because over length scales >1 km, the earth's surface is channelised and 

consequently the fluvial network acts as the primary agent by which tectono-climatic 

signals are transmitted to landscape as a whole (Merrits and Vincent, 1989; Whipple 

and Tucker, 1999; Whipple, 2004). Moreover, because aspects of channel form (such 

as streamwise gradients, channel geometry, etc.) remain sensitive, at least to tectonics, 

over timescales > 1 My (Whittaker et al., 2007a,b) and key attributes (such as channel 

lengths, slopes and drainage areas) are easily extractable from DEM data, the fluvial 

system is widely accepted to be the most fruitful area for landscape analysis (c.f. 

Wobus et al., 2006a).   

 In this paper, we focus on the study of upland rivers to deduce tectonic signals 

over time periods >105 years.  In particular, we examine how river long profiles and 
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drainage networks reflect relative rates of rock uplift by documenting fluvial response 

to active faulting in the central Apennines of Italy, where excellent constraints exist 

on the long-term displacement rates of the active normal faults that dominate the 

topography of the area (Roberts and Michetti, 2004). By comparing rivers crossing 

faults with different slip rates, and also differing temporal histories of slip, we 

quantify, for this system, the conditions under which river long profiles can be used to 

extract tectonic signals from landscape; and we compare our results to predictions of 

river response to differential uplift using the CHILD landscape evolution model 

(Tucker et al., 2001).  We establish that transient landscapes (i.e., not in topographic 

steady state) can act as a tectonic archive over time periods >1My, but our results 

show that caution is required when using normalised steepness indices (c.f. Wobus et 

al., 2006) as a proxy for rock uplift rate in areas of active tectonics. 

 

2.  Previous work  

 

To extract tectonic signals from any fluvially mediated landscape, we need to 

understand the long-term erosional dynamics of the upland rivers (Whipple, 2004).    

Work toward this goal has largely focussed on formulating erosion ”laws” for 

catchments in areas assumed to be in  ”equilibrium” or topographic steady state (here 

used to mean that the rate of tectonically controlled uplift equals the rate of erosional 

downwearing)  (Howard and Kerby, 1983; Howard et al., 1994; Seidl et al, 1994).   

The stream-power erosion model is the most durable result of these enquiries, casting 

the incision rate, E, of a channel into bedrock as a function of just two main variables, 

the river slope, S, and discharge, Q (or more commonly, the upstream drainage area, 

A, as a proxy):    

   E = KAmSn                                          (1) 
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 K is a parameter that subsumes other relevant factors, such as substrate erodibility, 

and the exponents m, n are determined by the precise erosion law chosen (e.g., for 

erosion rate proportional to basal shear stress, m = 1/3, n = 2/3 (Howard and Kerby, 

1983), while for potential energy expenditure per unit channel area, m = 0.5, n = 1 

(e.g., Tucker and Whipple, 2002)).  A and S are readily extractable from DEMs, and 

by assuming that the rate of uplift in an area is balanced by the rate of stream-power 

driven incision (Eq. 1), we obtain 

                                                     
⎟
⎠
⎞

⎜
⎝
⎛−

= n
m

s AkS                        (2) 

 where the pre-factor, ks (the steepness index) of the channel now subsumes 

information about uplift as well as the parameter K from eq. 1 (Snyder et al., 2000), 

and the ratio m/n is called the concavity (usually given the symbol θ). The power-law 

dependence of river slope and drainage area is well-established for A > 1 km2 

(Montgomery, 2001), and both ks and θ can be readily estimated from log-log plots of 

slope and drainage area, which have gained widespread use in the geomorphic 

literature. Concavities depend on the long-term erosional dynamics of the channel, 

and documented values are generally 0.2 < θ < 1, with 0.5 considered typical (Hack, 

1957; Sklar and Dietrich, 1998; Stock and Montgomery, 1999). They exert a 

fundamental control on river long profiles (i.e., channel elevation against distance 

downstream, L), because L itself is a power-law function of drainage area (e.g., L ≈ 

kA0.5, Hack, 1957)..  By substituting this relationship into Eq. 2 and integrating with 

respect to L, one can easily demonstrate that most channels should exhibit a concave-

up longitudinal profile if they are in topographic steady state and K does not vary 

across the catchment.    

Consequently, most researchers trying to extract tectonic signals from 

landscape have focussed on documenting deviations from “ideal” concavities or 

trends in the steepness index, ks between or along rivers, which are not easily 
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explained by appeal to differing lithology.  For example, Kirby and Whipple (2001) 

analysed channel response to spatial gradients in uplift rate, and predicted from 

theoretical considerations that channels flowing towards a zone of increasing uplift 

should have reduced concavities, whereas if uplift rates decrease downstream, channel 

concavities should be significantly elevated. They tested this idea using data from the 

Siwaliks Hills, Central Nepal, in order to quantify differential uplift rates, but 

concluded that the analysis was hampered by confounding factors such as lithology, 

glaciation, and differing sediment flux. Moreover, their analysis only permits 

variations in slope to drive incision rates, whilst similar data to the east in Tibet, 

which accommodates convergence of 2-3 mm/y suggest that channel concavities in 

this area are not demonstrably different from regions that have uniform uplift rates 

(Kirby et al., 2003).   However, these Tibetan rivers do apparently show significant 

variations in steepness index towards the plateau margin that they interpreted as an 

area of active rock uplift, although they do not have the data to demonstrate this 

unequivocally. A number of authors (e.g., Duvall et al., 2004, Wobus et al., 2006a) 

strongly advocate the use of “normalised” steepness indices, ksn, based on the premise 

that reference concavities can be used to define standard steepness values that 

characterise a region.  They have shown that data from the King Range, San Gabriel 

and Santa Ynez mountains, California, are all consistent with channel steepness set by 

uplift rate, and Wobus et al. (2006) was able to identify a linear relationship between 

ksn and predicted rock uplift rates in central Nepal, based on a data set of seven 

channels, and a fault-bend-fold kinematic model of uplift. 

 Although this approach has proven to be a useful tool in the above settings, the 

link between steepness indices and tectonic uplift rates appears to be considerably 

more equivocal in other areas (Hurtrez et al., 1999; Snyder et al., 2000).  Firstly, this 

type of analysis is very sensitive to the reference concavity chosen, and depends on 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 8

the somewhat arbitrary selection of “undisturbed” channel segments (i.e., those that 

do not display oversteepened or convex reaches, or cross documented gradients in 

uplift rate) where slope changes are dispersed over more than one order of magnitude 

in drainage area.  Moreover, the idea that steepness index will reflect the rate of uplift 

implicitly assumes that the landscape is in topographic steady state.  However, given 

that we are considering landscapes responding to tectonic forcing, there is no 

guarantee that such an equilibrium has been achieved (c.f. Gasparini et al., 2006; 

Whittaker et al., 2007a).  Indeed, a key result from landscape modelling to date is that 

rivers near to the detachment-limited end member can be expected to show deviations 

from “equilibrium” concave-up profiles when perturbed by tectonics (Tucker and 

Whipple, 2002; Whipple and Tucker, 2002).  In response to a relative increase in uplift 

rate, a knickzone, or convex reach in the profile develops that separates the lower-part 

of the catchment (which is adjusting to the new uplift signal) from the upper part 

(which is yet to feel the effects of the relative uplift rate change) and so is not in 

topographic steady state.  Over time, the knickzone migrates up the river channel and 

hence establishes a new 'equilibrium' configuration.  In contrast, transport-limited 

systems can be expected to display a diffusive style of behaviour (Tucker and 

Whipple, 2002; Whipple and Tucker 2002) and are not expected to develop significant 

long-profile convexities. 

 One implication of the above is that it is difficult using conventional slope-

area analysis to distinguish between detachment-limited rivers with long profile 

convexities produced by (i) transient response to base level fall or change in fault slip 

rate, from (ii) channels crossing from one uplift zone to another, but having achieved 

topographic steady state (Kirby et al., 2003; Wobus et al., 2006a).  Consequently, if 

we are to succeed in using fluvially shaped landscapes to deduce information about 

tectonics, we need first to characterise channel response to tectonic forcing where we 
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do not assume topographic steady state, and where the boundary conditions are well-

constrained independently.  We tackle this issue using a data set from Italy where the 

tectonic framework is uniquely well constrained (section 3) and where previous work 

has characterised at least one catchment undergoing a transient response to tectonics 

(Whittaker et al., 2007a).   

 

3.  Tectonic Setting 

 

The Central Apennines of Italy is a region of extending continental crust positioned 

within the zone of convergence between the Eurasian and African Plates (D'Agostino 

and Jackson, 1999; Roberts and Michetti, 2004). The Apennines represent a north-

east verging imbricate fold and thrust belt that formed as a result of this convergence, 

and thrusting continues to the present day on the Adriatic side of the mountain chain.   

However, in central Italy, thrusting ceased by the lower Pliocene (Patacca et al., 

1990; Pizzi, 2003; Centamore and Nisio,  2003)  and since this time (ca. ~ 3Ma), a 

zone of extension has formed behind the compressional front, (Fig. 1A) arguably 

driven by roll-back of the Calabrian subduction zone (Lavecchia et al, 1994, 

D’Agostino et al, 2001). This has produced a network of high angle normal faults 

(Fig. 1B), over 150km in length, which accommodates stretching of ~6mm/y across 

central Italy (Hunstad et al., 2003; Roberts and Michetti, 2004).  The normal faults 

uplift platform carbonates, largely of Mesozoic age, while the associated half-grabens 

are underlain by Miocene flysch bedrock (Accordi et al., 1986).  These grabens are 

now filled by continental deposits (dated in places to > 2.5 Ma) that are considered 

contemporaneous with the onset of extension (Fig. 1B) (Bosi and Messina, 1991; 

Cavinato, 1993; Cavinato and DeCelles, 1999; Cavinato et al, 2002).   Although 

there is ample sedimentological evidence that much of the central Apennines lay at or 
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near sea-level in the late Pliocene (Centamore and Nisio, 2003), the area is now 

uplifted on the back of a long-wavelength topographic bulge, thought to be supported 

dynamically by mantle convection (D'Agostino and Jackson, 1999). This has resulted 

in many basins having minimum elevations > 500 m, with the highest peaks at 

altitudes >2000 m (Fig. 1C).  As most of the NW striking range fronts are bounded by 

faults (Fig 1B,C), the fault array has therefore played a controlling role in the 

development of both differential relief and drainage in the central Apennines ,(see 

D'Agostino et al., 2001). This makes the area an ideal laboratory to study the effect of 

tectonics on the fluvial network. 

 The Apennine fault array is also one of the best constrained in the world in 

terms of documented spatial variation in both displacement and slip rate along each of 

the fault strands.  Total accumulated throw for each of the faults is readily estimated 

from the offset of geological horizons (Roberts and Michetti, 2004), and current uplift 

rates have been estimated from (i) the size of fault scarps displacing late glacial 

hillslope surfaces (Giraudi and Frezzotti, 1997; Morewood and Roberts, 2002; 

Roberts and Michetti, 2004), (ii) trench sites across fault strands (e.g. Michetti et al., 

1996; Pantosti et al., 1996), (iii) integrated seismic and borehole surveys (Cavinato et 

al., 2002) and  (iv) surface exposure dating using cosmogenic nucleides (Palumbo et 

al., 2004).  Figure 2 demonstrates the quality of the tectonic data for this area.  Fault 

throw and throw rates vary across the array, with the largest values (throw > 2 km; 

rate ~2 mm/y) documented on faults in the centre of the array (zone B, Fig. 2).  Slip 

rates < 0.4 mm/y are documented for faults at the north and south edges of the array, 

and distally located faults on the far west of the Apennines show no Holocene 

displacement at all.  Additionally, the data demonstrate that slip rates vary along strike 

on the same fault with maximum values at the strike centre and a mapped decline 

towards the fault tips (Morewood and Roberts, 2002; Roberts and Michetti, 2004). 
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 There is also good evidence that the throw rate on some of the faults has 

varied through time: High slip rate faults near the centre of the array have 

comparatively low total displacements (typically 1.5 - 2.3 km, Figs 2 and 3); therefore 

the assumption of constant slip rate through time would require basin initiation ages 

younger than the age of known basin fill sediments (Cowie and Roberts, 2001). 

Consequently, throw rates on central fault segments must have increased (Roberts and 

Michetti, 2004) (Fig 3A). In contrast, faults near the edge of the array have throw 

rates that are consistent with their total displacement, so have maintained 

approximately constant slip rate through time. These observations are explained by 

elastic interaction between the growing faults, within a soft-linked fault array (Cowie 

and Roberts, 2001). This interpretation is directly supported from seismic data (see 

Cavinato et al., 2002) from the centrally located Fucino basin.  Our analysis of 

Cavinato et al.’s data (Fig. 3B) shows much thicker sediment sequences dipping 

toward the active fault from the mid-Pleistocene onward (sequence 4) than from late 

Pliocene-early Pleistocene times (sequence 3). In this locality, which is south of the 

peak in maximum displacement on the fault, (Fig. 2), the current slip rate (measured 

from trench sites, is up to 1.5 mm/y) and a 0.5 Ma tephra layer documented in the 

basin (Cavinato et al., 2002) suggests a slip rate of at least 1mm/y on average over 

this time.  However, for the relatively thin sequence of Pliocene-early Pleistocene 

sediments (seq. 3, Fig. 3B),  accommodation generation could have been no more than 

0.2mm/y; and as well data documents coarse gravels and conglomerates, there is good 

evidence to suggest that the basin was filled at this time (Cavinato et al., 2002).  In 

contrast, sequence 4b is entirely dominated by lacustrine muds, so the basin by this 

time was significantly underfilled.  An increase in throw rate must therefore have 

occurred during the deposition of sequence 4a; and we estimate on this basis the total 

fault throw is consistent with ~ 0.2 mm/y of slip until ~0.8 Ma, followed by ~1.1 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 12

mm/y afterwards.  We also note that the increase in slip rate for central faults should 

result in the switching off of other fault segments, if the total rate of extension across 

the Apennines is to remain constant. This is what we observe in the west of the array, 

where there are a number of presently inactive faults, but with total throws of >700 m, 

which is consistent with a slip rate of ~0.3 mm/y for 2.25 My, followed by fault death 

once slip rate increase had ensued on centrally located fault segments (Zone D, Fig. 

2).   A synthesis of geological data and fault interaction theory (c.f., Cowie and 

Roberts, 2001) strongly suggests the acceleration in throw rate occurred at ~0.8 Ma 

(Roberts and Michetti, 2004). 

 

4.  Methodology  

 

4.1 Approach 

 

Using the wealth of detailed tectonic data outlined above, a 20 m resolution digital 

elevation model (DEM) of the central Apennines, and field reconnaissance of key 

study sites, we are able to identify rivers that have been exposed to the following 

long-term tectonic settings: 

(i) Channels crossing active faults, with a constant slip rate since fault initiation at ~3 

Ma. 

(ii) Channels crossing active faults, with an increase in slip rate at ~0.8 Ma 

(iii) Channels crossing faults with no evidence of Holocene activity, but which 

initiated at 3 Ma and were active during the Pleistocene. 

(iv) Channels draining high topography that is not fault-bounded, but with identical 

lithology to the uplifted fault blocks. 
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We first utilize this data set to critically compare and contrast the long profiles and 

morphology of channels in the same field area that have experienced differing 

tectonic uplift fields through time (section 5). Secondly, we then evaluate the extent to 

which our results (i) might be decoded to gain information about tectonic forcing from 

the landscape (ii) are consistent with predictions of river response to changing uplift 

rates using the CHILD landscape model (section 6).  

 

4.2 Selection of study rivers  

 

Because it is well known that the existence of a “river” on a DEM-derived stream 

network does not necessarily correlate with the existence on the ground of a real 

channel scoured by fluvial processes, we applied the following criteria in selecting 

catchments to study:  Firstly, for footwall rivers crossing faults, we only selected 

channels with drainage areas ≥ 10km2 and downstream distances ≥ 5km at the fault.  

Although this excludes a large number of small catchments draining the proximal 

footwall faces of the active faults in the area, channels in the Apennines smaller than 

this threshold display low concavities and steep long profiles (local slopes >>5 

degrees), morphologies which are typically associated with debris flow action rather 

than fluvial processes (Stock and Dietrich, 2003; Lague and Davy, 2003).  Field 

inspection confirmed that these channels were indeed steep gulleys dominated by 

mass flows.  Secondly, for the subset of channels that passed the above test, we used 

field observation to verify that they exhibited one or more of the following diagnostic 

features: running water or evidence of recent flow, fluvial abrasion marks, and 

evidence of active sediment transport.  Lastly, we excluded channels that (i) had been 

heavily modified by damming/bank stabilisation work (ii) had been clearly dominated 
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by glacial erosion, or (iii) where there was evidence of river capture (e.g., presence of 

wind-gaps linking the palaeo-channel to a neighbouring catchment).  

 Figure 4 shows the localities of the 25 river channels throughout the central 

Apennines selected for study using the criteria outlined.  Eight of these (F1-4, FC1-2, 

P1-2) cross active normal faults (Fiamiginano, Fucino, and Pescasseroli, respectively; 

Fig. 3) which have undergone an increase in slip rate, four (L1, R1, S1-2) incise the 

footwalls of constant slip rate faults (Leonessa, Rieti, and South Cassino), three (G1-

2, SB1) cross presently inactive faults (Guarcino and Subiaco) and 10 cross high 

topography but no faults (N1-10). For each case, we extracted channel long profiles, 

and where appropriate also evaluated both the steepness index, ks, and the normalised 

steepness index, ksn, assuming a reference concavity of 0.5 (Eq. 2). Additionally we 

documented lithology for each of these rivers, and in many cases augmented this with 

in situ measurements of rock mass strength following the Selby rock mass strength 

protocol (Selby, 1980).  This approach synthesises field measurements of intact 

compressive rock strength using a Schmidt hammer with detailed assessments of joint 

orientation, size, spacing, and continuity.  Additionally, it includes an evaluation of 

weathering degree.  Result values lie on a scale from 0-100, with values <25 

corresponding to soils. The approach is more robust than Schmidt hammer rebound 

measurements alone because rock resistance to erosion is significantly affected by the 

presence or absence of pervasive jointing (Whipple et al., 2000). 

 

5.  Results 

 

5.1.  Comparison between faults in the Apennines 
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Figure 5A shows seven rivers with drainage areas between 18 and 65 km2 crossing 

faults that have undergone an increase in uplift rate within the last million years.  We 

note that, significantly, none of these channels display typical 'concave-up' long 

profiles.  Instead, they all display prominent profile convexities that start above the 

fault.   The effect is most noticeable for rivers crossing faults with the highest 

documented slip rates today (e.g. channels FC1 and FC2), and which therefore have 

undergone the largest slip rate increase (for the Fucino fault, >5x slip rate increase 

since 0.8 Ma (Figs 3A,B)).  This phenomenon appears to be systematic and cannot be 

explained by changing lithology or rock mass strength (RMS). In each case, the 

prominent break in slope in the channel long profile does not correlate with any 

change in Selby RMS or lithology (Fig. 5B). This is particularly true of channel F4, 

where the transition from sandstone to limestone in the upper part of the catchment 

does not coincide with any profile steepening, while the fault juxtaposes two 

limestones of identical rock strength.  Nevertheless, the profile convexity starts 

immediately above the fault.  These observations therefore rule out changing bedrock 

resistance to erosion as an explanation for profile steepening (c.f. Stock and 

Montgomery, 1999; Whittaker et al., 2007a).  

 It is particularly instructive to compare these profiles with rivers of similar 

drainage area, incising similar lithologies but crossing constant slip rate faults (Fig. 6). 

In this case, we note that these rivers do not display the significant convex reaches 

that characterise all the profiles in Fig. 5, despite crossing active faults with slip rates 

up to 0.4 mm/y.  Instead, the profiles are concave-up, with 0.41 < θ < 0.54, similar to 

steady state or equilibrium channels (Snyder et al., 2000; Whipple and Tucker, 2002).  

Additionally, we note there is no statistical difference in the concavity of these 

profiles compared to those crossing inactive faults (also shown on the same figure). 

Although there are considerable variations in steepness index, ks, for these rivers, this 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 16

is largely a result of concavity differences (higher θ will lead to higher ks).  Indeed, 

when normalised index values, ksn, are calculated, the values for channels crossing 

inactive and active faults overlap.  

 Importantly, the channels crossing both constant slip rate and inactive faults 

are much more similar to rivers that drain high but tectonically inactive topography 

than those crossing faults that have undergone a temporal variation in uplift rates:  In 

Figure 7, we show a selection of channels with similar headwater elevations, and 

identical lithologies (platform carbonates) to those in Fig. 6, but which do not cross 

any faults.  Again, profile concavities lie in a comparable range (0.44 < θ < 0.66); and 

for some of these rivers, normalised steepness indices are larger than those that cross 

active faults (e.g., N1).  These findings are significant, because it is often assumed 

(either implicitly or explicitly) that continued uplift on a fault would likely result in 

any river crossing that structure showing some form of deviation from a concave-up 

'equilibrium' profile (e.g. Kirby and Whipple, 2001; Hodges et al.,, 2004).  However, 

the profiles in figs 5-7 strongly demonstrate that rivers crossing active normal faults 

do not necessarily have to show prominent profile convexities. In fact, they may 

adjust valley width or channel width instead of slope to keep pace with active uplift 

over million year timescales (e.g. Whittaker et al., 2007b). Consequently, using long 

profiles alone to determine whether a fault is inactive is fundamentally flawed, as can 

be seen by comparing profile G1 crossing the Guarcino fault (now inactive) with S2 

crossing the Cassino fault  (active), and N2 (no fault)  which have almost identical 

concavities, and similar steepness indices.   

 

5.2  Comparison along strike on a single fault 
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Although the data on channels crossing faults with different temporal and spatial 

distributions of uplift credibly suggests that only rivers perturbed by an increase in 

fault throw rate within the last 1My have significant long profile convexities, the 

quality of tectonic data in this area allows for an even stronger test of this hypothesis:  

comparison of river long profiles for channels along strike on the same fault.  This 

approach is particularly robust because many valleys in the Apennines are normal-

fault bounded on just one side (Fig. 1), enabling us to compare (i) river response along 

the length of the fault with the spatial distribution of uplift along strike (Fig. 2) and 

(ii) channel long profiles on the non faulted margin of the valley that have 

experienced an identical regional base level history. Figure 8 shows the Salto Valley, 

which is bounded to the NE by the 30 km long Fiamignano fault. The fault throw and 

throw rate distribution is a maximum in the centre of the fault, and dies out towards 

the tips (Fig 3 and Fig 8B(iii)).  Currently, the maximum throw rate on the fault is ~ 

1.1 mm/y (Roberts and Michetti, 2004; Whittaker et al., 2007b), but there is good 

evidence that it was slipping at ~0.3 mm/y prior to 1Ma (Fig. 3) (c.f. Roberts and 

Michetti, 2004; Whittaker et al., 2007b).  The fault has therefore undergone an 

increase in throw rate of a factor of 3-4 in the fault centre. The throw and throw rate 

declines towards the tips so these sections of the fault have undergone a smaller 

increase in slip rates. We document four rivers with drainage areas > 10 km2 crossing 

the fault (F2-F4 as shown previously, and F1 at the northeastern end of the fault), and 

four rivers on the other side of the valley (N5-N8) that do not cross any active 

structures. F1 and F4 lie near the tips of the fault, whilst F2 and F3 cross central 

segments (Fig. 8B(iii)). Again the rivers which do not cross the fault are characterised 

by concave profiles (0.41<θ<0.48) and normalised steepness indices between 40 and 

100 (Fig. 8B(i)) whilst those which cross the active fault show pronounced convex 

reaches in the long profiles of between 180 and 440 m in elevation, as measured 
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upstream from the fault (Fig. 8B(ii)).  The position of these convex reaches forms a 

roughly linear band behind the fault (Fig. 8B), and importantly, we note that the 

oversteepened reaches are largest on the two channels draining the central section of 

the fault, and smaller at the tips. They therefore appear to mirror the distribution of 

throw and throw rate along the fault (Fig. 8C(iii)). These observations also allow us to 

exclude the possibility that the convex reaches can be explained by base level fall, 

because the rivers on the southern side of the Salto valley drain into the same axial 

channel (with the same base level history) but do not show these oversteepened 

reaches.  Moreover, rivers N5 and N6 (Fig. 8B(i)) offer us a good opportunity to 

calibrate the maximum effect that lithology could exert on river long profiles in this 

area. While river N5 flows entirely over sandstone with a Selby RMS of 40±5 

(equivalent to a compressive strength of ≤50 MPa) (Selby, 1980) N6 also flows over 

mesozoic carbonates in the upper part of the catchment with a Selby RMS of ~67±4 

(compressive strength ~200 MPa).  At this point, where the drainage area is ~ 10 km2 

we see the development of an oversteepened reach of ~100 m in elevation, measured 

from the lithological boundary. For rivers with larger drainage areas crossing 

lithological boundaries, we would expect the size of any convex reach to be less, as 

larger discharges tend to enhance erosivity, enabling the river to cope more effectively 

with the more resistant lithology (c.f. Stock and Montgomery, 1999). Consequently, 

for rivers considered in this study (i.e. those with A > 10 km2), an oversteepened 

reach of 100 m is likely to be the maximum that can be obtained for a lithological 

contrast between Miocene sandstone and Mesozoic limestones in this area. This is 

much smaller than the oversteepened reaches on the rivers crossing the Fiamignano 

fault on the other side of the valley, and thus supports the interpretation that the 

convex reaches on the NE flank are related to an increase in uplift rate on the 

Fiamignano fault rather than a lithological contrast. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 19

 

6.  Discussion. 

 

6.1.  Explanations for convex reaches. 

 

Three main points can be drawn from the data presented in section 4: 

(i) Rivers with drainage areas > 10 km2, crossing faults that have undergone an 

increase in fault uplift rate within the last million years, show the development of 

significant profile convexities. 

(ii) Rivers crossing constant slip rate or inactive faults do not show profile 

convexities, and have concavities and steepness indices comparable with rivers that 

do not cross active faults at all. 

(iii) Our data show that these observations are not explained by appeal to lithology or 

base level change. 

  As we noted in section 2, rivers with erosion dynamics approaching the 

detachment-limited end member will display concave-up long profiles at steady state 

(in the absence of major lithological variations) but are expected to develop long 

profile convexities in response to an increase in relative uplift rate; i.e. as a transient 

response to the new tectonic forcing assuming that the river increases its erosivity 

through channel slope adjustment (Whipple and Tucker, 2002; Tucker and Whipple, 

2002). In this case, the profile convexity propagates upstream as the catchment 

steepens in response to the new uplift rate, until the whole catchment has eventually 

reaches a new steady-state topography.  Previous work (Whittaker et al., 2007a,b) has 

already demonstrated that at least one river in this area (F3 - the Rio Torto) is 

definitely not in topographic steady state and is best explained as undergoing a 

transient response to tectonics.  The generality of this explanation is therefore 
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strengthened considerably by the fact that all the rivers crossing accelerated slip rate 

faults in the central Apennines show similar profiles, whilst those crossing constant 

slip rate faults do not.   We therefore interpret the profiles in Figs 5 and 8 as 

representing a transient response of detachment-limited river systems to an increase in 

tectonic uplift rates as a result of fault interaction within the last million years.   

 A significant challenge to this interpretation could be that while all the rivers 

crossing increased slip rate faults are detachment limited, all the rivers crossing 

constant slip rate faults are better characterised by transport-limited erosion dynamics. 

However, we do not find this explanation persuasive. Field inspection of the rivers 

crossing the constant slip rate faults show them to be indistinguishable from the 

channels crossing accelerated-rate faults, with bedrock exposed in the riverbed 

throughout.  Gravel, where present, typically forms a thin veneer <0.5m thick.  

Moreover, detailed grain-size analysis for rivers L1 and S1, presented in Whittaker et 

al. (2007b) shows that any sediment covering the bed would actually be fully 

mobilised at bankful flow conditions, and that derived Shields Stress estimates lie 

well above the transport-limited threshold (c.f. Mueller and Pitlick, 2005). The 

transport-limited end member is therefore inappropriate to describe erosional 

dynamics for L1 and S1, and a detailed comparison of the distribution of unit stream 

power and footwall uplift along these channels supports the conclusion that they are 

likely to be in topographic steady state (c.f. Whittaker et al., 2007b).  As these 

channels are typical of upland Apennine rivers, we consider these findings to be 

applicable generally.   

 These results are also significant because they help us to constrain the precise 

circumstances in which rivers near the detachment-limited end member develop 

profile convexities in this area, and how they evolve through time.  Firstly, for 

lithology alone to be responsible for the significant convex reaches, drainage area 
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would have to be very small, << 10 km2 or rock strength contrasts much bigger than 

150MPa.  Moreover, for rivers responding to differential uplift rates > 0.1 mm/y, 

channel slope adjustment is not the only way in which rivers could enhance their 

erosivity to keep pace with the imposed uplift (i.e., they can also narrow their channel 

width (Finnegan et al., 2005; Whittaker et al., 2007a) or their valley flat width 

(Whittaker et al., 2007b)).  Consequently, the fact that rivers crossing constant slip 

rate faults do not show profile convexities, despite the uplift rate increasing towards 

the fault and the juxtaposition of rock types at this point, suggests that channel/valley 

adjustments must play an important role in enhancing fluvial erosivity.  Such a valley 

width response has recently been documented for river S1 (Whittaker et al., 2007b).  

It therefore appears that the initial response of the rivers, at least in this area, to an 

increase in uplift rate is to steepen their channels, which is associated with channel 

narrowing (c.f., Duvall et al., 2004; Finnegan et al, 2005; Whittaker et al., 2007a). 

Through time, as the knickzone migrates upstream, channel slopes relax (c.f., 

Gasparini et al., 2006) with incision rates being matched by narrow valley and 

channel widths ― note, for example, that for rivers FC1 and FC2 (Fig., 5A) the 

highest slopes are not at the fault although this is where the throw rate maximum lies. 

The clear implication of the data presented here is that the response timescale 

of Apennine rivers to fault acceleration must be > 1 million years, for these long 

profile convexities to be retained generally in the landscape.  A maximum response 

timescale of 3 million years is obtained by considering that the constant slip rate faults 

now appear to have concave-up profiles and have apparently reached topographic 

steady state (Whittaker et al., 2007b). This is important because it suggests that 

transient long profiles retain tectonic information over periods >106 years and 

therefore provide a time-integrated archive of tectonic signals over this period.  
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Below, we explore how this archive can be decoded to gain access to these tectonic 

signals.  

 

6.2.  Height of convex reaches as a function of uplift rate 

 

The vertical height of a convex (oversteepened) reach upstream of an active fault is a 

measure that is easy to extract from DEM analysis, provided the position of the fault 

is either known from geological mapping, or can be identified from geomorphological 

considerations.  Moreover, it is apparent from Fig. 5 that the size of long profile 

convexities in the central Apennines appears to be larger for rivers crossing faults 

with the highest present-day throw rates (and hence the largest increase in uplift rates 

since 0.8 Ma).  Additionally we note in Fig. 8 that the relative height of long profile 

convexities for rivers crossing the Fiamignano fault also appears to mirror both the 

documented throw and throw rate on the fault.   Because these knickzone heights (i) 

can be measured consistently throughout the field area as the fault traces are mapped 

at an excellent level of detail (Fig. 2; also Roberts and Michetti, (2004)), and (ii) are 

evidently sensitive to tectonic forcing, we investigate, below, the extent to which river 

long profile convexities record the magnitude of fault uplift rates. 

  Figure 9 explicitly tests these ideas by plotting the height of all convex reaches 

(as measured from the fault/lithological boundary) on the rivers studied, as a function 

of both absolute throw rate as taken from the uplift rate profiles in Figure 2, and also 

the calculated uplift rate increase (i.e. the difference in throw rates before and after the 

fault slip rate increase at 0.8 Ma; Fig. 9B).  We estimate the throw rate increase by 

assuming that the central fault segments had a similar length to their current mapped 

lengths before fault linkage (c.f. Cowie and Roberts, 2001) and that the distribution of 

throw rates along strike prior to acceleration mirrored the documented distribution of 
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throw rates on the constant slip rate faults (i.e. a maximum of ~0.35 mm/y that 

declines towards the tips, as illustrated for many of the faults in Fig. 2).  Figure 9B 

shows oversteepened reach height as a function of current slip rates; the grey bar 

illustrates that knickzones of < 100 m elevation can be potentially explained by 

lithological differences.  Although faults with higher present-day rates of 

displacement do have larger long profile convexities (Fig. 9B), it is instructive to note 

that rivers located toward the ends of the increased slip rate faults actually have 

significant profile convexities despite having lower absolute throw rates than either 

the constant rate examples (where there are no oversteepened reaches) or the 

Pescasseroli case (P), where the documented slip rate is approximately twice as large 

(0.55-0.6mm/y). This confirms that the absolute slip rate is not an ideal predictor of 

convex reach height. However, if we present the results in terms of a slip rate increase 

(Fig 9B), we produce a considerably more linear trend. Firstly, all the channels that 

cross constant-slip/inactive faults, or do not cross faults at all plot at the origin, apart 

from the 100 m (lithological) convexity on channel N5 (Fig. 8B). In contrast, the 

convex reach heights on the centrally located fault segments lie on an array with 

increasing degree of slip rate increase. Overall, for a doubling in size of the throw rate 

difference, the height of the knickzone generated appears to increase by a factor of ~2. 

This result is exciting because it is a graphic illustration of the way in which transient 

landscapes directly record tectonic signals and shows the predictive power of this 

approach.  Moreover, the data suggest strongly that the degree to which the fluvial 

system is perturbed from its initial conditions is vital in determining the magnitude of 

the transient response to tectonics. 

 To understand this relationship, with the aim of making generally applicable, 

quantitative predictions of tectonic forcing from the magnitude of long-profile 

convexities, we need to understand the physical generation of convex reaches 
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upstream of faults that have undergone an increase in uplift rate. For detachment-

limited channels, or for rivers approaching this end member, long profile convexities 

are produced by the disparity in wavelength between the ‘new’ uplift field, and the 

length scale over which the channel is able to increase its erosivity in response to this 

(Tucker and Whipple, 2002; Whittaker et al. 2007b). If we consider for simplicity the 

end member case where the oversteepened reach remains at the fault (i.e. no river 

response) then the height of the convex reach would simply represent the 

accumulation of relative footwall uplift on the fault since the acceleration event.  In 

this case, the size of the profile convexity should scale as the difference in uplift rate 

between the 'original' and 'new' throw rates, minus any hangingwall aggradation, and 

multiplied by the time available.  For example an imbalance of 0.1-0.2 mm/y could 

produce an oversteepened reach height of ~ 100-200 m over the past 1Ma.  This is 

roughly the correct order of magnitude for convexities on the rivers crossing the lower 

slip rate faults (e.g., Pescasseroli, and ends of Fiamignano).  However, because the 

increased rate of uplift acts to steepen the channel near the fault, increasing local 

fluvial incision rates until the rate of downcutting balances the uplift field, the 

resulting knickzone will propagate back up the catchment as a wave as the erosion 

rates within the convex reach are much greater than those above it (Whipple and 

Tucker, 2002; Gasparini et al., 2006). Consequently, the size of the convex reach, as 

measured from the fault, is a function not only of the magnitude of the perturbation 

signal but also the speed at which the knickzone migrates up the profile, and the 

relative distribution of uplift in the (back-tilted) footwall.  

 

6.3.  Comparison with model outcomes 
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To investigate tectonic controls on knickzone generation and migration explicitly, we 

use the CHILD landscape evolution model (Tucker et al., 2001) to simulate how 

convex reaches may develop and grow with time for rivers crossing active normal 

faults in the Apennines.  We use a detachment-limited erosion law to model a river 

incising across a back-tilted footwall: i.e., a maximum in uplift rate at the fault, with a 

linear decline in uplift rate to a fulcrum located at 10 km behind the fault.  The 

fulcrum position has been chosen to reflect the average fault spacing in the central 

Apennines (c.f. Roberts and Michetti, 2004). A full description of the model setup and 

parameters used can be found in the Appendix (section 8). We emphasize that the aim 

of this modelling is not to reproduce the specific long profile development of any one 

river in the central Apennines, which would clearly require a detailed knowledge of 

hangingwall base level history and the precise distribution of footwall-uplift for each 

catchment (c.f. Whittaker et al., 2007b).  Instead, we aim to test whether the signature 

we have documented in Figure 9 (i.e. that convex reach heights scale with an increase 

in fault uplift rate) is broadly consistent with the behaviour one might expect for 

rivers near a detachment-limited end member that are perturbed by an increase in fault 

uplift rate. 

 In Figure 10A, we take an initial steady state profile that is in topographic 

steady state with respect to an uplift rate of 0.3 mm/y and instantaneously increase the 

uplift rate to 1 mm/y.  Consistent with the work of Whipple and Tucker (2002), an 

oversteepened reach develops that reflects the imbalance of the 'new' tectonic uplift 

field, and the channel's ability to incise.  Over time, the knickzone migrates upstream 

(with a velocity a function of the celerity of the wave of incision ― section 6.4; see 

also Tucker and Whipple, 2002). The break in slope at the top of the convex reach 

separates the part of the channel that is adjusting to the new uplift field from the part 

that is yet to detect the throw rate increase.  Importantly, by 0.5-0.75Ma, an 
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oversteepened reach of ~400-600 m has developed in our model set-up, similar to the 

size of convex reaches seen on rivers crossing the central sections of high slip rate 

faults in the Apennines (e.g. rivers FC1,2 and F2, F3).  Moreover, if we consider 

rivers responding to different uplift rate increases over an identical time period (Fig 

10B), here modelled to be 0.5My, we do generate larger oversteepened reaches as the 

'new' throw rate grows in magnitude.  The height of these convex reaches is clearly a 

function of the difference in throw rate between the 'old' and the 'new' rates (compare 

Fig. 10C with Fig. 9).  Moreover, this modelling work allows us to predict that the 

slope of the fit between convex reach height and throw rate increase is itself a 

function of the time since the slip rate increase occurred (shown schematically in Fig. 

10C). For 'real' channels drainage area exerts an additional control on knickzone 

retreat rate, and the upstream distribution of A may differ between catchments (see 

section 6.4).  We also note that the heights of the convex reaches generated in these 

model runs are similar to those documented in Fig. 9, although the timescale is 

somewhat shorter (0.5 My).  However, these model runs do not take into account any 

hangingwall sedimentation, which is clearly evidenced, for example, in the Fucino 

basin (Fig 3B), and which would reduce the relative size of long profile convexities 

on rivers FC1 and FC2 (essentially by reducing the relative uplift rate change 

experienced by the river).  These field and modelling results are exciting because they 

demonstrate that transient river responses to a change in fault uplift rate, in the form 

of long profile convexities, act as a 'tape recorder” of tectonic signals over million 

year timescales.   This raises the prospect that uplift rate information could be 

extracted from tectonically perturbed landscapes without having to assume the 

landscape has reached topographic steady state, particularly in areas where, e.g., fault 

slip rates are poorly known but initiation ages are well documented. 
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6.4. Knickzone migration rates 

 

The data presented in this paper also give us a unique opportunity to quantify the long 

term migration rate of long profile convexities, for river systems near the detachment-

limited end member and crossing carbonate bedrock. If we take the top of the convex 

reach in each of the long profiles to represent the distance upstream the effects of the 

fault throw rate increase has propagated (c.f. Whittaker et al., 2007b), then we can 

estimate the mean rate of knickzone migration for each of the rivers (Fig. 11A – grey 

bars show the range of propagation estimates assuming the increase in slip rate 

occured between 0.75 and 1 Ma.).  In general, rates vary by one order of magnitude 

from 1 mm/y to  10 mm/y, within the range predicted by other workers (e.g. Weissel 

and Seidl, 1998; Dorsey and Roering, 2006), although we note that the fastest rates of 

knickzone propagation are for rivers crossing the Fucino fault, which has the greatest 

present-day slip rate (>1.5mm/y where rivers FC1 and FC2 cross) and hence also the 

greatest degree of fault acceleration.  Theoretically, knickzone retreat can also be 

enhanced by softer rock types, and by greater catchment discharge (Tucker and 

Whipple, 2002). Lithology contrast is unlikely to be a satisfactory explanation, as all 

the rivers presented here cross identical bedrock, with no significant differences 

documented in Selby rock mass strength (typical compressive strength of ≤200 MPa).  

However, drainage areas do vary by a factor of three between the catchments.  

The velocity of knickzone retreat, V, should scale with the wave celerity for 

any detachment-limited erosion law.  For a unit stream power model (i.e. m=0.5, n=1 

in Eq. 1., V should (all other factors being equal) be a function of the square root of 

discharge and therefore drainage area, √A (Tucker and Whipple, 2002).  We therefore 

explicitly evaluate whether this effect accounts for the differences in knickzone 
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migration rate documented here:  To do this, we iteratively calculate knickzone retreat 

rate as a function of changing drainage area with downstream distance, √Af(L): 

    V = Ψ√Af(L)                                                  (3)  

and estimate the value of the constant Ψ that reproduces the current position of the 

oversteepened reach top, Lk for each channel according to 

Lk = Lf -(Ψ √Af(L))t                                (4) 

where Lf is the downstream position of the fault, and t is the time period (in this 

instance 0.75-1 Ma).  Explicit in this formulation is the notion that the knickzone will 

migrate progressively more slowly upstream as the drainage area grows smaller.   If 

drainage area is the main control on knickzone migration rate,  then we expect Ψ to be 

roughly similar between the channels.  

  However, as can be seen in Figure 11B, Ψ is a function of fault slip rate, with 

values rising from <3x10-7 y-1 for low slip rate faults to > 2x10-6 y-1 for higher slip 

rate segments. For a standard drainage area of 20km2, this value would imply 

oversteepened reach propagation rates of between 2-8 mm/y, emphasising that fault 

throw rates have a significant effect on the velocity of knickzone propagation.  In fact, 

the convex-reach migration rate for rivers crossing active faults is typically five times 

the fault slip rate in this setting, e.g. Fucino fault has a throw rate of 1.5-2 mm/y and 

the long profile convexity has migrated up the channel at a rate of 6-10 mm/y (Fig. 

11A).   

 Importantly, the relationship between faster propagation rates and the degree 

of tectonic perturbation can be explained if Ψ is also controlled by channel slope.  A 

larger imbalance between 'old' and 'new' uplift rates on the fault leads to the 

accumulation of more slip per unit time and the generation of a steeper knickzone at 

the fault. If the knickzone retreat rate (the wave celerity) is a positive function of 

channel gradient (Tucker and Whipple, 2002) then the profile convexity reach will 
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migrate more rapidly.  This applies where n > 1 for a strictly detachment limited 

stream power erosion law (Eq. 1) and has also been demonstrated to fit the pattern of 

knickpoint evolution in Eastern Australia (Weissel and Seidl, 1998).  However, values 

of n substantially bigger than 1 can be physically difficult to explain, or imply erosion 

processes such as cavitation that we have not observed (Whipple et al., 2000). 

However, this effect could also be generated by an erosion threshold (c.f. Snyder et 

al., 2003) that is exceeded more readily for higher channel slopes, or an explicit role 

for sediment in increasing erosion rates near the fault (c.f. Gasparini et al., 2006). i.e., 

although the rivers can be adequately described by a detachment-limited model, in 

detail, they do not quite lie at this end member.  Furthermore, as both the height of the 

'potential' oversteepened reach (i.e. the knickzone pinned at the fault) and the rate at 

which the convexity propagates upstream are both functions of the magnitude of the 

tectonic perturbation, this explains why the heights of convex reaches in the 

Apennines scale so convincingly with the degree of fault acceleration. 

 

6.5. Transient fluvial geomorphology as a tool for extracting tectonic information; 

the danger of assuming topographic steady state.  

 

The data presented in this paper show that transient long profiles can be used to make 

sophisticated interpretations of fault uplift rates for time periods > 1My.    However, 

rivers in the central Apennines also provide a clear illustration of the potential 

problems associated with trying to extract tectonic information from fluvial 

geomorphology.  In particular, we stress that our interpretations rest fundamentally on 

the identification of river channels as being transient rather than in topographic steady 

state.  In fact, the data sets presented here could be misinterpreted if one approached 

tectonic geomorphology solely from the perspective of normalised steepness indices, 
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where higher values are typically assumed to imply greater rates of rock uplift (c.f. 

Kirby et al., 2003; Wobus et al., 2006a). Difficulties arise both in principle and in 

practice.  Firstly, in slope-area space, it is difficult to distinguish a river undergoing a 

transient response to tectonics or base level fall, from one which is actually in 

topographic steady state, but which flows from a zone of lower uplift (characterised 

by lower values of ksn) to a zone of higher uplift (and larger ksn).  Both would be 

characterised by an convex reach in the long profile and a spike in a slope area plot, 

illustrated for the (transient) river F3 (Figs. 12A,B).  However, a straightforward 

application of steady state paradigms to interpret F3 would predict an uplift field that 

is significantly displaced relative to the real tectonic situation (Fig. 12C). These 

problems are clearly recognised by Wobus et al. (2006a), and they argued that in 

these circumstances that the plan view map location of profile convexities is the key 

discriminant: transient knickzones, caused by base level fall or uplift change should 

appear at an approximately constant elevation around a drainage basin, representing 

the constant vertical propagation rate of the oversteepened reach throughout the 

catchment. In contrast, convex reaches separating two regions in steady state with 

respect to their (differing) uplift fields, would tend to have a spatially linear 

distribution (Fig. 3 in Wobus et al., 2006,).  

 Unfortunately, in practice this can be difficult to apply.  On the broad scale, 

the long profile convexities identified in this study form approximately linear trends, 

because they are generated from linear fault structures (Fig. 12D). Moreover, because 

evolution of the fault array fundamentally controls the long-term development of 

these drainage networks (c.f. Cowie et al., 2006), it is probably unwise to view these 

tectonic perturbations as being super-imposed onto an existing drainage structure; in 

the Italian examples, fault growth has led to the development of axial rivers flowing 

parallel to the fault, with shorter rivers periodically cutting across the fault block. The 
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result in the Apennines is that, in map view, the zones of high steepness index ("high 

uplift") and low-steepness index ("low uplift") do not correlate in a simple way with 

the real uplift field on the faults ― here illustrated for the Fiamignano fault, where the 

zone of high ksn largely covers the hangingwall of the fault (Figs 12C,D).  Of course, 

to calculate robust steepness indices one ideally needs to cover one to two orders of 

magnitude in drainage area.  However, in many of the Italian examples, the entire 

knickzone upstream of the fault occurs within one order of magnitude in A, so the 

method is not particularly sensitive to tectonic signals on the length scale of a normal 

fault block.   

 Consequently, while the use of normalised steepness indices have proven to be 

informative when considering larger channels on a regional scale (e.g. Wobus et al., 

2003), our experience here suggests that widespread use of such an approach is likely 

to be inappropriate (i) for channels with A <100 km2 (ii) in extensional settings where 

the fault spacing is small and (iii) without independent data that validate steady state 

assumptions.  Diagnostic signatures of detachment-influenced fluvial systems 

undergoing a transient response to tectonics (in addition to long profile convexities) 

include small-wavelength spikes in unit stream power that do not correlate with 

lithology or the likely distribution of uplift, channel widths that are decoupled from 

discharge, narrowed valley widths, and hill-slopes rejuvenated to the angle of repose 

within the convex reach (Whittaker et al., 2007b). In the presence of one or more of 

these key features, we argue that inferences about tectonics drawn from geomorphic 

studies that assume that the rate of rock uplift equals the rate of fluvial erosion run the 

risk of producing misleading conclusions.   

 

7.  Conclusions. 
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Although there has been considerable focus in recent years on using transient 

landscapes to parameterise river erosion laws (Tomkin et al., 2003; Van der Beek and 

Bishop, 2003), comparatively little attention has been paid to the potential to extract 

tectonic signals from fluvial systems that are not in topographic steady state.  To some 

extent, this is surprising because it is widely recognised that transient responses to 

tectonic forcing potentially contain more diagnostic information about boundary 

conditions than landscapes at steady state (Tucker and Whipple, 2002; Whipple and 

Tucker, 2002).  However, a significant problem to date has been a lack of well-

calibrated field examples of fluvial systems exposed to a range of tectonic uplift rates 

in both temporal and spatial domains.   This paper has addressed this outstanding 

challenge using an active normal fault system in the central Apennines of Italy, where 

unique constraints exist on fault uplift rates through time and where transient river 

responses have already been documented in individual catchments (Whittaker et al., 

2007a, b).  

 By comparing 15 large rivers crossing active and inactive normal faults, with 

10 rivers not crossing any faults, we show firstly that channels with drainage area 

>10km2 and crossing faults that have undergone an increase in uplift rate within the 

last million years are characterised by significant long profile convexities.  In contrast, 

rivers crossing constant slip rate faults have concave-up profiles with similar 

concavities and steepness indices to rivers crossing inactive faults and tectonically 

quiescent areas.  We show that these convexities cannot be explained by base level or 

lithological effects, and consequently, the convex reaches are best explained as the 

transient response of a detachment-limited river system to an increase in fault uplift 

rate.  We demonstrate that the height of the convex reaches scales with the magnitude 

of the slip rate increase on the faults and that this signal is consistent between faults 

with different uplift rates and also with along-strike variations in slip rate for a single 
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fault segment.   Reach height is controlled by (i) the magnitude and distribution of 

uplift rate in the footwall, (ii) the rate at which the convex reach (the knickzone) 

migrates up the profile and is mediated by any sediment accumulation in the adjacent 

hangingwall basin.  Using the CHILD landscape model, we demonstrate that these 

findings are consistent with the behaviour, over 0.5-0.75 My time periods, of 

detachment-limited rivers crossing back-tilting normal faults. The results thus raise 

the prospect of using long profile convexities to decode temporal variations in 

tectonic uplift rates in other transient settings.  Additionally, we show that field 

estimates of knickzone propagation rates are a function of fault slip rate as well as 

drainage area, with velocities varying from <2 mm/y to >8 mm/y for a reference 

drainage area of 20 km2.  This result requires that the slope exponent n for a 

detachment limited stream power erosion law to be >1 (i.e. faster propagation on 

steeper slopes), but could also be explained either by an erosion threshold or an 

explicit role for sediment in setting erosion rates such that the channels are close, but 

not quite at the detachment-limited end member.   

 The results in this study are important because they show that transient 

landscapes act as an archive of past tectonic events over million-year timescales.  In 

particular, channels perturbed by active faulting have convex reaches in their long 

profiles that can be used as an explicit proxy for uplift rate.  However, we demonstrate 

that geomorphic analyses which assume topographic steady state could give 

misleading results in extensional settings, particularly on the scale of an individual 

fault block. We therefore underline the importance of establishing the extent of 

transience in a landscape as an important precursor to any attempt to extract tectonic 

signals from geomorphic data. 

  

8.  Appendix: model set up 
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We use the Channel-Hillslope Integrated Landscape Development (CHILD) model 

(Tucker et al., 2001) to model the evolution of rivers draining the footwalls of 

extensional faults in the Central Apennines of Italy (c.f., Attal et al., in review). The 

tectonic setup is a back-tilted footwall characterized by an uplift field that decreases 

linearly (in a direction perpendicular to the fault) to the fulcrum located 10 km into 

the footwall; this is consistent with average fault spacing, and 'domino' fault-block 

tilting found in the Central Apennines (c.f. Roberts and Michetti, 2004). The 

parameters used in the model are described in Table A1, and are scaled to 

approximately emulate a typical catchment draining the footwall of an active normal 

fault in this part of Italy (e.g., the Rio Torto, Whittaker et al., 2007a). A full 

description can be found in Attal et al. (in review).  

 A detachment-limited fluvial incision law is used within the CHILD model. 

The initial long profile (t = 0), is in steady state with a fault throw rate of 0.3 mm/y 

The throw rate is then raised to different values and the response of the river's long 

profile is displayed in figure 10.  The erosion rate of the channel, E, is computed as 

follows: 

   E = kbτp                (A1) 

where kb is the erodability coefficient, τ is the fluvial shear stress and p is an exponent 

> 0. 

   τ = kt(Qc/W)mSn,               (A2) 

where kt is the shear stress coefficient, Qc is the discharge, W is the channel width,  

and m, n are positive exponents.  Manning’s equation is used to model roughness, i.e  

   kt = ρg.nm
3/5,                (A3) 

where ρ is the fluid density, g represents gravitational acceleration, and nm is 

Manning’s roughness coefficient. Combining equations A1-A3 gives  
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  E = kbkt
p(Qc/W)m.pSn.p = K(Qc/W)m.pSn.p  (A4) 

which can be written as 

   E = K(Qc/W)0.9S1.05 (A5) 

when appropriate numerical values are used (see Table A1). Channel width is 

described by Finnegan et al.'s (2005) equation, which allows width to narrow in 

regions of high slope.  This has been shown to be a better approximation to real 

channel widths than conventional hydraulic scaling for rivers in Italy undergoing a 

transient response to tectonic forcing (Whittaker et al., 2007a). 

   W = kwfQc
3/8S-3/16 (A6) 

Table A1 

Parameters used in the landscape model presented in section 8 

Parameter Value 

Catchment’s drainage area, Ac ~65 km2 

Mean precipitation rate, P 0.75 mm/hr 

Storm duration Tr 22 hours 

Inter-storm duration Tb 260 hours 

Mean discharge at the outlet, Qc 13.6 m3/s 

Erodability coefficient kb 8.10-6 m-1/2kg-3/2s2 

Shear stress coefficient kt 1000 kgm-2s-2 

Manning’s roughness coefficient nm 0.025 

Channel width coefficient kwf  3.2 m-1/8s3/8 

Exponents: m, n, p 0.6, 0.7, 1.5 
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Figure Captions 

 

Fig. 1 (A) Inset map of Italy showing documented active normal faults.  Grey box 

depicts study area shown in detail in Fig. 1B.  (B) Geological and structural map of 

the central Apennines, showing the location of thrusts and active normal faults, and 

their relation to lithology.  (C)  Topographic cross section (along line X-X'; Fig. 1B), 

demonstrating that the Apennine mountains form a long wave-length topographic 

bulge, with minimum elevations >500 m for much of the area.  Most of the range 

fronts are bounded by active normal faults. 

 

Fig. 2 (A) Total fault throws (defined as vertical displacement on the fault) for active 

and inactive faults in the array, for four zones across the Apennines, shown in Fig. 2B.  

Data synthesised from Roberts and Michetti (2004), Papanikolaou et al., (2005), and 

geological maps of the area (Accordi et al. 1986). (B)  Fault location map, showing 
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zones used for throw and throw rate profiles in Figs 2A and 2C, plotted at an identical 

horizontal lengthscale. Letters correspond to faults explicitly mentioned in Fig. 4 and 

in sections 4-7 of the text. Note that spacing of the faults has been compressed by a 

factor of 1.5 in the direction NE-SW. (C) Present day fault throw rates for zones A-C, 

primarily derived from Roberts and Michetti (2004), with additional measurements 

from Papanikolaou et al, (2005).  The faults in zone D are presently inactive. 

 

Fig. 3 (A) Accumulation of throw with time for central fault segments (e.g. Fucino 

(FC) and Fiamignano (F) faults) compared with distal segments (e.g. Leonessa fault, 

(L)).    Centrally-located faults have current throw rates that imply fault initiation ages 

that are too young, implying slip rates are higher now than they were in the past.  

Distal faults have total throws with slip at their present-day rates for 3 My.  (B)  

Reconstructed section across the internally drained Funcino plain (adapted from 

Cavinato et al., 2002) showing that sediments thicken into the Fucino fault.   Bar 

charts show the three major syn-sedimentary sequences in terms of time and sediment 

thickness.  Note that post-Early Pleistocene deposits (sequences 4a and 4b) are ~3x as 

thick all the sediment accumulated during the Pliocene (sequence 3). White space 

shows unfilled accommodation space (basin was a lake until drained in 1874).  The 

increase in accommodation generation occurred prior to 0.5 Ma, and likely after 1Ma, 

consistent with the data in Fig. 3A, and modeling work (Cowie and Roberts, 2001). 

 

Fig. 4  DEM image, contoured for elevation, showing study localities of rivers > 10 

km2 in drainage area across the Apennines.  Dark blue depicts constant slip rate faults; 

red - accelerated rate faults; black - inactive faults. Light blue shading shows heavily 

glaciated areas excluded from analysis.   L - Leonessa fault; R - Rieti fault;  F - 
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Fiamignano fault; FC - Fucino fault; P- Pescasseroli fault; S - South Cassino fault; G - 

Guarcino fault; SB – Subiaco fault.  Box depicts detailed study area shown in Fig. 8. 

 

Fig. 5 (A)  Examples of channel long profiles for rivers crossing faults that have 

undergone an acceleration in slip rate within the last 1 My.  Locality numbers are 

shown geographically in Fig. 4. (B) Selby rock mass strength data (after Selby, 1980) 

against downstream distance for the catchments shown in Figure 5A. 

 

Fig. 6  Examples of channel long profiles crossing faults that have had a constant slip 

rate for 3 My (black) or are now inactive (but were slipping for much of the 

Pleistocene (grey)).  Locality numbers are shown geographically in Fig. 4. In the 

table, A is the drainage area, θ is the concavity, ks is the steepness index and ksn is the 

normalised steepness index assuming a reference θ of 0.5. 

 

Fig. 7  Examples of channel long profiles draining high topography unbounded by 

active faults, with identical lithologies to the channels shown in Figs. 5 and 6.  

Locality numbers are shown geographically in Fig. 4.  In the table, A is the drainage 

area, θ is the concavity, ks is the steepness index, and ksn is the normalised steepness 

index assuming a reference θ of 0.5. 

 

Fig. 8 (A) Detailed map of the Salto valley and Fiamignano fault, showing rivers 

crossing the active normal fault (F1-F4) and rivers flowing on the other side of the 

valley (N5-N8).  Dashed lines show catchment boundaries, and the red dots show the 

location of the tops of long profile convexities.  (B) Long profiles for rivers on (i) the 

SW side of the valley where there is no fault and (ii) the NE side of the valley, 

crossing the active fault, with the size of the convex reach, as measured from the fault.  
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Panel (iii) shows the throw and throw rate distribution on the fault: this is mirrored by 

the spatial distribution of convex reach heights. 

 

Fig. 9. Vertical height of long profile convexities for rivers across the central 

Apennines as a function of (A) fault uplift rate and (B) throw rate increase (i.e., the 

difference in throw rates before and after fault acceleration).  The height of the convex 

reach is measured from the fault/lithological boundary to the upstream break in slope 

in the long profile. Dotted line represents the best-fit least-squares linear regression 

through the data and the alphanumeric letter codes refer to rivers shown in Figs 4 and 

8.  

 

Fig, 10, (A) Long profile evolution, for a river crossing a fault (located at 0 km) that 

undergoes an increase in uplift rate. Initial long  profile (red dashes) is in steady state 

with the initial throw rate (0.3 mm/y at fault with a linear declines upstream - blue 

dashes). Throw rate is instantly increased to 1 mm/y at fault - green dashes).  Grey 

lines show transient profiles in 0.05 My time-steps. Red line shows profile at t = 0.5 

My, identical to '1mm/y' long-profile in Fig 10B. The part of the profile downstream 

of the break in slope is approximately reequilibrated with respect to the new uplift 

field. (B) Long profiles evolved at 0.5 My for a range of 'new' uplift rates, using 

identical starting conditions to (A). Arrow illustrates convex reach height after 0.5 My 

at a throw rate of 1.6mm/y. (C) Height of profile convexities (measured from fault to 

slope break) at 0.5My in (B), as a function of the throw rate increase. Arrows show 

schematically how distribution of convex reach heights would vary for shorter/longer 

model run times. 
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Figure 11 (A) Knickzone migration rate, V, for rivers crossing faults in the Apennines 

(B) Variation of the constant Ψ in the expression V = Ψ √Af(L) with slip rate for 

different faults. 

 

Figure 12 (A) Slope-area plot for river F3 showing low and high steepness index (ksn) 

zones. θ1 and θ2 are the profile concavities (0.5 and 0.7, respectively), and θref is an 

average reference concavity for the region. (B) River long profile showing zones of 

high and low ksn. (C) Relative uplift rates in reality (thick line) and erroneously 

predicted by comparing steady state normalised steepness indices (dashed line). Stars 

show profile location on plan view map below. (D) Plan view pattern of uplift 

distribution if steady state is assumed, compared with real distribution for the 

Fiamignano fault (dashed line) bordering the Salto Valley (c.f. Fig 8; north is reversed 

here). The zone of predicted 'high' uplift largely covers the hangingwall of the fault.  

Convex reach tops (circles) are shown for other rivers crossing the fault (rivers F1, 

F2, F3). 
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