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Abstract Hierarchies of semidefinite programs have been used to approximate or even solve polynomial pro-
grams. This approach rapidly becomes computationally expensive and is often tractable only for problems
of small size. In this paper, we propose a dynamic inequality generation scheme to generate valid polyno-
mial inequalities for general polynomial programs. When used iteratively, this scheme improves the bounds
without incurring an exponential growth in the size of the relaxation. As a result, the proposed scheme is in
principle scalable to large general polynomial programming problems. When all the variables of the problem
are non-negative or when all the variables are binary, the general algorithm is specialized to a more efficient
algorithm. In the case of binary polynomial programs, we show special cases for which the proposed scheme
converges to the global optimal solution. We also present several examples illustrating the computational be-
havior of the scheme and provide comparisons with Lasserre’s approach and, for the binary linear case, with
the lift-and-project method of Balas, Ceria, and Cornuéjols.

Keywords Polynomial programming · Binary polynomial programming · Semidefinite programming ·
Inequality generation

1 Introduction

A polynomial program is a mathematical optimization problem whose objective and constraints are multivari-
ate polynomials. Polynomial programming generalizes several special cases that have been thoroughly studied
in optimization, including mixed binary linear programming, convex and non-convex quadratic programming,
and linear complementarity problems. Polynomial programs arise in several practical applications in the con-
text of control, process engineering, facility location, economics and equilibrium, and finance. It is well known
that solving polynomial programs is an NP-hard problem.

Since the work of Lasserre [15] and Parrilo [25], there has been a lot of research activity to devise solution
schemes to solve polynomial programs. These schemes are based on applying representation theorems from
algebraic geometry to characterize the set of polynomials that are non-negative on a given domain. This research
includes the recent work of de Klerk and Pasechnik [5], Lasserre [14,15], Laurent [17,18], Nie, Demmel, and
Sturmfels [22], Parrilo [23,25], Peña, Vera, and Zuluaga [28,36], and the early work of Nesterov [20], Shor [34],
and the S−Lemma of Yakubovich (see [30]) among others. The recent handbook [1] provides an overview of
the research activity in the area of polynomial programming.

An extended abstract version of this paper has appeared in the Proceedings of IPCO 2011.
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The general approach to solve polynomial programs is based on sum-of-squares (SOS) certificates of non-
negativity for multivariate polynomials. This approach builds hierarchies of relaxations leading to solving
a sequence of positive semidefinite programs. Under mild conditions, the resulting semidefinite relaxations
provide bounds that converge to the optimal value of the original polynomial program. Allowing for more
complex certificates produces better approximations to the original polynomial program, but the size of such
approximations explodes quickly, even for instances with a small number of variables. As a result, despite the
theoretical strength of SOS representations, the current schemes are only able to handle problems of small
sizes. For efficient practical performance in medium or large-scale problems, it becomes necessary to exploit
the problem structure. For example, by taking advantage of the symmetry such as the work of Bai, de Klerk,
Pasechnik, and Sotirov [2], de Klerk [4], de Klerk, Pasechnik, and Schrijver [6], de Klerk and Sotirov [7], and
Gatermann and Parrilo [10] or by exploiting sparsity such as in Kim, Kojima, and Toint [13] and Nie and
Demmel [21] and the references therein. However, in the absence of structure, the practical application of the
SOS approach is severely limited.

In this paper, a dynamic inequality generation scheme (DIGS) is proposed for general polynomial pro-
grams. The key idea of DIGS is to bound the complexity (degree) of the non-negative certificates, avoiding
the exponential growth of the relaxations. Instead, our approach makes use of information from the objective
function to construct improved approximations of the polynomial program, by dynamically generating poly-
nomial inequalities that are valid on the feasible region. These valid inequalities are used to construct new
non-negative certificates. The iterated generation of inequalities yields better and better approximations to
the polynomial program without growing the degree of the certificates involved. Depending on the original
problem and the type of relaxation used, the iterative procedure solves a sequence of linear, second-order cone,
or semidefinite problems. For the purposes of this paper, we focus on semidefinite relaxations and thus obtain
a sequence of semidefinite problems.

In the rest of this section we discuss Lasserre’s Hierarchy for Polynomial Programs. In Section 2 we
introduce our generic master-subproblem dynamic inequality generation scheme (Algorithm 1). Algorithm 1
is a rather abstract scheme where the subproblem is not completely specified. In the rest of the paper we
focus on the specification of the subproblem. In Section 2.1, a practical algorithm for general Polynomial
Programs is presented (Algorithm 2). In the presence of extra structure, the subproblem can be implemented
more efficiently; this is done in Section 2.2 for Polynomial Programs where all variables are non-negative and
in Section 3 where (some of) the variables are binary; we refer to such problems as (mixed) binary polynomial
programs (BPP). The method presented in Section 3 for the binary case can be seen as a generalization, from
binary linear programs to BPPs, of the lift-and-project methods of Balas, Ceria, and Cornuéjols [3], Sherali and
Adams [32], and Lovász and Schrijver [19] (see Section 3.3). Our practical methods do not necessarily converge
to the optimal solution (see Example 5). The motivation for developing such methods is that, independently
of the structure of the problem, they can efficiently strengthen the bounds which is helpful when incorporated
into a branch-and-bound framework. Similar to the lift-and-project methods, these techniques can then be
integrated in the design of algorithms and solvers to efficiently solve polynomial programming problems.
Convergence to the global optimal solution is proven for a family of problems in the binary case (Theorems
1, 2 and 3). This specialized scheme and the convergence results are presented in Section 3. To evaluate
the proposed approach, computational results are presented for general polynomial programs (Section 2.1.2),
non-negative polynomial programs (Section 2.2.1) and binary polynomial programs (Section 3.4); in each case
we compare our methodology to Lasserre’s approach [14,15]. For the binary linear case, we compare our
methodology to the lift-and-project method of Balas, Ceria, and Cornuéjols [3] (Section 3.3).

1.1 Polynomial Programming

Consider the general polynomial programming (PP) problem whose objective and constraints are multivariate
polynomials:

(PP-P) ρ = inf
x

f(x)

s.t. gi(x) ≥ 0, i = 1, . . . ,m.

When it is convenient, we represent a polynomial f(x) of degree deg(f) = d using use multinomial notation,
i.e., we write f(x) =

∑
|α|≤d fαx

α, where α = (α1, . . . αn) ∈ Nn, |α| =
∑n
i αi. We use R[x] := R[x1, . . . , xn]

(resp. Rd[x]) to denote the set of polynomials in n variables with real coefficients (resp. of degree at most d).

Let S = {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . ,m} be the feasible set of (PP-P). Then (PP-P) can be rephrased as

sup
λ
λ

s.t. f(x)− λ ≥ 0 ∀ x ∈ S,
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that is,

(PP-D) sup
λ
λ

s.t. f(x)− λ ∈ Pd(S),

where d is the maximum among deg(f(x)) and deg(gi(x)), i = 1, . . . ,m, and P(S) (resp. Pd(S)) is the cone
of polynomials (resp. of degree at most d) that are non-negative over S ⊆ Rn. We refer to d as the degree of
(PP-P).

The condition f(x) − λ ∈ Pd(S) is NP-hard for most (interesting) choices of S and d ≥ 1. Computable
relaxations of (PP-D) are obtained using tractable approximations of the cone Pd(S) which can be re-phrased
in terms of a linear system of equations involving positive semidefinite matrices [15,20,24–26,34,35], second-
order cones [12], or linear optimization problems [16,33,36]. These approximations can be solved efficiently
using interior-point methods.

The general idea in these methods is to relax the condition f(x)− λ ∈ Pd(S) to f(x)− λ ∈ K for a suitable
K ⊆ Pd(S). Defining the relaxation

µK = sup
λ
λ

s.t. f(x)− λ ∈ K,

it follows that µK is a lower bound on the original problem (PP-P).

1.2 Lasserre’s Hierarchy for Polynomial Programs

Lasserre [15] introduced semidefinite relaxations corresponding to liftings of the polynomial programs into
higher dimensions. The construction is motivated by results related to representations of non-negative poly-
nomials as SOS and the dual theory of moments. Lasserre shows that computing the global minimum of f(x)
over a set S defined by polynomial inequalities reduces to solving a sequence of SOS-type representations of
polynomials that are non-negative on S. The convergence of Lasserre’s method is based on the assumption that
{g1(x), . . . , gm(x)}, the given description of S, allows the application of Putinar’s Theorem [31]. In particular,
it assumes S is compact.

For ease of notation let g0(x) ≡ 1 and G = {gi(x) : i = 0, 1, . . . ,m}. For a given r > 0, let KrG be the r−th
truncated quadratic module generated by G, that is,

KrG =
m∑
i=0

gi(x)Σr−deg(gi),

where for any d ≥ 0, Σr denotes the cone of real polynomials of degree at most d that are SOS. Note that
Σd := {

∑N
i=1 pi(x)2 : p(x) ∈ Rb d

2
c[x]}, with N = (n+dd ), and in particular Σd = Σd−1 for every odd degree d.

As KrG ⊆ P(S), we obtain a relaxation of (PP-D):

µrG = sup
λ
λ

s.t. f(x)− λ ∈ KrG,

so that µrG ≤ ρ and

µrG = sup
λ,σi(x)

λ

s.t. f(x)− λ =
m∑
i=0

gi(x)σi(x) (1)

σi(x) ∈ Σr−deg(gi), i = 0, . . . ,m.

The optimization problem (1) can be reformulated as a (convex) semidefinite optimization problem [34]. By
increasing r, a sequence of semidefinite relaxations of increasing size is obtained. Lasserre shows [15] that under
mild conditions, the optimal values of these relaxations converge to the global optimal value of the original
non-convex problem (PP-P). Proposition 1 states the result using our notation.

Proposition 1 Let G = {gi(x) : i = 0, . . . ,m} be such that g0(x) ≡ 1. Assume there exists a real-valued polynomial

u(x) ∈
∑m
i=0 gi(x)Σm for some m, such that {x : u(x) ≥ 0} is compact. Then (Putinar [31])

K1
G ⊆ K

2
G ⊆ · · · ⊆ K

r
G ⊆ · · · ⊆ P(S) and {p ∈ R[x] : p(s) > 0 ∀s ∈ S} ⊆

⋃
r>0

KrG

and therefore (Lasserre [15])

µ1G ≤ µ
2
G ≤ · · · ≤ µ

r
G ≤ · · · ≤ ρ and µrG → ρ as r →∞.
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In other words, using Lasserre’s hierarchy for general polynomial programs one may approximate the global
optimal value ρ as closely as desired by solving a sequence of semidefinite problems with increasing size of
the semidefinite matrices and number of constraints. The computational cost of the procedure depends on r,
the number of constraints m, and the number of variables n. For (PP-P) with n variables and m inequality
constraints, the size of the optimization problem (1) is as follows:

– one psd matrix of size (n+rr );

– m psd matrices, each of size (n+r−deg(gi)
r−deg(gi)

) for i = 1, . . . ,m;

– (n+rr ) linear constraints.

The number of constraints of (1) grows exponentially in r. Notice that to use all polynomial appearing in the
formulation of (PP-P), r should be no smaller than d. When r > d+2, the number of variables and constraints
of (1) can be large, especially when (P-PP) involves high degree polynomials.

1.2.1 Equality Constraints

Lasserre’s approach treats equality constraints as pairs of two inequalities. Alternatively, one can differentiate
between equality and inequality constraints as proposed in [28]. Given S = {x : gi(x) ≥ 0, i = 1, . . . ,m1, hi(x) =
0, i = 1, . . . ,m2}, let G = {gi(x) : i = 0, 1, . . . ,m1, hi(x) : i = 1, . . . ,m2} where g0(x) = 1. Consider the following
approximation of Pd(S):

KrG =

m1∑
i=0

gi(x)Σr−deg(gi) +

m2∑
i=1

hi(x)Rr−deg(hi)[x].

The corresponding optimization problem over S can be written as:

sup
λ,σi(x),δi(x)

λ

s.t. f(x)− λ =

m1∑
i=0

σi(x)gi(x) +

m2∑
i=1

δi(x)hi(x) (2)

σi(x) ∈ Σr−deg(gi), i = 0, . . . ,m1

δi(x) ∈ Rr−deg(hi)[x], i = 1, . . . ,m2.

In a similar way to problem (1), problem (2) can be reformulated as a semidefinite optimization problem.

2 Dynamic Approximation of Polynomial Programs

We propose a new scheme to generate a sequence of improving approximations for (P-PP). Instead of growing
r and exponentially increasing the size of the relaxation (1), we fix r in (1) to a small value r0 (mainly to
d, the degree of (PP-P)) and the relaxation (1) is improved by adding valid polynomial inequalities to the
description of S, i.e., by growing the set G.

The scheme is dynamic, and consists of a master problem and a subproblem. The master problem is of the
form (1) and provides bounds for problem (P-PP), while the subproblem uses the optimal dual information from
the master to generate polynomial inequalities that are valid on the feasible region. These valid inequalities are
then incorporated into the master to construct new non-negativity certificates, obtaining better approximations
of (PP-P).

An augmented description G of S does not necessarily imply a better approximation. If p ∈ Kr0G , then
Kr0
G∪{p(x)} = Kr0G , and thus µr0G = µr0

G∪{p(x)}. On the other hand, if p(x) ≥ 0 is a valid inequality for S not

in Kr0G , we have Kr0G strictly contained in Kr0
G∪{p(x)} improving the conic approximation to Pd(S) which may

provide a better bound for (PP-P) when using (1). We summarize this observation in Lemma 1.

Lemma 1 Let r0 ≥ d and p(x) ∈ Pr0(S) \ Kr0G . Then

Kr0G ( Kr0G∪{p(x)} ⊆ P(S) and thus µr0G ≤ µ
r0
G∪{p(x)}.

We are interested in generating valid inequalities p(x) for which µr0G < µr0
G∪{p(x)}. We call such inequalities

improving inequalities. Given a finite description G ⊆ Rd[x] for S and r0 ≥ d, Algorithm 1 is a generic dynamic
inequality generation scheme (DIGS) based on Lemma 1 to construct a sequence of improving relaxations.
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Algorithm 1 Generic Dynamic Inequality Generation Scheme (DIGS) for (PP-P)

Require: G ⊆ Rd[x] description of S and r0 ≥ d
s← 0, G0 ← G.
loop

Let

(PP-Ms) νs = sup
λ

λ

s.t. f(x)− λ ∈ Kr0Gs
.

Look for an improving inequality ps(x) ∈ Pr0 (S) \ Kr0G
if an improving inequality does not exist then

STOP
else
Gs+1 ← Gs ∪ {ps(x)}
s← s+ 1

end if
end loop

Lemma 1 implies that Algorithm 1 generates a sequence of strictly monotone approximations to Pd(S),
and a corresponding sequence of improving bounds for the optimal value of (PP-P). This is formally stated in
Lemma 2.

Lemma 2 Let Gs and νs, s = 1, 2, . . . be generated by Algorithm 1. Then

Kr0G0
( Kr0G1

( · · · ( Kr0Gs
( Kr0Gs+1

· · · ⊆ P(S)

ν0 < · · · < νs < νs+1 < · · · ≤ ρ.

Moreover if Algorithm 1 stops at iteration s, then that bound is optimal, i.e., νs = ρ.

Proof By definition of improving inequality it follows that νs < νs+1 for all s. In particular Kr0Gs
( Kr0Gs+1

. Also,

if the algorithm stops at iteration s is because no improving inequality exists, thus the current relaxation must
have optimal value νs = ρ. ut

Notice that the DIGS presented in Algorithm 1 is a paradigm shift. Instead of approximating the whole
set P(S) by increasing the size of the non-negativity certificates, the complexity of certificates is increased by
iteratively using the old certificates to produce new ones while keeping the degree, and hence the size, fixed.
In each iteration of the algorithm, the description of S is improved, as new valid inequalities are added. These
new valid inequalities are chosen using information about the objective of the optimization problem as well as
the type of non-negative certificates wanted (see algorithms 2, 3 and 4 ). In particular Algorithm 1 may stop
after a finite number of steps with the optimal value of (PP-P) without closely approximating the whole set
P(S).

We refer to (PP-Ms) as the master problem. The subproblem consists of finding an improving inequality
ps(x) or showing that none exists. Notice that while the master is a semidefinite problem of size polynomial in
n and s, the subproblem is NP-hard. Thus, the complexity of the original problem (PP-P) is transferred to the
subproblem and the iterative nature of DIGS. In the remainder of this paper, we consider practical versions of
the generic DIGS (Algorithm 1). Section 2.1 introduces DIGS-A for general polynomial programs, and Section
2.2 proposes DIGS-A+ for problems with non-negative variables.

Since in general the set Pr0(S)\Kr0Gs
, cannot be efficiently represented or even closely approximated, DIGS-

A and DIGS-A+ generate polynomials ps(x) using approximations of this set. In other words, these practical
procedures are obtained by relaxing the subproblem: instead of looking for inequalities that are guaranteed
to be improving, we look for elements of the set Pr0(S) \ Kr0Gs

that may be improving. There is in general
no guarantee that a practical stopping criterion can always be satisfied. Moreover, the relaxed subproblems
may not return a polynomial ps(x), and the practical algorithms may stop, even if optimality does not hold.
However, these algorithms generate a sequence of improving lower bounds for (PP-P), and even in cases
where optimality is not reached, better bounds and performance may be obtained in comparison to Lasserre’s
approach.

If (PP-P) has additional structure it may be possible to exploit this structure to obtain more efficient
DIGSs. It may also be possible to prove for special cases that if no ps(x) is found by the relaxed subproblem
then optimality is attained. For such cases, if the practical algorithm terminates, the computed solution is
guaranteed to be optimal. We show in Section 3.1 that this holds for DIGS-B, a DIGS specialized for the case
of binary PPs.

To illustrate the potential of the proposed scheme, we implemented the three practical DIGSs (Algorithms
2, 3, and 4) in Matlab and applied them to different types of PPs. To obtain a fair comparison, Lasserre’s
relaxation is implemented and solved using the same code.
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2.1 DIGS-A: A General DIGS for all types of PPs

Given a finite G ⊂ Rr0 [x], we want to find a polynomial p(x) of degree at most r0 such that p(x) ∈ Pr0(S)\Kr0G .
Assuming that Pr0(S) \Kr0G 6= ∅, the two issues to address are: first how to generate p(x) ∈ Pr0(S); and second
how to ensure p(x) /∈ Kr0G .

To tackle the first issue, since it is not possible in general to represent the set Pr0(S) exactly, Pr0(S) is
approximated using KrG ∩ Rr0 [x] for some r > r0. In particular, approximations of degree r = r0 + 1 could
be used and have p(x) ∈ (Kr0+1

G \ Kr0G ) ∩ Rr0 [x]. However, when r0 is even, this might result in a very slow

improvement in the bound of (PP-P) as Σr0+1 = Σr0 . Thus, we use Kr0+2
G ∩Rr0 [x] for even r0 and Kr0+1

G ∩Rr0 [x]

for odd r0. For readability, we only use Kr0+2
G ∩Rr0 [x] in the sequel, independently of the parity of r0.

To address the second issue, i.e, to ensure that p(x) /∈ Kr0G , we make use of the optimal dual solution of

(5). We represent, by abuse of notation, Rr0 [x] with RN where N = (n+r0r0
), i.e., we identify each polynomial

f(x) ∈ Rr0 [x] with its vector of coefficients f ∈ RN . In this way Kr0G is a cone in RN . We endow RN with an
inner product 〈·, ·〉 such that for each f(x) ∈ Rr0 [x] and each u ∈ Rn, 〈f,Md(u)〉 = f(u), where for a given u,
Md(u) = (uα)|α|≤d is the vector of monomials of u up to degree d.

In this way, the relaxation (PP-Ms) and its semidefinite dual correspond to the conic primal-dual pair

supλ λ infY 〈f, Y 〉
s.t. f(x)− λ ∈ Kr0G s.t. 〈1, Y 〉 = 1

Y ∈ (Kr0G )∗,
(3)

where (Kr0G )∗ = {Y ∈ RN : 〈p, Y 〉 ≥ 0 for all p ∈ Kr0G }. From the definition of the dual cone (Kr0G )∗, we have
the following observation.

Remark 1 Let Y be a feasible solution of (3). For all p(x) ∈ Kr0G , 〈p, Y 〉 ≥ 0.

Thus to generate p(x) ∈ Pd(S) \ Kr0G , it suffices to find p(x) ∈ Kr0+2
G ∩Rr0 [x] such that 〈p, Y 〉 < 0, where Y

is an optimal dual solution of (PP-Ms). This can be done by solving the following semidefinite problem. This
problem is referred to as the polynomial generating subproblem:

(PP-Sub) min
p
〈p, Y 〉 (4)

s.t. p ∈ Kr0+2
G ∩Rr0 [x]

‖ p ‖Sub ≤ 1.

The normalization constraint is added because otherwise (PP-Sub) is unbounded. Note that since p(x) and
cp(x) are equivalent inequalities for any c > 0, any norm can be used.

There are several options for choosing ‖ · ‖Sub. We use the pseudo-norm ‖ p ‖Sub:=
∑

0<‖α‖≤r0 p
2
α so that

the optimal solution to (4) maximizes the `2 distance between the given Y and the set conv{Mr0(x) : p(x) ≥ 0}
(see Proposition 3 and [11, pp. 80-82]). Summing up the ideas presented in this section, we obtain DIGS-A as
presented in Algorithm 2.

As we already mentioned, a key element for the efficacy of the general scheme is the subproblem. Observe
that for any s ≥ 0, the optimization problem (PP-Ms) can be written as:

νs = sup
λ,σi(x),ηi(x)

λ

s.t. f(x)− λ =
m∑
i=0

σi(x)gi(x) +
s−1∑
i=1

ηi(x)pi(x) (5)

σi(x) ∈ Σr0−deg(gi), i = 0, . . . ,m

ηi(x) ∈ Σr0−deg(pi), i = 1, . . . , s

where p1(x), . . . , ps−1(x) are the polynomials generated in the iterations 0, . . . , s− 1 of DIGS.
At iteration s of Algorithm 2, the size of (5) is:

– one psd matrix of size (n+r0r0
);

– m psd matrices, each of size (n+r0−deg(gi)
r0−deg(gi)

) for i = 1, . . . ,m;

– s psd matrices, each of size (n+r0−deg(pi)
r0−deg(pi)

) for i = 1, . . . , s ;

– (n+r0r0
) linear constraints.

Since r is increased when using (1) while r0 is fixed in (5), the size of the positive semidefinite matrices and
the number of constraints can be significantly lower in (5) compared to (1) because (1) has m+ 1 psd matrices
of size O(nr) and O(nr) constraints while (5) has m+ s+ 1 psd matrices of size O(nr0) and O(nr0) constraints.
This difference is key to limiting the growth of the computational time required to solve (5); while the number
of SDP matrices is fixed in (1) the size of the corresponding SDP matrices grows exponentially on r, however in
(5) the size of the SDP matrices is fixed while their number grows linearly on s. In particular, if the generation
procedure for ps(x) can ensure that deg ps = r0 then ηs(x) = ηs ∈ R+ and the size of (5) grows slowly.
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Algorithm 2 DIGS-A: DIGS for general polynomial programs

Require: G description of S, r0 ≥ d, ε > 0
s← 0, G0 ← G.
loop

Let

(PP-Ms) νs = sup
λ

λ

s.t. f(x)− λ ∈ Kr0Gs
.

Ys ← dual optimal solution to (PP-Ms).
Let ps(x) ∈ Rr0 [x] be an optimal solution of

αs = min
p
〈p, Ys〉

s.t. p ∈ Kr0+2
Gs

∩Rr0 [x]

‖ p ‖ ≤ 1.

if αs < −ε then
Gs+1 ← Gs ∪ {ps(x)}
s← s+ 1

else
STOP

end if
end loop

2.1.1 Heuristic to find feasible solutions

Each time (PP-Ms) is solved and a dual solution Ys is computed, we apply a heuristic to obtain a candidate
solution x̂s for (PP-P). If this candidate solution is feasible for (PP-P) then we obtain an upper bound ψs on
ρ, and if this upper bound is close enough to νs then ε-optimality is achieved.

The heuristic to generate a candidate solution works as follows. Let Ys be the optimal dual solution of
(PP-Ms). Set x̂s to be the entries of Ys corresponding to the linear monomials. (This is a projection from
the dual space to the original variables.) If the candidate solution x̂s is feasible for (PP-P), i.e., if gi(x̂s) ≥ 0
for i = 1, . . . ,m then the corresponding objective value f(x̂s) is an upper bound for ρ. If some variables are
constrained to be integer, the corresponding components of x̂ are first rounded to the nearest integer to obtain
the candidate solution.

This approach is illustrated in Example 1 below and in Examples 2 and 3 in Section 2.2.1.

2.1.2 Example

To illustrate how DIGS-A works, consider the following small quadratic problem:

Example 1

max
x
− 2x1 + x2 − x3 + 2x4 + 2x5 (6)

s.t. (x1 − 2)2 − x22 − (x3 − 1)2 − (x5 − 1)2 ≥ 0

x1x3 − x4x5 + x21 ≥ 1

x3 − x22 − x24 ≥ 1

x1x5 − x2x3 ≥ 2

x1 + x2 + x3 + x4 + x5 ≤ 14

0 ≤ xi.

Let G = {1, (x1− 2)2−x22− (x3− 1)2− (x5− 1)2, x1x3−x4x5 +x21− 1, x3−x22−x24− 1, x1x5−x2x3− 2, 14−
x1 − x2 − x3 − x4 − x5, xi}. Setting s = 0, G0 = G and solving the master problem (5), we obtain ν0=25.000,
which is an upper bound on (6), and the optimal dual solution

Y0 = [1.0 0.0 0.0 1.0 0.0 13.0 195.2 0.0 40.4 0.0 ...

... 22.1 0.0 0.0 0.0 0.0 24.2 0.0 17.6 0.0 0.0 184.6] .

By applying the heuristic, the following candidate solution is obtained

x̂0 = [0.0 0.0 1.0 0.0 13.0]

which is not feasible.
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Fig. 1: DIGS-A and Lasserre upper bounds for Example 1.

Subproblem (PP-Sub) is solved with Y = Y0, G = G0, and d = 2. We obtain

p0(x) =0.1490 + 0.3018x1 + 0.0030x2 + 0.1801x3 + 0.0044x4 + 0.0888x5

− 0.0264x21 + 0.0016x1x2 − 0.8893x1x3 + 0.0016x1x4 − 0.0992x1x5 + 0.0010x22

+ 0.0046x2x3 + 0.0003x2x4 + 0.0017x2x5 − 0.0699x23 + 0.0072x3x4 + 0.1710x3x5

+ 0.0018x24 + 0.0018x4x5 − 0.1033x25

which is a valid inequality for (6).
Setting s = 1 and G1 = G0 ∪ {p0} and solving the master problem (5) with s = 1, we obtain the upper

bound ν1 = 24.98. After two iterations (s = 2), the upperbound ν2 = 5.3205 is obtained. After 39 iterations,
a master objective value (upper bound) of 1.567 and a subproblem value of -0.0008 are obtained. This upper
bound is the optimal value of (6) since at iteration 39 the candidate solution extracted by the heuristic is

x̂39 =
[
1.02 0.0 1.19 0.44 1.96

]
,

which is a feasible solution to (6) with an objective value 1.5674.
A comparison between Lasserre’s bounds and DIGS-A is presented in Figure 1. The results of DIGS-A and

Lasserre’s procedure are presented in Tables 1 and 2 respectively. The total time used by DIGS-A to obtain
the optimal value was 78.9 seconds. The dimension and the computational time of the master problem and
the subproblem are given in Table 1. Using Lasserre’s approach, the optimal solution is obtained by solving a
problem over K8

G0
. Notice that using DIGS-A we are able to obtain the optimal value while using cheaper low

degree relaxations (r = 2 for the master problem and r = 4 for the subproblem).

Table 1: DIGS-A Results for Example 1.

Iteration 0 1 5 10 20 30 39

Subproblem
psd matrices 6×6(10), 6×6(14), 6×6(19), 6×6(29), 6×6(39), 6×6(48),

21×21(1) 21×21(1) 21×21(1) 21×21(1) 21×21(1) 21×21(1)
non-negative vars 0 0 0 0 0 0
free vars 21 21 21 21 21 21
total # of vars 462 546 651 861 1071 1260
# of constraints 126 126 126 126 126 126
time (sec) 0.8 0.8 0.9 1.0 1.4 1.7
Master Problem
psd matrices 6×6(1) 6×6(1) 6×6(1) 6×6(1) 6×6(1) 6×6(1) 6×6(1)
non-negative vars 10 11 15 20 30 40 49
total # of vars 31 34 36 41 51 61 70
# of constraints 21 21 21 21 21 21 21
time (sec) 0.3 0.5 0.5 0.6 0.6 0.8 1.0
bound 25.000 24.988 3.281 2.299 1.612 1.575 1.567
accumulated time (sec) 0.3 1.6 6.8 13.7 30.2 53.4 78.9
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Table 2: Lasserre’s Hierarchy for Example 1.

r 2 4 6 8

psd matrices 6×6(1) 6×6(10), 21×21(10), 56×56(10),
21×21(1) 56×56(1) 126×126(1)

non-negative vars 10 0 0 0
total # of vars 31 441 3906 23961
# of constraints 21 126 462 1287
bound 25.000 6.006 2.399 1.567
time (sec) 0.3 2.9 17.3 157.7

2.2 DIGS-A+: DIGS for polynomial programs with non-negative variables

We now consider the case in which the feasible set is contained in the non-negative orthant. Let R+
d [x] denote

the cone of polynomials in n variables with non-negative coefficients of degree at most d. Lasserre’s relaxations
can be applied replacing the cone Σd of SOS by the cone Σd + R+

d [x] of polynomials that can be represented
as a sum of squares plus a polynomial with non-negative coefficients.

For S = {x : gi(x) ≥ 0, i = 1, . . . ,m} ⊆ Rn
+, consider the following approximation of P(S):

CPrG =
m∑
i=0

gi(x)(Σr−deg(gi) + R+
r−deg(gi)

[x]). (7)

The corresponding optimization problem, (CP-Ms), over S can be written as:

νs = sup λ

s.t. f(x)− λ =
m∑
i=0

(σi(x) + γi(x))gi(x) +
s∑
i=1

(ηi(x) + εi(x))pi(x) (8)

σi(x) ∈ Σr0−deg(gi), γi(x) ∈ R+
r−deg(gi)

[x] i = 0, . . . ,m

ηi(x) ∈ Σr0−deg(pi), εi(x) ∈ R+
r−deg(pi)

[x] i = 1, . . . , s.

If (PP-P) has m inequality constraints at iteration s of Algorithm 1, the size of (8) is:

– m+ 1 psd matrices, each of size (n+r0−deg(gi)
r0−deg(gi)

) for i ∈ {0, 1, . . . ,m};

– s psd matrices, each of size (n+r0−deg(pi)
r0−deg(pi)

) for i ∈ {1, . . . , s} ;

–
∑m
i=0 (n+r0−deg(gi)

r0−deg(gi)
) +

∑s
i=1 (n+r0−deg(pi)

r0−deg(pi)
) non-negative variables;

– (n+r0r0
) linear constraints.

The subproblem is of the form

(CP-Sub) min
p
〈p, Y 〉 (9)

s.t. (1 +
n∑
i=1

xi)p(x) ∈ CPr0+1
G ∩Rr0 [x]

‖ p ‖ ≤ 1.

We call the resulting scheme DIGS-A+ and present it as Algorithm 3.

DIGS-A+ is computationally more efficient than DIGS-A. Even though the master problem for DIGS-A+

is larger due to the non-negative variables, at each iteration subproblem (9) has n+r0+1
r0+1 times the number

of variables and n+r0+1
r0+1 times the number of constraints of the master problem. This is much smaller than

subproblem (4) in DIGS-A.

2.2.1 Examples

We present four examples comparing the bounds obtained using DIGS-A, DIGS-A+ and Lasserre’s hierarchy.
For DIGS-A and DIGS-A+ we stop when the objective value of the subproblem is greater than −ε = −10−3.
All the algorithms are given a time limit of 5 hours (18000 seconds).
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Algorithm 3 DIGS-A+:DIGS for polynomial programs with non-negatives variables

Require: G description of S ⊆ R+, r0 ≥ d, ε > 0
s← 0, G0 ← G.
loop

Let

(CP-Ms) νs = sup
λ

λ

s.t. f(x)− λ ∈ CPr0Gs
.

Ys ← dual optimal solution to (CP-Ms).
Let ps(x) ∈ Rr0 [x] be optimal solution of

αs = min
p
〈p, Ys〉

s.t. (1 +
n∑
i=1

xi)p(x) ∈ CPr0+1
Gs

∩Rr0 [x]

‖ p ‖ ≤ 1.

if αs < −ε then
Gs+1 ← Gs ∪ {ps(x)}
s← s+ 1

else
STOP

end if
end loop

Example 2

Consider the following polynomial program of degree 2:

max
x∈R

x1 + x2 − x3 + 2x4 + x5 − x6 − x7 + x8 − x9 + 2x10

s.t. (x3 − 2)2 − (x5 − 1)2 − 2x6 + x28 − (x9 − 2)2 ≥ −4

− x22 + x3x10 − x24 − x25 + x6x7 ≥ 1

x1x8 − x2x3 + x4x7 − x5x10 ≥ 2

10∑
i=1

xi ≤ 5

xi ≥ 0 ∀i ∈ {1, . . . , 10}.

Tables 3a, 3b, and 3c present bounds and computational time for Lasserre’s method, DIGS-A (r0 = 2),
and DIGS-A+ (r0 = 2) respectively. Figure 2 illustrates the bound improvements.

Table 3: Bounds for Example 2.

(a) Lasserre’s method

r 2 4 6

bound 10.000 7.756 5.183*
T(sec) 0.2 35.8 4012.7

(b) DIGS-A

Iter. 0 1 5 9

bound 10.000 9.992 5.276 5.183*
T(sec) 0.2 15.9 66.2 114.9

(c) DIGS-A+

Iter. 0 1 5 9

bound 7.760 5.749 5.192 5.183*
T(sec) 0.3 2.4 9.4 16.3

Values with ∗ indicate termination reporting optimality.
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Fig. 2: Bounds comparison for Example 2.

All three approaches find the optimal value 5.183. For r = 6 Lasserre’s method stops with the moment
matrix optimality condition satisfied, obtaining the optimal solution in just over one hour.
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Using DIGS-A and DIGS-A+ with r0 = 2, degree-two relaxations are used to obtain the optimal value in
much less computational time. Both require the same number of iterations, but DIGS-A+ is seven times faster
than DIGS-A and 250 times faster than Lasserre’s r = 6 relaxation. For DIGS-A, at iteration 9, the heuristic
finds the solution x̂1 = x̂8 = 1.4143, x̂3 = 0.6628, x̂10 = 1.5088, and x̂2 = x̂4 = x̂5 = x̂6 = x̂7 = x̂9 = 0 which
is optimal (tolerance of 10−3). For DIGS-A+, also at iteration 9, the heuristic finds the solution x̂1 = 1.4137,
x̂3 = 0.6627, x̂8 = 1.4146, x̂10 = 1.5089, and x̂2 = x̂4 = x̂5 = x̂6 = x̂7 = x̂9 = 0 which is also optimal (tolerance
of 10−3).

Example 3

Consider the following polynomial program of degree 2:

max
x∈R

− 2x1 + x2 − x3 + 2x4 + x5 − x6 − x7 + x8 − x9 + 2x10

s.t. (x1 − 2)2 − x22 − (x7 − 2)2 − (x5 − 1)2 + (x6 − 2)2 + x210 ≥ 0

x24 − x21 − (x3 − 1)2 − (x8 − 2)2 + (x9 − 2)2 + (x10 − 2)2 ≥ 0

x3x8 − x4x5 + x21 + x6x9 + x1x7 ≥ 1

10∑
i=1

xi ≤ 10

xi ≥ 0 ∀i ∈ {1, . . . , 10}.

Tables 4a, 4b, and 4c present bounds and computational time for Lasserre’s hierarchy, DIGS-A (r0 = 2), and
DIGS-A+ (r0 = 2) respectively. Figure 3 illustrates the bound improvements.

Table 4: Upper bounds for Example 3.

(a) Lasserre’s method

r 2 4 6 8

bound 20.00 19.59 16.92 -
T(sec) 0.2 40.6 17350.0 -

(b) DIGS-A

Iter. 0 1 5 10 64

bound 20.00 19.73 18.15 16.92 16.51*
T(sec) 0.2 11.2 70.9 149.4 1353.1

(c) DIGS-A+

Iter. 0 1 5 10 100 156

bound 19.60 18.75 18.62 18.16 16.62 16.53
T(sec) 0.3 2.3 10.6 20.3 237.5 416.8
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Fig. 3: Bounds comparison for Example 3.

For this example, Lasserre’s hierarchy does not find the optimal value in the five-hour limit. It needs r > 6
to obtain the optimal value, but solving the r = 6 relaxation requires nearly 5 hours of computational time
and for r = 8 even constructing the problem takes more than 5 hours.

Using DIGS-A and DIGS-A+, we are able to use relaxations of degree r0 = 2 and obtain improved bounds
in less computational time. While Lasserre’s r = 6 relaxation provides the bound 16.92 in almost 5 hours,
DIGS-A and DIGS-A+ both provide the same bound after less than 5 minutes.

DIGS-A terminates in 64 iterations and less than 23 minutes. The heuristic finds the solution x̂2 = 0.008,
x̂3 = 0.557, x̂4 = 2.277, x̂8 = 1.808, x̂10 = 5.349, and x̂1 = x̂5 = x̂6 = x̂7 = x̂9 = 0 which is optimal (tolerance
of 10−3). DIGS-A+ terminates in less than 7 minutes after 156 iterations but with no feasible solution found
by the heuristic, and thus we cannot conclude ε-optimality of the bound.

DIGS-A+ performed in this case more than double the number of iterations than DIGS-A but remained
three times faster.
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Example 4

Consider the following polynomial program of degree 2:

max
x∈R

− x1 + x2 − x3 + x4 + x5 − x6 − x7 + x8 − x9 + x10 − x11 + x12 − x13 + x14 − x15

s.t. (x1 − 2)2 − x22 + (x3 − 2)2 − (x4 − 1)2 − (x5 − 1)2 + (x6 − 1)2 − (x7 − 2)2 − x28
− (x9 − 2)2 − (x10 − 1)2 + x211 − x212 + (x13 − 2)2 + x214 − (x15 − 1)2 ≥ 0

− x1x7 − x4x5 − x213 + x6x9 + x10x12 ≥ 3

x2x3 − x8x11 − x214 + x5x15 ≥ 3

15∑
i=1

xi ≤ 10

xi ≥ 0 ∀i ∈ {1, . . . , 15}.

Table 5a presents Lasserre’s Hierarchy results. As in the previous examples, quadratic inequalities (r0 = 2)
are added using DIGS-A and DIGS-A+ to improve the bound. Tables 5b and 5c present the bounds and
computational time for DIGS-A and DIGS-A+ respectively.

Table 5: Upper bounds for Example 4.

(a) Lasserre’s method

r 2 4 6

bound 10.00 8.0593 -
T(sec) 0.3 2754.3 -

(b) DIGS-A

Iter. 0 1 5 10 18

bound 10.00 10.00 7.93 7.58 7.43*
T(sec) 0.3 717.8 3128.0 5720.1 10236.1

(c) DIGS-A+

Iter. 0 1 5 7

bound 8.07 7.67 7.44 7.43*
T(sec) 0.6 6.7 33.4 43.9
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Fig. 4: Bounds comparison for Example 4.
This example illustrates how the dimension affects the three methods. Lasserre’s relaxations could not

be solved for r > 4 due to memory and time limitations. Both DIGS-A and DIGS-A+ obtain better bounds
than Lasserre’s r = 4 relaxation, and DIGS-A+ outperforms DIGS-A (see Figure 4). Indeed DIGS-A+ is
three orders of magnitude faster than DIGS-A and nevertheless both DIGS-A and DIGS-A+ terminate (after
7 and 18 iterations respectively) with the optimal objective value of 7.43 and ε-optimal heuristic solution
x̂1 = x̂3 = x̂6 = x̂7 = x̂9 = x̂13 = 0.0000, x̂2 = 0.5881, x̂4 = 0.3344, x̂5 = 2.6244, x̂8 = 0.5673, x̂10 = 2.3443,
x̂11 = 0.0008, x̂12 = 1.6538, x̂14 = 0.6047, and x̂15 = 1.2822.

Example 5

This is an example where DIGS-A+ fails to converge to the optimal solution of the polynomial program. The
PP is a formulation of the maximum stable set number for the icosahedron graph.

Given an undirected graph G = (V,E), a stable set of G is a set of vertices U ⊆ V such that there is no edge
connecting any two vertices in U . The stable set number problem is to find α(G) the maximum k for which
the graph has a stable set of cardinality k. Letting n = |V |, and identifying V with {1, . . . , n}, the maximum
stable set problem can be formulated as follows:

(SS-POP) α(G) = max
x

(
n∑
i=1

xi

)2

(10)

s.t. xixj = 0 ∀(i, j) ∈ E
n∑
i=1

x2i = 1

x ≥ 0.

Notice that Lasserre’s relaxation of (SS-POP) for r = 2 is equivalent to the Lovász theta relaxation. Thus,
DIGS-A and DIGS-A+ can be interpreted here as adding quadratic valid inequalities to strengthen the Lovász
theta relaxation.
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We consider the case in which G is the icosahedron graph on n = 12 vertices (see Figure 5). Applying
DIGS-A+ results in an objective function of 3.236 at the initial iteration, and the algorithm immediately stops
because the subproblem objective function value is of order −10−8. However, using Lasserre’s hierarchy for
r = 4 gives the optimal bound 3.000. DIGS-A terminates in 16 iterations with the bound 3.002.
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Fig. 5: Icosahedron graph for Example 5.

Table 6: Bounds for Example 5.

(a) Lasserre’s method

r 2 4 6

bound 3.708 3.000 -
T(sec) 0.1 94.8 -

(b) DIGS-A

Iter. 0 1 5 10 16

bound 3.708 3.164 3.002 3.002 3.002
T(sec) 0.1 31.9 209.2 547.9 1057.5

(c) DIGS-A+

Iter. 0 1

bound 3.2361 3.2361
T(sec) 0.1 2.0

3 The Special Case of Binary Polynomial Programs

This section focus on the special case of polynomial programs with binary variables. We specialize Algorithm
1 to this class of problems and propose a specialized DIGS called DIGS-B. The main improvement in DIGS-B
is the use of a computationally cheaper subproblem for the binary case. The subproblem is obtained using the
approach proposed in [28] and [37]. Furthermore, we show that if the initial set of constraints G is rich enough,
the stopping criterion is optimal, that is, DIGS-B only stops when optimality is reached. Theorems 1 and 2
show that DIGS-B terminates only at optimality when starting from the exact representation of the domain set
excluding the binary constraints. Such a representation is not tractable in general, but these results hint that
if our approximation QG of Pd(S ∩ {−1, 1}n) captures enough of Pd(S), then the optimality criterium could
be applied. Recall that we use a heuristic approach (see Section 2.1.1) to check optimality. The advantage of
this heuristic approach is that when successful it also generates an optimal solution. Theorem 3 shows that a
LP-variation of DIGS-B always stops after a finite number of iterations.

Several techniques have been developed to construct hierarchies of linear and semidefinite relaxations to
solve binary linear programs; in particular, by Balas, Ceria, and Cornuéjols [3], Sherali and Adams [32], and
Lovász and Schrijver [19]. The method presented in this section can be seen as a generalization of the lift-
and-project methods based on these hierarchies. For the pure binary case, Lasserre [14] presents necessary and
sufficient conditions under which his method converges to the optimal objective value of the 0-1 polynomial
program after a finite sequence of liftings. A comparison of these different schemes and bounds on the number
of steps required for convergence is given by Laurent [17].

3.1 DIGS-B: DIGS for polynomial programs with binary variables

We assume that the feasible set of (PP-P) has the form S = D∩{−1, 1}n where D = {x : gi(x) ≥ 0, i = 1, . . . ,m}.
We further assume without loss of generality that D ⊆ [−1, 1]n; this can be ensured for example by adding the
inequalities −1 ≤ xi ≤ 1 to the definition of D. Problem (PP-D) becomes

ρ = sup
λ
λ (11)

s.t. f(x)− λ ∈ Pd(D ∩ {−1, 1}n).

Proceeding similarly as in Section 2, we let G = {g0(x), g1(x), . . . , gm(x)} where g0(x) = 1. Define QrG as
the following approximation to Pd(S):

QrG =

|G|∑
i=0

gi(x)Σr−deg(gi) +
n∑
i=1

(1− x2i )Rr−2[x]
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Fix r0 ≥ d and define the polynomial programming master problem

ϕr0G = sup
λ
λ (12)

s.t. f(x)− λ ∈ Qr0G ,

which can be written as

ϕr0G = sup
λ,σi(x),δi(x)

λ

s.t. f(x)− λ =
m∑
i=0

σi(x)gi(x) +
n∑
i=1

δi(x)(1− x2i ).

σi(x) ∈ Σr0−deg(gi), i = 0, 1, . . . ,m

δi(x) ∈ Rr0−2[x], i = 1, . . . , n.

Let Hj = {x ∈ Rn : xj ∈ {−1, 1}} and H = {−1, 1}n. Notice that H =
⋂
j∈{1,...,n}Hj . Instead of solving

the polynomial generating subproblem over Qr0+2
G as defined in Section 2.1, we use Proposition 2 to obtain a

computationally-cheaper polynomial generating subproblem.

Proposition 2 [28] For any degree d and compact set D,

Pd(D ∩Hj) =
(

(1 + xj)Pd(D) + (1− xj)Pd(D) + (1− x2j )Rd−1[x]
)
∩Rd[x].

From Proposition 2, defining for any Q ⊆ Rr0 [x],

Cr0j (Q) :=
(1 + xj)

2
Q+

(1− xj)
2

Q+ (1− x2j )Rr0−1[x],

we have Cr0j (Pd(D))∩Rd[x] = Pd(D∩Hj) for any r0 ≥ d and any compact set D. Another important property

of the operator Cr0j is that if Q ( Pd(S) then (Cr0j (Q)\Q)∩Rd[x] 6= ∅ for some j (see Lemma 3). This property

is critical to obtain a more efficient DIGS for the binary case: when looking for improving inequalities, Cr0j (Qr0G )

can be used instead of Qr0+2
G in the definition of Subproblem (PP-Sub), resulting in a much smaller subproblem.

Let Y be the optimal dual variable for (12), then the j-th polynomial generating subproblem for the binary
case is defined as

min
p
〈p, Y 〉 (13)

s.t. p ∈ Cr0j (Qr0G ) ∩Rr0 [x]

‖ p ‖≤ 1.

Replacing the master problem and subproblem in Algorithm 2 by (12) and (13) respectively, we obtain
DIGS-B (Algorithm 4).

DIGS-B terminates when the subproblem (13) has objective value equal to zero for all indexes j. In practice,
the algorithm stops when the value of every subproblem is sufficiently close to zero.

For the binary case, DIGS-B is a priori computationally more efficient than DIGS-A. The master problems
are of the same size but solving the subproblem (13) is of the same order as solving the master problem (12),
since at each iteration, (13) has twice the number of variables and n+r0+1

r0+1 times the number of constraints of

the master problem. This is significantly smaller than subproblem (4) for the general case which has O(n2/r20)
times the number of variables and O(n2/r20) times the number of constraints compared to the master problem.

3.2 Optimality and Finiteness of DIGS-B

In general we do not expect our algorithms to stop, or even if they do, we do not expect them to always
provide the optimal value (see example 5). In this section, we prove (see Theorems 1 and 2) that under some
assumptions DIGS-B certifies optimality for binary polynomial programs. Optimality is certified in the sense
that if DIGS-B stops, i.e., if all sub-problems have optimal value zero, then the bound provided by DIGS-B is
equal to the optimal value of (11). We also prove (Theorem 3) finite termination for DIGS-B∗ (see Algorithm
5), a variation of DIGS-B.
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Algorithm 4 DIGS-B: DIGS for binary polynomial problems

Require: G description of S, r0 ≥ d, ε > 0
s← 0, G0 ← G.
loop

Let

(BP-Ms) νs = sup
λ

λ

s.t. f(x)− λ ∈ Qr0Gs
.

Ys ← dual optimal solution to (BP-Ms).
LET ps(x) ∈ Rr0 [x] be an optimal solution of

αs = min
j=1,...,n

min
p
〈p, Ys〉

s.t. p ∈ Cj(Qr0Gs
) ∩Rr0 [x]

‖ p ‖≤ 1,

if αs < −ε then
Gs+1 ← Gs ∪ {ps(x)}
s← s+ 1

else
STOP

end if
end loop

First we discuss the properties of the operator Cdj that will be key for our results.

Lemma 3 Let D ⊂ [−1, 1]n and let Q ⊆ Pd(D ∩H).

1. For every j and r0 ≥ d, Q ⊆ Cr0j (Q) ∩Rd[x] ⊆ Pd(D ∩H),

2. If Pd(D) ⊆ Q then Pd(D ∩Hj) ⊆ Cr0j (Q) ∩Rd[x],

3. Moreover, if Pd(D) ⊆ Q ( Pd(D ∩H) then for some j, Q ( Cr0j (Q) ∩Rd[x].

Proof

1. From the definition of Cr0j , Q ⊆ (1−xj)
2 Q+

(1+xj)
2 Q ⊆ Cr0j (Q). On the other hand if Q ⊆ Pd(D ∩H) then

(1−xj)
2 Q, (1+xj)

2 Q ⊆ Pd+1(D ∩H) and thus Cr0j (Q) ⊆ Pr0+1(D ∩H).
2. Follows from Proposition 2.
3. For the sake of contradiction, assume Q = Cr0j (Q)∩Rd[x] for all j. Applying part 2 for all i = 1, . . . , n we have

Pd(D∩
⋂
j≤iHj) ⊆ C

r0
i (Pd(D∩

⋂
j≤i−1Hj))∩Rd[x] and by induction it follows that Pd(D∩

⋂
j≤iHj) = Q

for all i = 1, . . . , n. In particular Pd(D ∩H) ⊆ Q.
ut

Recall from (3) that the optimal dual solution Y ∈ {X ∈ (QdG)∗ : 〈1, X〉 = 1}. When D is compact, the
set Pd(D)∗ can be characterized in terms of truncated moment matrices of atomic measures, using classical
theorems from [?] and [?] (see [?, Thms 5.9 and 5.13]). Using the compactness of D implies that Pd(D)∗

is pointed, {Pd(D)∗ : 〈1, X〉 = 1} could be then characterized in terms of truncated moment matrices of
atomic probability measures, which are themselves convex combinations of truncated moment matrices of
Dirac measures. Truncated moment matrices of Dirac measures are in correspondence with Md(u), the vector

of monomials of u up to degree d for some u. All this is subsumed in Proposition 3, where {Pd(D)∗ : 〈1, X〉 = 1} is
characterized as the convex hull ofMd(D) = {Md(u) : u ∈ D}, for compact D. A more elemental, self-contained
proof is also given.

Proposition 3 Let D ⊆ Rn be a compact set, then

{X ∈ Pd(D)∗ : 〈1, X〉 = 1} = conv(Md(D)).

Proof By definition,

Md(D)∗ = {p : 〈p,X〉 ≥ 0 ∀X ∈Md(D)}
= {p : 〈p,Md(s)〉 ≥ 0 ∀s ∈ D}
= {p : p(s) ≥ 0 ∀s ∈ D}
= Pd(D).

Therefore, Pd(D)∗ =Md(D)∗∗ = closure(cone(conv(Md(D)))). Since D is compact, Md(D) is compact. Also,
for all x ∈ D, 〈1,Md(x)〉 = 1 and thus

{X ∈ Pd(D)∗ : 〈1, X〉 = 1} = {X ∈Md(D)∗∗ : 〈1, X〉 = 1} = conv(Md(D)).

ut
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The set convM2({−1, 1}n) is closely related to conv{xxT : x ∈ {−1, 1}n}, the Boolean Quadratic Polytope [8,9].
More generally conv{Md(u) : u ∈ D} is a polytope for any finite D. We will use this fact later in the proof of
Theorem 3.

Lemma 4 Let d ≥ 1 and let D be a finite set. Then convMd(D) is a polytope, and Pd(D) is a polyhedral cone.

3.2.1 Optimality

In this section we prove optimality for DIGS-B under certain conditions. More precisely we show that if the
starting set G is such that the approximation Qr0G contains Pd(D), DIGS-B only stops if the bound given by
the master problem is optimal. If Qr0G ⊇ Pd(D) then subproblem (13) is equivalent to optimizing over a set
containing Pd(D ∩ Hj) (by Lemma 3, part 2). Intuitively, if the subproblem has a value of 0, it is because
restricting xj to be binary does not change the objective value. Thus if the value of all subproblems is zero,
then the algorithm has converged to the optimal value. This intuition is formally expressed in Theorems 1 and
2.

Theorem 1 Let d ≥ 2. Suppose that D ⊆ [−1, 1]n is a compact set, and that r0 ≥ d and G := {gi(x) : i =
1, . . . ,m} ⊂ R[x] are such that Pd(D) ⊆ Qr0G ∩Rd[x] ⊆ Pd(D ∩ {−1, 1}n). If the optimal value of subproblem (13)
is zero for all j = 1, . . . , n, then the optimal value of the dual problem of the master (12) equals the optimal value of

the original binary polynomial program (11).

Proof Let Q = Qr0G ∩ Rd[x]. Let ρ be the optimal value of (11) and ωj be the optimal value of the j-th
subproblem (13). Further let ϕ be the optimal value and Y be an optimal solution of the dual problem of (12).
Since Q ⊆ Pd(D ∩ {−1, 1}n) then ϕ≤ρ. By Proposition 3,

Y ∈ {X ∈ Q∗ : 〈1, X〉 = 1} ⊆ {X ∈ Pd(D)∗ : 〈1, X〉 = 1} = conv(Md(D)).

As D is compact, conv(Md(D)) is compact, and by Caratheodory’s Theorem, Y can be expressed in the form
Y =

∑
i aiMd(ui) with ai > 0,

∑
i ai = 1 and every ui ∈ D. It follows that for any p ∈ Rd[x] we have 〈p, Y 〉 =∑

i ai 〈p,Md(ui)〉 =
∑
i aip(ui). It is enough to show that ui ∈ H for all i, as then ϕ = 〈f, Y 〉 =

∑
i aif(ui)≥ρ

and we are done. Assume, there exists uk /∈ H for some k. Then there is a j ≤ n such that uk /∈ Hj . Consider
p(x) = 1− x2j . We have

ωj ≥ 〈p, Y 〉 as p(x) ∈ Cr0j (Qr0G )

=
∑
i

aip(ui)

≥ akp(uk) as for all i, ui ∈ D ⊆ [−1, 1]n

> 0, because uk /∈ Hj

which is a contradiction. ut

For d ≥ 4 the condition D ⊆ [−1, 1]n can be dropped from Theorem 1. This allows more freedom in choosing
the set D.

Theorem 2 Let d ≥ 4. Suppose that D is a compact set, and that r0 ≥ d and G := {gi(x) : i = 1, . . . ,m} ⊂ R[x]
are such that Pd(D) ⊆ Qr0G ∩ Rd[x] ⊆ Pd(D ∩ {−1, 1}n). If the optimal value of subproblem (13) is zero for all

j = 1, . . . , n, then the optimal value of the dual problem of the master (12) equals the optimal value of the original

binary polynomial program (11).

Proof We follow the lines of the proof of Theorem 1. We write Y as the convex combination Y =
∑
i aiMd(ui),

where each ui ∈ D. Again, it is enough to show that each ui belongs to H.
Consider p(x) = −x4j + 2x2j − 1 = −(x2j − 1)2 ∈ Cr0j (Qr0G ). We have,

0 ≤ 〈p, Y 〉 = −
∑
i

aiu
4
ij + 2

∑
i

aiu
2
ij − 1. (14)

Now consider q(x) = 1− x2j ; we have ±q(x) ∈ Cr0j (Qr0G ), and thus

0 ≤ 〈±q, Y 〉 = ±
∑
i

aiq(ui) = ±

(
1−

∑
i

aiu
2
ij

)
,

and thus, ∑
i

aiu
2
ij = 1. (15)
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Plugging (15) into (14) we obtain ∑
i

aiu
4
ij ≤ 1. (16)

Now, using the Cauchy-Schwarz inequality,

1 =

(∑
i

aiu
2
ij

)2

≤

(∑
i

aiu
4
ij

)(∑
i

ai

)
=
∑
i

aiu
4
ij (17)

Using (16), equality follows in (17), and thus for each i we have
√
aiu

2
ij = t

√
ai for some constant t. Therefore,

u2ij = t for all i and from Equation (15):
∑
i ait = 1, that is t = 1. ut

Using that when DIGS-B stops, all the subproblems have value 0, we obtain the following corollary to
Theorems 1 and 2.

Corollary 1 Let D be a compact set. Assume d ≥ 4, or d ≥ 2 and D ⊆ [−1, 1]n. Let r0 ≥ d and G := {gi(x) : i =
1, . . . ,m} ⊂ R[x] be a description of D ∩ {−1, 1}n such that Pd(D) ⊆ Qr0G . Assume DIGS-B (Algorithm 4) is run

starting with G0 = G, and it stops with all subproblems having value 0. Then, at stopping, the optimal value of the

dual problem of the master (12) equals the optimal value of the original binary polynomial program (11).

Proof Notice that as G is a description of D ∩ {−1, 1}n we have Qr0G ∩Rd[x] ⊆ Pd(D ∩ {−1, 1}n). Also Pd(D) ⊆
Qr0G ∩Rd[x] by assumption. By induction, At each iteration s ≥ 0, we have Pd(D) ⊆ Qr0Gs

∩Rd[x] ⊆ Pd(D ∩
{−1, 1}n). Thus if DIGS-B stops at iteration k, the assumptions of Theorem 1 or Theorem 2 hold for G = Gk.

ut

3.2.2 Finite Termination

For the next theorem we need to define a variation of DIGS-B which we refer to as DIGS-B∗. We show that
DIGS-B∗ stops after a finite number of steps. Notice that Theorems 1 and 2 also hold for this version of
DIGS-B (i.e. replacing QrG by Q̂rG). To ensure finite termination, we use polyhedral approximations to the set
Pd(D ∩ {−1, 1}n). Recall that for any D the set Pd(D ∩ {−1, 1}n) is a polyhedron (Lemma 4).

Proceeding similarly as in Section 3.1, we let G = {g0(x), g1(x), . . . , gm(x)} where g0(x) = 1. Define Q̂rG as
the following approximation to Pd(D ∩ {−1, 1}n):

Q̂rG =

|G|∑
i=0

gi[1− x, 1 + x]R+
r−deg(gi)

[x] +
n∑
i=1

(1− x2i )Rr−2[x]

Fix r0 ≥ d and define the polynomial programming master problem

ϕr0G = sup
λ
λ

s.t. f(x)− λ ∈ Q̂r0G ,

which can be written as

ϕr0G = sup
λ,σi(x),δi(x)

λ

s.t. f(x)− λ =
m∑
i=0

σi(x)gi(x) +
n∑
i=1

δi(x)(1− x2i ).

σi(x) ∈ R+
r0−deg(gi)

[x], i = 0, 1, . . . ,m

δi(x) ∈ Rr0−2[x], i = 1, . . . , n.

In each iteration of DIGS-B∗ we add to the master problem the inequality produced by the subproblem
with negative value of largest index. The main differences with the DIGS-B subproblem, besides using the
polyhedral approximation, is that we use the 1-pseudo-norm, ‖p‖1 =

∑
0<‖α‖≤r0 |pα| and for the j-subproblem

we only take into account inequalities added when using subproblems of lower index. Thus we maintain a
separate list of inequalities for each index. With these changes the master and all subproblems are linear
programs.
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Algorithm 5 DIGS-B∗: DIGS for binary polynomial problems

Require: G description of S, r0 ≥ d,

s← 0, Gj0 =← G for j = 1, . . . , n
loop

Let

(BP-Ms) νs = sup
λ

λ

s.t. f(x)− λ ∈ Q̂r0Gn
s
.

Ys ← dual optimal solution to (BP-Ms).

LET pjs(x) ∈ Rr0 [x] be an optimal (extreme) solution of

αjs = min
p
〈p, Ys〉

s.t. p ∈ Cr0j (Q̂r0
G

j
s

) ∩Rr0 [x]

‖ p ‖1≤ 1,

if αjs ≥ 0 for all j = 1, . . . , n then
STOP

else
LET j∗s = max{j : αjs < 0}
Gis+1 ← Gis ∪ {p

j∗s
s (x)} for i = j∗s , . . . , n

s← s+ 1
end if

end loop

Theorem 3 Algorithm 5 terminates in finitely many iterations.

Proof For sake of contradiction, assume Algorithm 5 does not stop for some d > 0 some finite G ⊂ Pd(S) and
some r0 ≥ d. Consider the infinite sequence 〈j∗s 〉s=1,2,3,... generated by the algorithm. As each j∗s ∈ {1, . . . , n},
the set Ui = {s : j∗s = i} is infinite for some 1 ≤ i ≤ n. Let i∗ be the minimum such i. For each s ∈ Ui∗ we

have that p
j∗s
s = pi

∗
s is a extreme point of Ws = {p ∈ Cr0i∗ (Q̂r0

Gi∗
s

) ∩Rr0 [x] : ‖p‖1 = 1}. As each Ws is a polytope,

it has finitely many extreme points. Algorithm 5 does not generate repeated inequalities as every inequality
generated has value 0 for all subproblems in future iterations. Thus the sequence 〈Ws〉s∈Ui∗ has to change
infinitely many times.

Now if s1 < s2 are such that j∗s1 = j∗s2 = i∗ and j∗s > i∗ for all s1 < s < s2, then Gi
∗
s1 = Gi

∗

s1+1 = · · · = Gi
∗

s2−1

and Gi
∗
s2 = Gi

∗
s1 ∪ {p} where p = pi

∗
s2 is a extreme point of Ws2−1 = Ws1 . We claim that Ws2 = Ws1 . To show

this write

p(x) =
1− xj∗

2
p−(x) +

1 + xj∗

2
p+(x) + (1− x2j )r(x), (18)

where p−, p+ ∈ Q̂r0
Gi∗

s1

and r ∈ Rr0−1[x]. Notice that

1− xj∗
2

p(x) =
1− xj∗

2
p−(x) +

1− x2j
4

(2(1− xj∗)r(x) + p+(x)− p−(x)). (19)

From (18), d = deg p(x) ≥ deg(xj∗(p−(x)−p+(x)+2xjr(x))) and thus deg(p−(x)−p+(x)+2xjr(x)) ≤ d−1. Using

(19) we get
1−xj∗

2 p(x) ∈ Cr0i∗ (Q̂r0
Gi∗

s1

). Similarly,
1+xj∗

2 p(x) ∈ Cr0i∗ (Q̂r0
Gi∗

s1

) and thus Cr0i∗ (Q̂r0
Gi∗

s2

) = Cr0i∗ (Q̂r0
Gi∗

s1
∪{p}) =

Cr0i∗ (Q̂r0
Gi∗

s1

) and the claim follows.

We have that the sequence 〈Ws〉s∈Ui∗ has to change infinitely many times, but every time it changes there
is an s between two consecutive elements of Ui∗ such that j∗s < i∗. Therefore {s : j∗s < i∗} is infinite, but this
contradicts the selection of i∗. ut

3.3 Comparison with Lift-And-Project Methods

For the case of binary linear programming, i.e. when d = 1, Algorithm 5 is equivalent to the Balas-Ceria-
Cornuéjols (BCC) lift-and-project method [3].

Theorem 4 Suppose D is polyhedral and f(x) is linear in (11). With r0 = 1, Algorithm 5 is equivalent to (the dual

of) BCC lift-and-project.
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Proof The Theorem follows from the fact that the projection of the (linearized) BCC lifting, denoted Pj(x) in
[3], is the dual of {p(x) ∈ Rd[x] : p(x) ∈ C1j (Q)}, the set of valid inequalities of the convex hull of D ∩Hj .

This fact follows by Farkas’ Lemma: if G = {aTi x ≥ bi, i = 0, 1, . . . ,m} with a0 = 0 and b0 = 1, then
Q1
G :=

∑m
i=1(aTi x− bi)Σ0 = P1(D). ut

We illustrate the dual relation between BCC and our approach by considering the LP relaxation of the
binary linear programming problem

min cT x

s.t. Ax ≥ b,
x ∈ {−1, 1}n.

For any given j, applying BCC with the variable xj yields the lifting step

min cT x

s.t. (1 + xj)(Ax− b) ≥ 0

(1− xj)(Ax− b) ≥ 0,

where the constraints include the box constraints −1 ≤ xi ≤ 1 for all i.
Next we linearize and project by substituting the product of xjxk by a new variable xjk and using the

substitution x2j = 1:

(PL) min
∑
i

cix0i

s.t.
∑
i

aikx0i +
∑
i

aikxij − bkx0j ≥ bk ∀k (20)∑
i

aikx0i −
∑
i

aikxij + bkx0j ≥ bk ∀k (21)

xjj = 1. (22)

On the other hand, the problem

max λ

s.t.
∑
i

cixi − λ ∈ C1j (Q)

is equivalent to

maxλ

s.t.
∑
i

cixi − λ = (1 + xj)

[∑
k

µk(aTk x− bk)

]
+ (1− xj)

[∑
k

νk(aTk x− bk)

]
+ r(1− x2j ).

Equating the coefficients of the monomials of the left side to the ones on the right side, we obtain

maxλ

s.t. λ =
∑
k

µkbk +
∑
k

νkbk − r

cj = −
∑
k

bkµk +
∑
k

bkνk +
∑
k

akjµk +
∑
k

akjνk

ci =
∑
k

akjµk +
∑
k

akjνk

0 = −
∑
k

akjµk −
∑
k

akjνk − r

0 = −
∑
k

akjµk −
∑
k

akjνk.

Substituting λ by
∑
k µkbk +

∑
k νkbk − r in the objective, we obtain the dual problem of (PL) where µk, νk,

and r are the dual variables of constraints (20)-(22) respectively.
Theorem 4 shows that DIGS-B∗ is a generalization of BCC from degree 1 to higher degrees. This gener-

alization suggests not only solving binary PPs of degree higher than one, but also the possibility for solving



20 B. Ghaddar, J.C. Vera, and M.F. Anjos

degree-one binary PPs as problems of higher degrees. In other words, when solving a binary linear program
using DIGS-B∗, setting r0 = 1 will generate the same linear inequalities as those generated by BCC. However,
if we set r0 to a higher value, then we can generate valid polynomial inequalities of higher degree. It is not clear
a priory which one of the two methods is more efficient. While r0 = 1 reduces to using linear programming,
making each iteration much cheaper, larger values of r0 might produce stronger valid inequalities, and possibly
fewer iterations.

As an illustration, the next example compares DIGS-B with r0 = 2 to BCC (DIGS-B with r0 = 1) on the
maximum stable set problem on instances taken from [27].

Example 6

The stable set number (see Example 5) can be formulated as a binary linear program as follows:

(SS-LP) α(G) = max
n∑
i=1

xi

s.t. xi + xj ≤ 1 ∀(i, j) ∈ E
x ∈ {0, 1}n.

The maximum stable set problem can also be formulated as follows:

(SS-D2) α(G) = max
n∑
i=1

xi

s.t. xixj = 0 ∀(i, j) ∈ E
x ∈ {0, 1}n.

We compare different versions of DIGS-B. For each instance we impose a 300-seconds time limit for each
procedure. The upper bound obtained from BCC (i.e., by starting with the LP-relaxation of (SS-LP) and
setting r0 = 1, in which case master and subproblem are LP’s) is compared to three different variations of
DIGS-B, based on the (SS-D2) formulation. Linear refers to generating linear inequalities that are added to the
master problem by using a non-negative multiplier. SOC refers to generating linear inequalities that are added
to the master problem by using a polynomial multiplier that is in P1(B) [12]. Quadratic refers to generating
quadratic inequalities similar to the previous examples described. The results are reported in Table 7.

Table 7: Computational results for the stable set problem with a time limit of 300 seconds.

DIGS-B
Optimal (SS-LP) Balas et al. (SS-D2) Linear SOC Quadratic

n value UB UB Iter. UB UB Iter. UB Iter. UB Iter.

8 3 4.00 3.00 197 3.44 3.00 186 3.00 126 3.02 49
11 4 5.50 4.00 160 4.63 4.00 139 4.00 130 4.05 109
14 5 7.00 5.02 135 5.82 5.02 114 5.01 91 5.14 82
17 6 8.50 6.22 121 7.00 6.23 84 6.09 63 6.30 54
20 7 10.00 7.46 104 8.18 7.43 68 7.25 45 7.42 38
23 8 11.50 8.81 88 9.36 8.61 50 8.36 33 8.67 22
26 9 13.00 10.11 77 10.54 9.84 37 9.60 25 9.96 14
29 10 14.50 11.65 65 11.71 11.10 24 10.87 17 11.18 10
32 11 16.00 13.03 56 12.89 12.37 18 12.20 14 12.53 6
35 12 17.50 14.48 49 14.07 13.49 13 13.32 10 13.66 4
38 13 19.00 16.05 43 15.24 14.80 8 14.74 7 14.85 4
41 14 20.50 17.69 39 16.42 15.88 7 15.77 6 16.26 1
44 15 22.00 19.10 34 17.59 17.19 6 17.09 5 17.30 1
47 16 23.50 20.78 29 18.77 18.39 4 18.26 4 18.59 1
50 17 25.00 22.18 27 19.94 19.52 4 19.42 4 19.77 1

From Table 7 it can be observe that the BCC performs the largest number of iterations for these instances. It
uses linear programming which is computationally more efficient, however this efficiency comes at the expense
of weaker improvement per iteration on the bound. On the other hand, the Quadratic approach provides the
stronger average improvement per iteration but it is the method with the most expensive iterations. For all
instances the bounds obtained by using the SOC version of DIGS-B are the best within 300 seconds. The
three options for DIGS-B present comparable bounds, even though their subproblems correspond to different
combinations of cost and bound improvement per iteration.
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3.4 Examples for the Binary Case

Unless otherwise specified, the following stopping criteria are used

– For all algorithms a time limit of 5 hours (18000 seconds) is imposed. When the algorithm does not
terminate in the time limit this is expressed using a dash (-). The symbol [ besides the computational time
indicates that performing one more iteration of the algorithm will exceed the time limit.

– For DIGS-B we stop if the subproblems have a value close to 0 (≥ −10−3) or if we are able to extract a
feasible solution that certifies optimality.

For the examples presented, we report the objective function value at iteration 0 and after performing a number
of iterations of DIGS-B. As a reference for comparison we also present Lasserre’s results. Values marked with
∗ indicate that the approach used terminated reporting optimality.

Example 7 Degree Two BPP
We consider quadratic problems with the following formulation

max xTCx

s.t. aT x ≤ b
x ∈ {−1, 1}n.

Tables 8a-8c present computational results for quadratic instances where the parameters are generated
according to [29]. The results are given for iterations 0, 1, 5, 10, 100, and 1000. In case the algorithm terminates
before the given iteration, the number of iterations reached is shown in (·). The results show that DIGS-B is
much more efficient than Lasserre’s approach, in particular when n gets large. For n > 20, we are not able to
go beyond r = 2 for Lasserre’s relaxations in the given time limit of 5 hours while using DIGS-B we are able
to improve the bounds by using this iterative scheme.

Table 8: Computational results for quadratic BPP.

(a) Lasserre’s hierarchy

r = 2 r = 4 r = 6
n Optimal bound T(sec) bound T(sec) bound T(sec)

10 1653 1857.7 0.8 1707.3 28.1 1653.0* 11251.3
20 8510 9060.3 2.9 8639.7 17269.1 - -
30 18229 19035.9 4.3 - - - -
40 2679 4735.9 6.8 - - - -
50 16192 21777.9 19.2 - - - -
60 58451 62324.4 126.6 - - - -

(b) DIGS-A

n Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 Iter. 100 T(sec)

10 1653 1857.7 1781.3 1735.3 1691.3 1653.0*(31) 748.9

20 8510 9060.3 8674.9 - - - 1668.4[

30 18229 19035.9 - - - - 4.3[

40 2679 4735.9 - - - - 6.8[

50 16192 21777.9 - - - - 19.2[

60 58451 62324.4 - - - - 126.6[

(c) DIGS-B

n Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 Iter. 100 Iter. 1000 T(sec)

10 1653 1857.7 1821.9 1797.4 1782.2 1724.1 1669.8(1065) 17923.4[

20 8510 9060.3 9015.3 8925.9 8826.6 8683.2 8653.8(517) 17750.3[

30 18229 19035.9 18920.2 18807.4 18737.0 18626.2 18600.7(243) 17840.1[

40 2679 4735.9 4590.7 4248.2 4105.3 3556.7(100) - 18020.1[

50 16192 21777.9 21390.3 20162.1 19407.1 18652.7(31) - 18123.9[

60 58451 62324.4 62019.1 60906.0 60585.5 - - 17961.1[

Example 8 Degree Three BPP
We consider the general BPP problem with degree-3 objective. The problem can be formulated as follows
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max
∑
|α|≤3

cαx
α

s.t. aT x ≤ b
x ∈ {−1, 1}n.

In Tables 9a-9c, we present Lasserre’s, DIGS-A, and DIGS-B results on degree three instances where cα is
generated randomly between 0 and 10, each a is generated randomly between 1 and 50, and b is generated
randomly between 50 and

∑n
i=1 ai. The generated parameters cα, a, and b are integer.

Lasserre’s relaxation is not defined for r = 2, the smallest r we can take is r = 4. For n ≥ 25, we are not
able to compute any bound using Lasserre’s relaxation within the time limit bound of 5 hours.

As we are working with a degree 3 BPP, DIGS-A is applied with a master problem of degree 3 (i.e. r0 = 3)
and a subproblem of degree r0 + 1 = 4, creating inequalities of degree 2. That is, we apply Algorithm 2 with
step 3 replaced by:

min
ps

〈
ps, Y

s〉
s.t. ps(x) ∈ K4

Gs
∩R2[x]

‖ ps ‖ ≤ 1.

The results for various iterations are reported and the total time is given in seconds. In case the algorithm
terminates before the given iteration, the number of iterations reached is shown in (·).

Table 9: Computational results for degree 3 BPP.

(a) Lasserre’s hierarchy

r = 4 r = 6
n Optimal bound T(sec) bound T(sec)

5 58 59.37 2.1 58.00∗ 9.6
10 139 148.97 35.9 139.00∗ 4866.0
15 1371 1524.71 1436.2 - -
20 1654 1707.95 18106.6 - -
25 - - - - -

(b) DIGS-A

n Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 Iter. 100 T(sec)

5 58 67.16 63.59 58.37 58.00∗(8) 19.6
10 139 154.59 153.22 142.32 139.19 139.00∗(12) 606.3

15 1371 1582.04 1569.92 1498.60 1470.98 1429.89(23) 18037.9[

20 1654 1718.53 1716.67 - - - 16009.2[

25 - 3967.12 - - - - 5038.6[

(c) DIGS-B

n Optimal Iter. 0 Iter. 1 Iter. 5 Iter. 10 Iter. 100 T(sec)

5 58 67.16 58.45 58.00∗(3) 5.1
10 139 154.59 151.43 143.33 139.64 139.00(13)∗ 100.9

15 1371 1582.04 1550.04 1511.76 1497.37 1392.89(91) 18058.1[

20 1654 1718.53 1716.00 1709.40 1701.65 1699.70(12) 18168.6[

25 - 3967.12 3960.78 - - - 14287.3[

Table 9c presents computational results of applying Algorithm 4. We report results for iterations 0, 1, 5,
and 10, 100, and 1000 and the total time in seconds. At Iteration 0, we use a relaxation of order 3 and then
apply DIGS-B to add valid degree 3 inequalities to improve the bounds of the relaxation. Comparing the
results of Table 9c with Table 9b, we see that using the specialized DIGS-B reduces the computational time
significantly and provides better bounds.

4 Conclusion

We proposed a dynamic inequality generation scheme to generate valid polynomial inequalities for general
polynomial programs. This scheme can be iterated to improve the SOS relaxation of a polynomial program
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without incurring an exponential growth in the size of the relaxation. As a result, the proposed scheme is in
principle scalable to large general polynomial programming problems. We also proposed specialized schemes
for polynomial programs with all variables non-negative or with all variables binary. For binary polynomial
programs, we prove that the proposed scheme converges to the global optimal solution for some problem
families. We presented several examples illustrating the computational behavior of the scheme and comparing
it to the behavior of the well-known Lasserre hierarchy.

DIGS can be applied to improve the bound of a PP in a computationally efficient way that can be used
in solvers as an effective tool for strengthening the corresponding PP relaxation, unlike Lasserre’s hierarchy
that jumps with respect to the bound incurring a drastic increase in computational time. Therefore, given a
limited time window, DIGS can improve the bounds iteratively and hence more efficiently than a hierarchical
approach, for instance within a branch-and-bound approach.

An important issue for future research is to improve the time efficiency of the inequality generation sub-
problems. This will be key to improve the computational efficiency of the various DIGSs. A related question
is how to generate more than one inequality using the same subproblem. These are important issues for the
purpose of applying the proposed approach within a branch-and-cut framework.
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