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Power Capacity Profile Estimation for Building Heating and Cooling in
Demand-Side Management

Juan A. Gomeza,∗, Miguel F. Anjosa

aGERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montreal, C.P. 6079, Succ. Centre-Ville, Montreal,
QC, Canada H3C 3A7

Abstract

This paper presents a new methodology for the estimation of power capacity profiles for smart buildings. The capacity
profile can be used within a demand-side management system in order to guide the building temperature operation.
It provides a trade-off between the quality of service perceived by the end user and the requirements from the grid in
a demand-response context. We use a data-fitting approach and a multiclass classifier to compute the required profile
to run a set of electric heating and cooling units via an admission control module. Simulation results validate the
performance of the proposed methodology under various conditions, and we compare our approach with neural networks
in a real-world-based scenario.

Keywords: Smart buildings, power demand, residential load sector, least squares, parameter estimation, classification.

1. Introduction

In the context of power systems, reducing peaks and
the fluctuation of consumption brings stability to the sys-
tem and benefits to the players in the power supply net-
work. In this respect, demand-response (DR) programs5

and demand-side management (DSM) systems encourage
and facilitate the participation of the end users in the grid
decisions. This participation is increasing with the devel-
opment and implementation of smart buildings. DR pro-
grams have mostly been oriented to large consumers, but10

smart buildings can exploit the DR potential in residential
and commercial buildings as well. These represent around
70% of the total energy demand in the United States [1]. In
Canada, space heating is responsible for more than 60% of
the total residential energy consumption, due to the cold15

climate [2]. Across the country, electric baseboards ac-
count for 27% of heating equipment, reaching 66% in the
province of Quebec. On the other hand, the province of
Ontario is typically a summer-peaking region due to the
high temperatures during that season and the high pene-20

tration of air-conditioning systems [3, 4].
Several authors have published DSM-related results.

Normally their research motivation is oriented to load man-
agement, user behavior, cost performance, and curve shap-
ing. Imposing a capacity constraint is a common idea25

among these approaches. Costanzo et al. [5] propose a
multilayer architecture that provides a scheme for online
operation and load control given a maximum consump-
tion level. In the stochastic DSM program in [6], a DR

∗Corresponding author
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aggregator imposes a capacity constraint. Bidding curves30

and price analyses are reported in order to guide end-users
about increasing capacity. Rahim et al. [7] evaluate the
performance of several heuristic-based controllers. They
define the load management as a knapsack problem with
preset power capacities for each time slot. In a similar way,35

[8] assumes a consumption limit that allows the activation
of only one load at a time. Li et al. [9] look for an optimal
allocation of capacities based on a queueing strategy. The
service provider determines the capacity to assign to each
user from a set of renewable resources.40

The idea of capacity subscription is explored in [10],
where the individual consumer’s demand is limited in a
competitive market. On the other hand, the heuristic al-
gorithm proposed in [11] aims to minimize the error be-
tween the actual power curve and the objective load curve45

by moving the shiftable loads. In this case the objective
load curve can be seen as a soft constraint capacity profile.

A variation of the capacity limit is presented in [12],
where each individual user has a predefined budget to max-
imize his/her satisfaction.50

All the approaches mentioned represent the capacity
as a given parameter, and some of them recognize the
importance of using a forecasting tool to determine its
value. Estimating the user consumption is a key step in
the decision-making process for users and for higher levels55

in the power system. Relevant publications can be found
in the load-forecasting literature. Suganthi and Samuel
[13] give a comprehensive review of forecasting methods
from classical time series to more sophisticated machine
learning tools.60

Load estimation methods are classified depending on
the level of aggregation of the input data: they can be
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bottom-up or top-down [14]. Bottom-up models extrap-
olate the behavior of a larger system based on its inner
elements. Top-down models make decisions from a global65

perspective and share them among all the subsystems.

Notation

h ∈ {1, 2, . . . ,H} Set of time frames in horizon.
t ∈ {1, 2, . . . , S} Set of time steps in time frame

h (same for every h).
i ∈ {1, 2, . . . , I} Set of loads.
Nh Number of requests received in

time frame h.
Pi Power level of load i (kW).
Ch Power capacity in time frame h

(kW).

ri,t

{ 1 if a request is created
by load i in time step t

0 otherwise

xi,t

{
1 if request from i is ac-

cepted in time step t
0 otherwise

QoSh Quality of service in time frame
h.

Q̂oSh Quality of service of the predic-
tion model in time frame h.

T Temperature (◦C).
T eh External temperature in time

frame h (◦C).
P Power levels of the loads in each

scenario.
Ω Discrete set of capacities.
ω ∈ Ω Capacity class.

Within these two categories different approaches have
been used to estimate the energy demand. Ahmed et
al. [15] compare artificial neural networks and the auto70

regressive integrated moving average, showing the effect
on the scheduling of storage devices. Jain et al. [16] use
support vector regression to evaluate the impact of the
time and space granularity inside a multi-family unit. Al-
Wakeel et al. [17] use a k-means-based load estimation75

method to compute future load profiles using complete and
incomplete past information.

Logistic and Poisson regression are used in [18] to es-
timate energy demand in a large aggregated population.
In a similar way, [19] presents a short-term forecasting80

method for aggregated loads, specifically in buildings with
daily or seasonal patterns of consumption. Mohajeryami
et al. [20] present an error analysis for different load es-
timation methods that are used in real-world operations.
They highlight the importance of an accurate estimation85

for exploiting the DR potential.
On the other hand, when the prediction output belongs

to a discrete set of categories the estimation can be defined

as a classification problem. Some related energy problems
are treated in this way: price forecasting in [21] and wind90

power ramp events in [22].
This paper proposes an approach for the estimation of a

power capacity profile that works in combination with the
admission controller (AC) module presented in [5]. This
profile is used to ensure enough power to meet the demand95

for the next planning horizon (e.g., the next day in a day-
ahead DR market). This novel approach takes advantage
of the structure derived from the estimation problem to
compute capacity profiles efficiently and reliably. Esti-
mating the capacity that will be necessary allows us to100

define a relationship between the total expected demand
and the level of service the user desires while providing
DR. In this scenario the user will book a variable max-
imum power capacity per time frame over the planning
horizon, ensuring a pre-established level of service. This105

approach could also include external factors such as peak
control and pricing policies. The motivation is that a de-
fined power budget limits the consumption and encourages
load shifting. It also facilitates the integration of differen-
tial pricing for both energy and power.110

This paper is structured as follows. We describe the
proposed methodology in Section 2. We give simulation
results for the real-world-based scenario in Section 3, and
Section 4 presents our conclusions.

2. Power Capacity Profile115

Figure 1 shows the application of the AC module pre-
sented in [5]. The online algorithm in the AC has four
stages. First, the space heaters and the air conditioners
create requests ri,t when the room temperature is out (or
going out) of the thermal comfort zone. Second, the algo-120

rithm sorts all the requests from the highest to the lowest
priority value; the priority value is the normalized differ-
ence between the temperature in the room and the external
temperature. Third, the AC accepts the highest priority
requests until the given capacity Ch is consumed; the other125

requests are rejected. Finally, it sends the signal xi,t back
to each smart load i either to run (if accepted) or to stand
by for the next time step (if rejected).

Figure 2 presents a basic example of the AC operation.
A smart house with two rooms, R1 and R2, is simulated130

over a horizon of 5 time frames. Each time frame has
10 time steps where the smart loads can send requests.
Typically, a time frame would be equivalent to an hour in
a realistic scenario. There is a 1.5 kW space heater in each
room, and the external temperature is 5◦C (Figure 2(a)).135

We can see the peak reduction obtained by the AC in
Figure 2(b); the end-user agrees to have a preset power ca-
pacity (dashed red line), which constrains the consumption
to at most 1.5 kW. The peak of consumption, for this ex-
ample 3 kW, would be attained when the two space heaters140

are being used at the same time step. Figures 2(c) and
2(d) show the internal temperature in each room within
a certain comfort zone. In a similar way, we can see the
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Figure 1: Admission controller.

time steps where the heaters are working in Figures 2(e)
and 2(f). For more details about the AC algorithm and145

the heat transfer equations we refer the reader to [5].

h
(a)

1 2 3 4 5

T
(°

C
)

4

5

6
External Temperature

h
(b)

1 2 3 4 5

P
(k

W
)

0

1

2

3
Capacity
Consumption

h
(c)

1 2 3 4 5

T
(°

C
)

20

25
Temperature R1

h
(d)

1 2 3 4 5

T
(°

C
)

20

25
Temperature R2

h
(e)

1 2 3 4 5

Activation Heater in R1

h
(e)

1 2 3 4 5

Activation Heater in R2

Figure 2: Example of results from admission controller.

In the previous example the capacity profile suffices
to keep the average internal temperatures (21.8, 22.2)◦C
in the comfort zone [20 − 24]◦C. In the event that the
temperature in a room goes out of the comfort zone during150

a time step, the space heater will increase its priority value,
and the AC will accept the request in the next time step.
The capacity profile also achieves a peak shaving effect.
However, alternating the use of the heaters might not be
enough to ensure a comfortable internal temperature if the155

external temperature is extremely low; a higher capacity
profile might be required. This decision becomes more
complex if we increase the number of space heaters and if
they have different power requirements.

We introduce the quality of service (QoS) index to160

quantify the impact of a given capacity on the whole sys-
tem. The general idea of QoS is that the user should be
willing to pay more if a higher level of service is desired.
This decision-making by the user is especially important

under time-of-use pricing conditions because the customer165

can profit from the cheaper time frames by reshaping the
load curve while ensuring the desired QoS.

In a smart building it is possible to compute the QoS
from the information provided by thermostats and smart
loads connected to the AC. In the spirit of [23], we define
the QoS for each time frame h as follows:

QoSh =

{ I∑
i=1

S∑
t=1

xi,t

Nh
×100% Nh > 0

100% Nh = 0,

(1)

where Nh =
∑I
i=1

∑S
t=1 ri,t.

The accepted requests have to satisfy

I∑
i=1

xi,tPi ≤ Ch ∀t ∈ {1, 2, . . . , S}. (2)

Equation (2) indicates that the AC accepts requests until
the capacity limit is reached. In the framework of this arti-
cle we assume that both air-conditioning units and electric
baseboard heaters have a constant level of consumption
[24]. Let Ch ∈ Ω, where Ω is a set of capacities that can
work in combination with the AC and the set of loads. In
other words, we do not want a capacity to operate a frac-
tional number of loads in the time step t. Given that Ω is
a discrete set we can define the classification problem

Φ(T eh , QoSh) = Ch (3)

that determines Ch ∈ Ω for a given external temperature
T eh and the QoSh defined by the user. We solve this classi-170

fication problem using a three-step approach: selection of
the training set from historical data, function fitting, and
final classification. We illustrate the steps in this section
with a group of space heaters; Section 3 includes experi-
mental results for both types of loads.175

2.1. Sampling From Historical Data

The real data is obtained from the smart energy man-
agement system, which records the accepted requests, the
rejections, and the evolution of the QoS over time. We
simulate this historical data to understand the system dy-180

namics and to implement a prediction model. The simu-
lation conditions are:

• The set of heaters is composed of four identical units
of 1.5 kW of consumption.

• The heat transfer is computed using the specific heat185

and Fourier’s law formulations implemented in [5]
(see Section 3 for more details).

• The external temperature corresponds to the com-
plete year 2013 (8760 hours) in the Montreal area
[25].190
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• The comfort intervals for the internal temperatures
are taken from the ISO 7730 standard analyzed in
[26]. For an office category B the intervals are [20−
24]◦C and [23−26]◦C for heating and cooling respec-
tively.195

• Ch is randomly chosen from Ω = [1.5, 3.0, 4.5, 6.0]
based on the interval of temperature; the highest
capacities are not necessary during the warmer days
(for example, with T eh = 19◦C every value in Ω will
return a QoSh near 100%, affecting the quality of200

the data training set and the estimation).
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Figure 3: Histogram of hourly external temperatures in Montreal,
Canada for 2013.

Figure 3 shows the frequency of the external tempera-
ture intervals in the historical data; this is clearly an im-
balanced set. This imbalance is generated by the similar
weather in Spring and Fall. The temperatures between 0205

and 20◦C would have a significantly higher weight in a fit-
ting process. We use random under-sampling [27] in order
to match the number of points in the minority group from
the temperatures below the comfort interval.

Figure 4 shows the hourly QoS results for the balanced210

set. We can identify several characteristics of the system
behavior:

• As the temperature increases the QoS converges to
higher values; with fewer requests the selection of a
capacity level is a less sensitive issue.215

• The selection of the capacity level has a big impact
on the QoS in lower temperature conditions.

• The QoS seems to behave asymptotically for higher
and lower temperatures.

2.2. Data Fitting220

Once we have identified these features in the data set
we can solve an optimization problem for the capacity es-
timation. We fit the sigmoid function

Q̂oSh =
β1

1 + eβ2T e
h

+ β3Ch + β4, (4)
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Figure 4: Graph of QoS vs. temperature for the sampled historical
data.

where Q̂oSh is the quality of service from the prediction
model at time frame h.225

Additionally, we will compare two different optimality
criteria: the least squares value (LSV) and the least abso-
lute value (LAV). Typically, the LSV gives more weight to
distant points while the LAV is resistant to outliers [28].

The optimization problems are:

min
β1,β2,β3,β4

H∑
h=1

(QoSh − Q̂oSh)2 (5)

min
β1,β2,β3,β4

H∑
h=1

| QoSh − Q̂oSh | (6)

Figure 5 shows the results for a least-squares fitting of230

a sigmoid function.
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Figure 5: Fitted sigmoid function.

Once we have solved the optimization problem (5) or
(6) we can use (4) to compute the expected required ca-
pacity for the desired QoS.235
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2.3. Motivation for Using a Sigmoid Function

The selection of a sigmoid function has both a graph-
ical justification and an interesting background. We pro-
vide intuition into why it works for the heating case; the
cooling case is similar. This analysis applies to any ex-240

ternal temperature regardless of the time frame where it
occurs; therefore we omit the subscript h and use N in the
place of Nh to increase readability.

We make the following assumptions:

• If T e
′
< T̂ e then N(T e

′
) > N(T̂ e) for any tempera-245

tures T e
′

and T̂ e.

• C ∈ [Cmin,∞) where Cmin = max(Pi).

• Each load generates at most one request per time
step, and therefore the maximum number of requests
per step equals I.250

• There exists a temperature T̃ e at which all the heaters
generate requests at every time step, and therefore
N(T̃ e) = I × S.

Considering the worst-case scenario for any time frame
in Equations (1) and (2), we have:

QoS(T̃ e, Cmin) =

I∑
i=1

S∑
t=1

xi,t

I × S
(7)

I∑
i=1

xi,tPi ≤ Cmin ∀t ∈ {1, 2, . . . , S} (8)

Equation (8) allows us to accept at least one request at
every time step. Therefore, the total number of accepted255

requests satisfies:

S∑
t=1

I∑
i=1

xi,t ≥ S. (9)

After substituting (9) into (7) we can obtain a mini-
mum QoS:

QoS(T̃ e, Cmin) ≥ 1

I
(10)

We can see similar behavior for scenarios with temper-
ature Ṫ e > T̃ e and N(Ṫ e) < N(T̃ e). Let F be the min-
imum number of time steps where requests are received.
Since each load i will request at most once per time step,260

we have:

F =

⌈
N(Ṫ e)

I

⌉
=
N(Ṫ e)

I
+ α, 1 > α ≥ 0. (11)

The variable F also becomes the minimum number of
accepted requests due to the Cmin in Equation (8). By
substituting (11) into (1) we obtain:

QoS(Ṫ e, Cmin) =

I∑
i=1

S∑
t=1

xi,t

N(Ṫ e)
≥ F

(F − α)I
. (12)

When α = 0 we get the same condition as in Equation265

(10).
A sigmoid function helps to represent the asymptotic

extremes and monotonic behavior of the QoS. In the first
case, we see how the QoS is bounded below in Equa-
tions (10) and (12), and it is bounded above by defini-270

tion (QoS ≤ 100). In the second case, the temperature
and requests are inversely proportional (if T e

′
< T̂ e then

N(T e
′
) > N(T̂ e)), so QoS(T e) is monotonically increas-

ing. Using a linear function would capture the monotonic
condition but not the asymptotic extremes.275

For cooling systems we would change the first assump-
tion to T e

′
> T̂ e, giving N(T e

′
) > N(T̂ e). This leads to a

similar monotonically decreasing sigmoid function over the
interval of external temperature where cooling is required.

2.4. Classification280

As stated previously, we have a discrete set of capac-
ities that are suitable for the performance of the system.
We solve for Ch in (4) in order to compute the continuous

signal Ĉh. Finally, we use the multiclass classifier

Ch = arg min
ω∈Ω
| Ĉh − ω | (13)

to find the required capacity.285

Figure 6 shows the effect of the classifier; it assigns
areas to each of the capacities based on the midpoints for
each pair of sigmoid curves from Figure 5.
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Figure 6: Classification areas.

3. Experimental Results

In the previous section we introduced the methodology290

with an example for a given set of homogeneous space
heaters. In this section we carry out several experiments
to assess and validate the performance of the proposed
methodology under different conditions.

It is important to ensure coherence in the thermal sys-295

tem when defining the set of loads. The loads must keep
the temperature in the comfort range during the warmest
and coldest time frames in the data sets. This design step
must include the specific features of the building such as
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size, surfaces in contact with external temperatures, wall300

insulation materials, and thermal load inside the room. A
poorly balanced thermal system could lead to a QoS of
100% with temperatures far from the comfort zone.

At the end of each time step, we compute the temper-
ature in the rooms using the same thermal equations as in
[5]:

dQtot

dT room
= mroomCroom, (14)

dQexch

dt
= −Kwall

A

χ
(T e − T room), (15)

Qtot = Qexch + ηPi, (16)

where Kwall = 4.8× 10−4 kW/m · ◦C is the average ther-
mal conductivity of the wall, and η = 100% is the efficiency305

of the loads. We choose a room size of 60 m3, which cor-
responds to an air mass of mroom = 72 kg with a specific
heat capacity Croom = 1.0 kJ/Kg· ◦C. The surface area in
contact with the external temperature is A = 12 m2 with
a thickness of χ = 0.2 m. This remains constant for all the310

experiments.
For a more realistic scenario both types of loads are

managed by the AC; the space heaters and the air condi-
tioners will create requests when the temperature in each
room is moving out of the comfort zone.315

The experiments include:

• Sets P with homogeneous and heterogeneous power
Pi values.

• Three different types of Ω sets: computed from all
possible combinations of values in P; computed from320

some of the combinations in P; and given by an ex-
ternal entity.

• Two fitted functions.

• Two optimality criteria: LAV and LSV.

• Comparison with two neural networks (NNs) with325

different topologies.

The experiments are carried out in two stages. In the
training stage we reproduce the approach presented in Sec-
tion 2 in order to determine the classification areas. Then
in the test stage we use the classification areas to estimate330

the capacity profiles for given levels of the QoS. When the
profiles have been computed, we run a simulation to verify
the actual QoS performance.

In Sections 3.1 and 3.2 we illustrate the methodology
on a three-load instance: an apartment with three rooms.335

In Section 3.3 we report results for an instance with 50
loads to demonstrate the scalability of our methodology.

3.1. Training for Three-Load Instance

We required two training sets: one for heaters and
one for air conditioners. Each training set is defined over340

the corresponding interval of temperature (T eh ≤ 20◦C for
heaters and T eh ≥ 26◦C for air conditioners) and randomly
chosen as in Subsection 2.1. The historical sets are sim-
ulated using the hourly temperature in Montreal for the
year 2013 (8760 data points).345

As mentioned before, we will compare this methodol-
ogy with two other approaches. In the first case, we use
the polynomial function

Q̂oSh = β1 + β2Ch + β3T
e
h + β4T

e
hCh (17)

in the fitting step. A priori the sigmoid function gives a
better representation of the historical set due to its mono-
tonically increasing behavior and the asymptotic extremes.
The function in Equation (17) captures only the mono-
tonic condition. To fit each function we solve a nonlinear350

optimization problem using the BFGS method; it finds a
solution in a few seconds.

We use NNs, which are widely used in many different
types of problems, as a second benchmark. For classifica-
tion problems the NN typically has the same number of355

neurons in the output layer as the number of classes. The
NN computes the probability that each input belongs to
each class, and it chooses the class with maximum proba-
bility. We implemented two NNs with A = 1 and B = 2
hidden layers (5 neurons each), cross entropy as a perfor-360

mance measure in the learning process, and a validation
subset of 30% of the points. The training time of the NNs
varies between 10 and 20 seconds using scaled conjugate
gradient backpropagation.

Finally, the total confusion or missclassification index365

measures the performance of each approach. It indicates
the percentage of the total set of data that was incorrectly
classified.

Tables 1 and 2 show the training results for the dif-
ferent scenarios and approaches. Scenarios 1–7 and 8–14370

correspond to heating and cooling respectively. In scenar-
ios 1–3 and 8–10 the loads are homogeneous and the Ω set
corresponds to all possible combinations of the loads. In
scenarios 4–6 and 11–13, both homogeneous and heteroge-
neous loads are tested with a Ω set that was defined sepa-375

rately from the loads. Finally, scenarios 7 and 14 contain
a heterogeneous set of loads and all possible combinations
in Ω.

In general, we observe a better performance in the sig-
moid fitting (SLAV and SLSV) than in the polynomial380

cases (PLAV and PLSV). There is no clear difference in
terms of the fitting criterion. The sigmoid function seems
to be competitive with both NNs in the first six scenarios
of each table.

As stated before, the sigmoid function provides a bet-385

ter representation of the structure of the problem. Fig-
ure 7 shows the classification areas obtained by fitting the
sigmoid and polynomial functions for scenario 2. For a

6



Scenario P Ω PLAV PLSV SLAV SLSQ NNA NNB
1 [1.5, 1.5, 1.5] [1.5, 3.0, 4.5] 28.31 33.92 12.54 13.12 11.25 10.15
2 [2.0, 2.0, 2.0] [2.0, 4.0, 6.0] 18.94 20.38 13.48 11.70 15.76 10.10
3 [2.5, 2.5, 2.5] [2.5, 5.0, 7.5] 20.58 25.00 20.92 17.95 15.70 10.88
4 [1.5, 1.5, 1.5] [2.5, 4.0, 6.0] 32.04 28.50 10.01 14.47 16.2 14.25
5 [2.0, 2.0, 2.0] [2.5, 4.0, 6.0] 25.67 22.01 12.54 14.47 17.56 14.25
6 [2.5, 2.0, 1.5] [2.5, 4.0, 6.0] 21.46 20.21 7.01 10.51 6.75 7.25
7 [2.5, 2.0, 1.5] [2.5, 3.5, 4.0, 4.5, 6.0] 45.63 49.21 34.96 45.38 27.69 25.01

Table 1: Confusion (%) in training stage for the heating scenarios

Scenario P Ω PLAV PLSV SLAV SLSV NNA NNB
8 [0.5, 0.5, 0.5] [0.5, 1.0, 1.5] 30.15 33.23 12.26 12.73 16.11 17.16
9 [1.0, 1.0, 1.0] [1.0, 2.0, 3.0] 18.28 19.33 10.63 9.33 19.42 8.35
10 [1.5, 1.5, 1.5] [1.5, 3.0, 4.5] 23.40 25.75 21.61 18.00 13.54 13.13
11 [0.5, 0.5, 0.5] [1.5, 2.0, 3.0] 31.32 36.23 12.69 19.42 9.57 9.14
12 [1.0, 1.0, 1.0] [1.5, 2.0, 3.0] 22.08 22.44 13.96 13.74 5.36 12.40
13 [1.5, 1.0, 0.5] [1.5, 2.0, 3.0] 22.18 24.24 8.03 11.17 22.71 13.19
14 [1.5, 1.0, 0.5] [1.5, 2.0, 2.5, 3.0] 46.53 46.84 39.19 44.61 26.84 23.38

Table 2: Confusion (%) in training stage for the cooling scenarios
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Figure 7: Comparison of sigmoid and polynomial areas for scenario
2.

QoS of 90%, we see that the polynomial function gives a
transition between areas either before or after the sigmoid390

function. If it is before, T ∈ (−18,−8)◦C, we will obtain
a worse QoS and lower temperatures in the rooms. If is
after, T ∈ (2, 8)◦C, we will have extra capacity that is not
required. This lower utilization of the capacity becomes
more important if the user is paying in advance for a re-395

source that will not be used.
On the other hand, scenarios 7 and 14 are significantly

different: the NNs have considerably better performance
than any other approach. Looking deeper into the charac-
teristics of these scenarios we see a special condition: sev-400

eral values in Ω can generate the same QoS at the same
temperature. We may have the same performance in sce-
nario 7 for ω = 4 and ω = 4.5 if the three heaters send

requests at the same time. In the first case, the AC will
accept P1 and P3 and leave P2 for the next time step. In405

the second case the order of acceptance changes but the
QoS is the same. Figure 8 shows the training set for this
scenario; we can see how C = 4 is distributed over its
adjacent classes.
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Figure 8: Training data for scenario 7 (heating).

Although the NNs have a better training performance,410

they might minimize the confusion value by eliminating
one of the classes. Let Wω be the set of points that belong
to class ω, and let W 1

ω and W 0
ω be the subsets of points

correctly and incorrectly classified respectively. Let Γ be
the total number of misclassified points. The approach415

presented in this article separates any two contiguous sets
following the fitted function, and therefore W 1

1 + W 0
1 =|

W1 |, W 1
2 +W 0

2 =|W2 |, and W 0
1 +W 0

2 = Γ.

7



If we assume that the NN eliminates class 2 we have W̄ 1
1 =|

W1 |, W̄ 0
2 =| W2 |, and W 1

2 + W 0
2 =| W2 |= Γ̄. We can420

conclude that eliminating one class improves the confusion
(i.e., Γ̄ < Γ) if W 1

2 < W 0
1 .

At this point we can see the advantage of exploiting
the features of the problem. In the approach presented in
this paper the fitted function acts as a constraint that rep-425

resents the structure of the data sets. On the other hand,
the flexibility of the NNs allows a lower misclassification,
but we see in Subsection 3.2 that this has an unexpected
impact on the QoS.

430

3.2. Results for Three-Load Instance

The experiments use data for a period of two years
(2014 and 2015) for the Montreal area (17520 data points).
The user sets a QoS of 90%. Figures 9–14 show the results
for scenarios 2 and 7 (heating) and scenario 14 (cooling).435

These box plots contain the minimum value, maximum
value, and interquartile range for the hourly QoS and the
hourly average temperature in the three rooms for each of
the methods compared.

For scenario 2 (Figures 9 and 10) we see that the sig-440

moid and NN cases perform slightly better than the poly-
nomial function. Although the QoS and the temperature
do not vary significantly, the use of the resource differs:
the polynomial function reports around 60% of utilization
of capacity while the other four methods achieve a uti-445

lization between 70% and 75%. This effect was previously
observed in Figure 7. Scenarios 1, 3 to 6, and 8 to 13 have
similar results.
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Figure 9: QoS test results for scenario 2 (heating).

In the case of scenarios 7 and 14 we observe a special
situation: although the training results for the NNs are450

better we have a worse QoS (Figures 11 and 13) and tem-
perature management (Figures 12 and 14). We previously
saw in Figure 8 that the areas for classes 3.5, 4, and 4.5
are not clearly defined. We also saw that different capac-
ities can result in a similar QoS at the same temperature455
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Figure 10: Average room temperature test results for scenario 2
(heating).
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Figure 11: QoS test results for scenario 7 (heating).
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Figure 12: Average room temperature test results for scenario 7
(heating).

due to the load shifting. Nevertheless, eliminating one of
the classes can have negative effects on the final output;
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Figure 13: QoS test results for scenario 14 (cooling).
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Figure 14: Average room temperature test results for scenario 14
(cooling).

in this case the NNs tend to eliminate class 4.5 in order
to minimize the confusion value. Although C = 4.5 and
C = 4.0 can accept two out of the three loads if all of460

them arrive at the same time, the situation changes when
the loads arrive at different times. For example, C = 4.5
will satisfy any of the combinations of two loads arriving
simultaneously: [2.0, 2.5], [1.5, 2.5], and [1.5, 2.0], whereas
C = 4.0 will not accept [2.0, 2.5]. It is therefore preferable465

not to eliminate a class because of the dynamics in the
system.

3.3. Results for Fifty-Load Instance

To demonstrate the scalability of the proposed method-
ology, we present results for an instance with 50 space470

heaters. This instance represents an apartment building
with three different types of heaters P = [1.5, 2.0, 2.5] with
respectively 20, 15, and 15 loads of each type. We con-
sider the scenario in which the building operator chooses
Ω = [25.0, 45.0, 70.0, 90.5]. Figures 15–17 give a summary475

of the results.
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Figure 15: Classification areas.
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Figure 16: Capacity as function of external temperature.
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Figure 17: Average QoS and average room temperature.

Figure 15 shows that the classification areas have the
expected sigmoid shape. Figure 16 shows that as the exter-
nal temperature increases, the capacity required decreases.
Finally, Figure 17 shows that the average QoS and the av-480

erage room temperature remain in the comfort zone.
An important feature of this novel approach is that the

QoS aggregates all the requests from the loads. Therefore,
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regardless of the size of the population, it maintains the
asymptotic and monotonic increasing behavior explained485

previously.

4. Conclusions

Understanding the requirements of residential consump-
tion is key to facilitating increased participation in DR pro-
grams. The methodology proposed in this paper computes490

a power capacity profile that meets the user’s expectations
and at the same time provides information to residential
power management systems. The use of the AC and the
implementation of the QoS index allow us to aggregate a
set of loads, simplifying the decision-making process.495

The approach we have presented takes advantage of the
inner structure of the defined problem, ensuring a good
representation of the historical data and a reliable tool
for future estimation. The shaving effect can be achieved,
controlling the peak consumption, respecting theQoS, and500

ensuring a better utilization of the power capacity avail-
able.

The proposed method computes capacity profiles for
a specific comfort zone with a defined set of loads. For
different configurations of the building and/or different505

boundary conditions, the user can easily compute the new
classification areas for different scenarios and intervals of
comfort. The quality of the historical data and coherence
in the thermal system when defining the set of loads are
key to the applicability of this method.510

Future work will explore the applicability of the pro-
posed methodology to more complex systems with differ-
ent types of buildings and loads and also take into account
the user behavior.

Finally, the approach presented is computationally ef-515

ficient, it utilizes data that is normally available in the
smart building context, and it performs well for heating
and cooling, offering better performance than NNs in a
real-world-based scenario.
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