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Abstract

Facility layout problems are an important class of operations research prob-
lems that has been studied for several decades. Most variants of facility lay-
out are NP-hard, therefore global optimal solutions are difficult or impossible
to compute in reasonable time. Mathematical optimization approaches that
guarantee global optimality of solutions or tight bounds on the global opti-
mal value have nevertheless been successfully applied to several variants of
facility layout. This review covers three classes of layout problems, namely
row layout, unequal-areas layout, and multifloor layout. We summarize
the main contributions to the area made using mathematical optimization,
mostly mixed integer linear optimization and conic optimization. For each
class of problems, we also briefly discuss directions that remain open for
future research.
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1. Introduction

Facility layout problems (FLPs) are a general class of operations research
problems concerned with finding the optimal arrangement of a given num-
ber of nonoverlapping indivisible departments within a given facility. The
objective is to minimize the total expected cost of inter-departmental flows
inside the facility, where the cost incurred for each pair of departments is
equal to the rectilinear distance between the centroids of the departments
multiplied by their pairwise cost. This cost, generally non-negative, ac-
counts in the aggregate for adjacency preferences as well as costs that may
arise from transportation, the construction of a material-handling system,
or connection wiring. The facility and the departments are rectangular, and
the area of each department is specified, but if the department’s dimensions
can vary, then determining them is also part of the FLP.

FLPs have a variety of applications. Much of the work was motivated
by the physical organization of manufacturing systems, see e.g. [71]. The
FLP is particularly relevant in flexible manufacturing systems that produce
an array of different parts. The layout of the production components has
a significant impact on the costs and the productivity of these systems, see
e.g. [39]. Other applications of FLPs include balancing hydraulic turbine
runners [60], algorithm initialization in numerical analysis [26], VLSI fixed-
outline floorplanning [66], and optimal data memory layout generation for
digital signal processors [95].

FLPs have been extensively studied in the literature since the 1960s.
Numerous variations on the basic problem described above have been con-
sidered, and different models have been proposed for each variation. Ex-
amples of such variations are: specially structured instances of the problem
(e.g. layouts on rows or on loops); dynamic FLPs with time-dependencies;
FLPs under uncertainty in the data; and multi-objective FLPs. We refer the
reader to the books [59, 41] and survey papers [71, 91] for more information
about the FLP and its variations. A growing collection of FLP benchmark
instances is available online [14].

The FLP is NP-hard in general, so solving it to global optimality in
reasonable time is generally difficult. Indeed the restricted version where the
dimensions of the departments are all equal and fixed, and the optimization
is taken over a fixed set of possible locations for the departments, is known
as the quadratic assignment problem, a combinatorial optimization problem
well known for its computational difficulty, see e.g. [64].

The constraints of the basic FLP can be grouped into two sets:

• Department shape requirements include the required area, and restric-
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tions on the dimensions (height and width) such as bounds on the
ratios height/width and width/height, called aspect ratios. These re-
quirements generally lead to convex constraints but still pose some
challenges. In particular, requiring small aspect ratios, while desir-
able in real-world applications, generally makes the problem harder.
On the other hand, while the area constraint traditionally required a
careful linearization approach, it can be modeled exactly using conic
optimization, see e.g. [18].

• Department location requirements include the nonoverlap of depart-
ments, fitting every department within the facility, assigning certain
departments to, or forbidding them from, particular locations within
the facility. The main challenge here are the nonoverlap constraints
that are inherently nonconvex and combinatorial.

This review is focused on FLPs with the following properties:

1. the departments have different areas

2. the facility can be one-, two-, or three-dimensional.

The different dimensions lead to the three broad classes of FLPs covered in
this review, namely row FLPs (Section 2), unequal-areas FLPs (Section 3),
and multifloor FLPs (Section 4).

One-dimensional facilities lead to row FLPs, and we categorize them in
terms of the number of rows: single-row, double-row, or multi-row. Single-
row and double-row problems commonly occur in practical applications, as
we discuss in Sections 2.1 and 2.2 respectively. Multi-row problems are a
natural extension of the problem to three or more rows, and are considered
in Section 2.3.

Unequal-areas FLPs have two-dimensional facilities with a single floor,
and we assume that the facility is rectangular and that all the departments
fit inside the facility. Unlike in the case of row layouts, not only the position
but also the dimensions of each department are optimized. After discussing
models and approaches for the basic two-dimensional problem in Sections
3.1 to 3.4, we consider in Section 3.5 the special case of flexible bay layouts, a
type of layout that resembles row FLPs but with the fundamental difference
that the width of the bays can vary, depending on the total area of the
departments in each bay.

Three-dimensional facilities give rise to multifloor FLPs in which depart-
ments are to be placed over two or more floors. This is the focus of Section
4. The survey in Section 4.1 shows that most of the literature proposes
models for specific applications rather than for the general problem. For
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this reason we propose in Section 4.2 a formulation for a generic form of the
problem that we hope will motivate further research into multifloor FLP.

Regarding the choice of methodologies, we limit the scope of this re-
view to mathematical optimization-based approaches. These include exact
methods, but as the problems increase in difficulty very rapidly, we also in-
clude heuristic methods that use mathematical optimization approximations
and/or relaxations. While there is a rich literature on heuristic algorithms
for FLPs (see e.g. [71], [91], [57]), our focus here is on mathematical opti-
mization approaches, primarily mixed integer linear optimization (MILO),
often refereed to as mixed integer programming or MIP, semidefinite op-
timization (SDO), also called semidefinite programming or SDP, and non-
linear optimization. Because of their importance to the success of these
approaches, we also include brief discussions of symmetry breaking (Section
5) and valid inequalities (Section 6) as these are essential ingredients for
solving the resulting relaxations efficiently.

We conclude with a summary of directions for future research in Section
7.

2. Row FLPs

Row FLPs share the following common problem statement: Given a set
of rectangular departments each of a given length, a number of rows, and a
pairwise non-negative weight for each pair of departments, determine (i) an
assignment of departments to rows, and (ii) the positions of the departments
in each row, so that the total of the weighted center-to-center distances is
minimized. Row FLPs arise in practical contexts where the departments
are to be placed in rows with a predetermined separation between the rows
due to factors such as the material-handling system or the flows of people.
Moreover, within each row, a minimum clearance between departments is
needed to satisfy safety and operational requirements. We assume that this
clearance is included in the lengths of the departments. We also assume that
the rows and the departments all have the same height, that any department
can be assigned to any row, and that the distances between adjacent rows
are equal. Under these assumptions, solving an instance of the row FLP
means resolving three questions:

1. Assign each department to exactly one row;

2. Express mathematically the center-to-center distance between depart-
ments (that may or may not be in the same row);

3. Handle possible empty space between departments.
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Section 2.1 is concerned with the simplest version of row FLP, namely
the single-row FLP. Section 2.2 covers the double-row FLP, and Section 2.3
extends the coverage to the general multirow FLP.

2.1. The Single-Row FLP

An instance of the Single-Row FLP (SRFLP) consists of n one-dimensional
departments with given positive lengths `1, . . . , `n and pairwise costs cij .
The problem is to find a permutation of the departments that minimizes
the weighted sum of the pairwise distances. Figure 1 provides an illustra-
tion of the SRFLP in the context of placing the departments along the
path of an automated guided vehicle (AGV) transporting material between
the departments; in this context the objective is to minimize the distance
travelled by the AGV.

AGV

Figure 1: SRFLP along the path of an AGV

The SRFLP is the most studied of the row FLPs. Sometimes called
the one-dimensional space allocation problem, it has interesting connections
to well-known combinatorial optimization problems such as maximum-cut,
quadratic linear ordering, and linear arrangement (see [18]).

Because there is only one row, there is no need to assign departments
to rows. Moreover, cij ≥ 0 ensures that there is no empty space between
departments at optimality. Hence the remaining question is to express the
center-to-center distance between departments.

A key observation, first made by Simmons [90], is that the SRFLP can
be expressed as

min
π∈Πn

∑
i<j

cij

[
1

2
(`i + `j) +Dπ(i, j)

]
,

where Πn denotes the set of all permutations of {1, 2, . . . , n}, and Dπ(i, j)
is the center-to-center distance between departments i and j under permu-
tation π.

A first observation here that if π′ denotes the permutation symmetric to
π, defined by π′i = πn+1−i, i = 1, . . . , n, then Dπ(i, j) = Dπ′(i, j). In other
words, the order of the departments in a particular layout can be reversed
without changing the value of the objective function. Hence, it is possible
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to simplify the problem by considering only the permutations that have a
particular facility, say facility 1, in the left half of the arrangement. Alterna-
tively, we can require that a specific facility be to the left of another; this is
known as the position p− k method, see Section 5. This type of symmetry-
breaking strategy can help reduce the computational cost of a mathematical
optimization algorithm for SRFLP and for other types of layout problems,
see Section 5. One aspect unique to the SDO-based approach is that it im-
plicitly accounts for these symmetries, and thus does not require the use of
additional explicit symmetry-breaking constraints, see Section 2.1.2.

A second observation is that it is not necessary to know the position
of each department; it suffices to know for each pair of departments which
departments are between them. Hence the key here is the concept of be-
tweenness.

There is a large amount of literature on the SRFLP. For more detailed ex-
positions on the state-of-the-art for the SRFLP, including extensions, meta-
heuristics, and exact approaches, we refer the reader to [57] and to the recent
review paper [54] in this journal.

To give the reader a sense of the mathematical optimization approaches
to the SRFLP, we present here two different ways to model betweenness.
One is based on MILO and the other based on SDO.

2.1.1. MILO Model

The approach sketched here was originally proposed in [5]. Other MILO
models for SRFLP include, in chronological order, [65], [43], [3], and [4].

For three distinct departments i, j, k, define the betweenness variables
ζijk as:

ζijk =

{
1, if department k lies between departments i and j,
0, otherwise.

Using these variables, the objective function of the SRFLP is expressed as:

∑
i<j

cij

1

2
(`i + `j) +

∑
k 6=i,j

`kζijk


and this is optimized subject to the following constraints:

ζijk + ζikj + ζjki = 1, for all {i, j, k} ⊆ {1, . . . , n}, (1)

ζijd + ζjkd − ζikd ≥ 0, for all {i, j, k, d} ⊆ {1, . . . , n}, (2)

ζijd + ζjkd + ζikd ≤ 2, for all {i, j, k, d} ⊆ {1, . . . , n}, (3)

ζijk ∈ {0, 1}, for all {i, j, k} ⊆ {1, . . . , n}. (4)
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A polyhedral study concerning this formulation can be found in [83]. When 4
is relaxed to 0 ≤ ζijk ≤ 1, the resulting linear optimization (LO) relaxation
is weak. Thus an additional class of valid inequalities that improve the
relaxation is proposed in [5].

Proposition 1. [5] Let β ≤ n be a positive even integer and let S ⊆
{1, . . . , n} such that |S| = β. For each r ∈ S, and for any partition (S1, S2)
of S\{r} such that |S1| = 1

2β, the inequality∑
t<q,t∈S1,q∈S1

ζtqr +
∑

t<q,t∈S2,q∈S2

ζtqr −
∑

t∈S1,q∈S2

ζmin{t,q},max{t,q},r ≤ 0 (5)

is valid for the above formulation of the SRFLP.

It is straightforward to check that for β = 4, (5) is of the form (2). it is
shown in [5] that the size of the LO relaxation can be reduced by projecting
the feasible set into a lower-dimensional space.

2.1.2. SDO Model

To present an SDO-based relaxation, we begin by introducing {±1} bi-
nary variables as in customary in SDO (see [18]). For each pair of depart-
ments ij with 1 ≤ i < j ≤ n, define

Rij :=

{
1, if i is to the right of j,
−1, otherwise.

In this definition, the order of the subscripts matters, and Rij = −Rji.
For an assignment of ±1 values to the Rij variables to represent a per-

mutation, it is necessary to enforce the transitivity condition:

if i is to the right of j and j is to the right of k, then i is to the right of k.

Equivalently, if Rij = Rjk then Rik = Rij . This condition can be formulated
using quadratic constraints:

RijRjk −RijRik −RikRjk = −1 for all triples 1 ≤ i < j < k ≤ n. (6)

Using the Rij variables, it is straightforward to express betweenness after
observing that RkiRkj = −1 if and only if facility k is between i and j. Hence
the objective function can be expressed as

∑
i<j

cij

1

2
(`i + `j) +

∑
k 6=i,j

`k

(
1−RkiRkj

2

) ,
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and the consequent formulation of SRFLP is:

min K −
∑
i<j

cij
2

[∑
k<i

`kRkiRkj −
∑

i<k<j

`kRikRkj +
∑
k>j

`kRikRjk

]
s.t.

RijRjk −RijRik −RikRjk = −1 for all triples i < j < k
R2
ij = 1 for all i < j

(7)

where K :=

(∑
i<j

cij
2

)(
n∑
k=1

`k

)
.

Applying standard techniques from SDO, this formulation leads to the
following SDO relaxation [17]:

min K −
∑
i<j

cij
2

[∑
k<i

`kXki,kj −
∑

i<k<j

`kXik,kj +
∑
k>j

`kXik,jk

]
s.t.

Xij,jk −Xij,ik −Xik,jk = −1 for all triples i < j < k
Xii = 1, for i = 1, . . . , n

X � 0, X ∈ S(n2)

(8)

where X � 0 denotes that X is symmetric positive semidefinite, and S(n2)

is the set of symmetric matrices of dimension
(
n
2

)
. The interpretation of the

entries of X is that Xpi,pj = RpiRpj for any two pairs pi, pj .
Note that if every Rij variable is replaced by its negative, then there is no

change whatsoever to the formulation. In this way, the formulation (7) and
the corresponding SDO relaxation (8) implicitly account for the symmetry
of the SRFLP.

Subsequent improvements to the relaxation (8) were given in [48]. We
refer the reader to that paper and to [54] for more details.

2.2. The Double-Row FLP

The Double-Row FLP (DRFLP) is an extension of the SRFLP in which
departments can be placed on both sides of a central corridor. The distance
between the two rows is assumed to be negligible, and thus the center-to-
center distance between two departments is measured parallel to the cor-
ridor. Figure 2 illustrates the DRFLP with the corridor as the operating
space for an AGV. Another application for the DRFLP is the arrangement
of rooms in buildings, see e.g. [2].

To the best of our knowledge, the first reference to double-row layouts
is in [42] where a nonlinear optimization model is proposed and used to
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AGV

Figure 2: DRFLP with a corridor for an AGV

find locally optimal solutions. Most of the subsequent mathematical opti-
mization approaches in the literature use either MILO (with the first model
introduced in [30] and a recent new model in [10]) or SDO [47].

Unlike for the SRFLP, there is in the DRFLP a need to address all
three questions for row FLPs. The assignment of departments to rows is
somewhat simplified by the fact that there are only two rows: it suffices
to determine which departments are placed in the first row, because the
remaining departments must be in the second row. On the other hand,
betweenness no longer suffices to determine center-to-center distances, and
the optimal layout may involve some empty space between departments.

2.2.1. MILO models

In this section we describe two approaches that extend in different ways
the MILO models proposed for the SRFLP. Both extensions involve a com-
bination of discrete and continuous variables, where the former represent
the assignment of departments to rows and the relative position of two de-
partments, and the latter give the positions of the department centers with
respect to a fixed origin. Without loss of generality the corridor is placed
along the x-axis, and the origin is at the left end of the corridor.

A Model with O(n2) Binary Variables
Consider the binary vector y = (yij)1≤i,j≤n such that

yij =


1, if department i is to the left of department j

and both i and j are in the same row;
0, otherwise.

The following inequalities are valid for all y-incidence vectors representing
a partition of the n departments into two ordered subsets:

yik + yki + yjk + ykj − yij − yji ≤ 1, 1 ≤ i, j, k ≤ n, i < j, k 6= i, j (9)

yik + yji + ykj − yki − yij − yjk ≤ 1, 1 ≤ i, j, k ≤ n, i, k < j, k 6= i (10)

yij + yik + yjk + yji + yki + ykj ≥ 1, {i, j, k} ⊂ {1, . . . , n}. (11)
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Constraints (9) are transitivity constraints with respect to row assignments.
They ensure that if i and k are in the same row (yik + yki = 1) and k and j
are in the same row (yjk + ykj = 1), then 1 + 1 − (yij + yji) ≤ 1, implying
yij + yji ≥ 1, i.e., i and j are in the same row.

Constraints (10) are three-cycle constraints. They forbid a solution
where k is placed to the right of i, i is to the right of j, and j is to the
right of k (thus forming an impossible cycle).

Constraints (11) require that at least two of i, j, k must be in the same
row. It also ensures that no more than two rows are used.

We now state the MILO model of [10]:

min
n−1∑
i=1

n∑
j=i+1

cijdij (12)

s.t. dij ≥ xi − xj , dij ≥ xj − xi, 1 ≤ i < j ≤ n (13)

xi +

(
`i + `j

2

)
≤ xj + L(1− yij), 1 ≤ i, j ≤ n, i 6= j (14)

dij −
(
`i + `j

2

)
yij −

(
`i + `j

2

)
yji ≥ 0, 1 ≤ i < j ≤ n (15)

y ∈ Qn (16)

yij ∈ {0, 1}, 1 ≤ i, j ≤ n, i 6= j (17)

`i
2
≤ xi ≤ L−

`i
2
, 1 ≤ i ≤ n (18)

where we use the continuous variables

• xi representing the position of the center of i (1 ≤ i ≤ n) along the
corridor,

• dij representing the distance between (the centers of) i and j (1 ≤ i <
j ≤ n) measured parallel to the corridor.

Also L =
∑n

i=1 `i, and

Qn = {y ∈ Rn(n−1) : (9), (10), (11), 0 ≤ yij ≤ 1, 1 ≤ i, j ≤ n, i 6= j}.

The integral points of the polytope Qn are precisely the y-incidence vectors
of interest [10, 31].

Constraints (13) give the rectilinear distance between each pair of de-
partments. Constraints (16) and (17) characterize the y-incidence vectors,
and constraints (18) are bounds on the x variables. Constraints (14) ensure
that departments assigned to the same row do not overlap.
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Constraints (15) ensure that if department i is placed in the same row as
department j, then the distance between their centers is at least (`i + `j)/2.
Note that constraints (15) are redundant in the presence of constraints (13)
and (14), but they may be helpful for a branching algorithm.

A Model with O(n3) Binary Variables
For this model, we define two sets of binary variables:

yik =

{
1, if department i is assigned to row k
0, otherwise.

zkij =

{
1, if department j is placed to the right of department i in row k
0, otherwise.

As in the previous model, we use continuous variables to determine the
location of the departments. Specifically we let xik denote the absolute
location of department i in row k, and set it to zero if i is not assigned to
row k.

These definitions support the model proposed in [30]. This model ex-
plicitly accounts for clearances between departments. As corrected in [97],
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the model is:

min
n−1∑
i=1

n∑
j=i+1

cij

(
v+
ij + v−ij

)
s.t.

∑
k∈K

xik −
∑
k∈K

xjk + v+
ij − v

−
ij = 0, i ∈ I1, j ∈ I2 (19)

xik ≤Myik, i = 1, . . . , n, k ∈ K (20)∑
k∈K

yik = 1, i = 1, . . . , n (21)

`iyik + `jyik
2

+ aikzkji ≤ xik − xjk +M(1− zkji) (22)

i ∈ I1, j ∈ I2, k ∈ K
`iyik + `jyik

2
+ aikzkij ≤ xjk − xik +M(1− zkij), (23)

i ∈ I1, j ∈ I2, k ∈ K

zkij + zkji ≤
1

2
(yik + yjk), i ∈ I1, j ∈ I2, k ∈ K (24)

zkij + zkji + 1 ≥ yik + yjk, i ∈ I1, j ∈ I2, k ∈ K (25)

xik ≥ 0, i ∈ I, k ∈ K
v+
ij , v

−
ij ≥ 0, i ∈ I1, j ∈ I2

yik ∈ {0, 1}, i ∈ I, k ∈ K
zkij ∈ {0, 1}, i ∈ I, j ∈ I \ {i}, k ∈ K

(26)

where aij is the required clearance between departments i and j, I1 =
{1, . . . , n − 1}, I2 = {i + 1, . . . , n}, K = {1, 2} is the set of rows, and
the constant M =

∑
i∈I (`i + maxj∈I aij) is analogous to L in the previous

model but also includes the clearances.
Constraints (19) compute the distances between departments. Con-

straints (20) set xik = 0 when department i is not assigned to row k.
Constraints (21) ensure that a department is assigned to just one row. Con-
straints (22) and (23) prevent departments from overlapping if they are
located in the same row.

Constraints (24) and (25) ensure consistency between the variables y
and z as follows: If yik = 1 and yjk = 1 then (24) and (25) together ensure
that exactly one of zkij and zkji is equal to one. Otherwise, i.e., if at least
one of yik and yjk is equal to zero, then (24) sets both zkij and zkji to zero.
Constraints (25) force either zkij or zkji to be 1 if i and j are both in row k.
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Note that the O(n2) model has significantly fewer variables than the
O(n3) model, and that the meaning of the continuous variables xik differs
between the two models. Finally, it is important to observe that while the
O(n2) model is specific to the DRFLP, the O(n3) model can be applied
directly to the MRFLP by increasing the cardinality of K.

2.2.2. SDO Model

An SDO-based approach for the MRFLP was developed in [47] and also
applied to the DRFLP. This approach is presented in Section 2.3.1.

2.3. The Multirow FLP

The MRFLP is a natural extension of row layout to three or more rows.
An instance of the MRFLP has a given number of rows to which the depart-
ments can be assigned, the departments all have the same height (equal to
the row height), the distances between adjacent rows are equal, and depart-
ments can in general be assigned to any row.

The MRFLP has received very limited attention in the operations re-
search literature to date. In terms of practical applications, it captures the
basic structure of contexts where the departments are to be arranged in well-
defined rows because the separation between the rows is predetermined. It
is thus a problem that is discrete in one dimension and continuous in the
other. Heuristic algorithms were proposed in [42], and a nonlinear opti-
mization formulation was given in [36] and solved using a genetic algorithm
(GA).

In terms of approaches using MILO and SDO, as noted in Section 2.2.1,
the O(n3) MILO formulation of [97] for the DRFLP can be easily extended
to the MRFLP (this was not specifically done in that paper). More recently,
an SDO-based approach was introduced in [47], and it is this approach that
we present here. To the best of our knowledge, this is the only global
optimization approach for the general row FLP with more than two rows.

2.3.1. SDO Model

The SDO model presented in [47] for the MRFLP is based on the SDO
formulation for the SRFLP presented in Section 2.1.2. The idea is to first
assume that the assignment of departments to rows is fixed and that no
spaces are allowed between departments in the same row. This restricted
version of the MRFLP is called the k-Parallel Row Ordering Problem (k-
PROP), see Section 2.3.2 and the references therein for more details.

Consider the k-PROP with n departments and m rows, and let the as-
signment of departments to rows be specified by r : {1, . . . , n} → {1, . . . ,m}.
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Define the binary variables Rij as in Section 2.1.2, and let dij represent the
center-to-center distance between i and j measured parallel to the rows. If
i and j are assigned to the same row, i.e., if r(i) = r(j), then

dij =
1

2
(`i + `j) +

∑
k∈N, k<i
r(k)=r(i)

`k
1−RkiRkj

2
+

∑
k∈N, i<k<j
r(k)=r(i)

`k
1 +RikRkj

2

+
∑

k∈N, k>j
r(k)=r(i)

`k
1−RikRjk

2
,

(27)

while if r(i) 6= r(j)

dij = Rij


`j2 +

∑
k∈N, k<j
r(k)=r(j)

`k
1 +Rkj

2
+

∑
k∈N, k>j
r(k)=r(j)

`k
1−Rjk

2



−

`i2 +
∑

k∈N, k<i
r(k)=r(i)

`k
1 +Rki

2
+

∑
k∈N, k>i
r(k)=r(i)

`k
1−Rik

2


 .

(28)

The above relations, plus the triangle inequalities relating the distances
between every triplet of departments i, j, k:

zij + zik ≥ zjk, zij + zik ≥ zjk, zik + zjk ≥ zij , 1 ≤ i < j < k ≤ n, (29)

are used in [47] to extend the SDO formulation for the SRFLP to an SDO
formulation for the k-PROP. For the sake of brevity here, we refer the reader
to [47] for the technical details.

Once an SDO formulation of the k-PROP is obtained, the possibility of
spaces is handled using the following results:

Theorem 1 ([47]). If all the department lengths `i are integer, then there
is always an optimal solution to the MRFLP on the half-integer grid.

Corollary 1 ([47]). If all the department lengths `i are integer, then for each
instance of the MRFLP, we obtain an equivalent instance of the k-PROP by
adding spacing departments of length 0.5 such that the length of each row
becomes equal to M :=

∑n
i=1 `i.
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The strategy is thus to add spacing departments of length 0.5 and with
all involved connectivities equal to zero, and then apply the SDO approach
for k-PROP. Because the number of spacing departments needed will nor-
mally be too large for practical computation, several results are proved in
Hungerländer and Anjos [47] to reduce the number of spacing departments
needed.

Finally, to remove the restriction that the assignment of departments to
rows is fixed, Hungerländer and Anjos [47] obtain global optimal solutions
(respectively bounds) by using this approach for all possible assignments
(respectively for a subset of them).

2.3.2. Special Cases of the MRFLP

The difficulty in solving the general MRFLP has motivated the study
of a number of special cases with simplifying assumptions and/or specific
structure that allow for more effective modeling and solution approaches.

The Equidistant MRFLP
A first such special case is the equidistant version of the MRFLP, denoted

MREFLP, in which all departments have the same length. This structure
makes it possible to prove many interesting results. The single-row case is
known in the literature as the linear arrangement problem, see e.g. [63],
[11], [12], [80], [6], and is well known to be NP-hard even if all the pairwise
costs are binary [35].

The double-row case was considered in [7] where a MILO formulation
based on the quadratic assignment problem is given.

For the general MREFLP, it is shown in [16] that the problem has an
optimal solution on the integer grid (although the lengths of the spaces are in
general continuous quantities). This implies that only spaces of unit length
need to be used when modeling the MREFLP, and hence that the problem
can be formulated as a purely discrete optimization problem, as is the case
for the SRFLP in Section 2.1. Moreover, exact results were proved in [16]
for the minimum number of spaces that must be added so as to preserve
at least one optimal solution. These results lead to both MILO and SDO
models for the MREFLP.

The Space-Free MRFLP
Another important special case of the MRFLP is the Space-Free MRFLP

(SF-MRFLP) in which no spaces are allowed within the rows, all rows have
a common left origin, and the leftmost department in each row is flush with
the left end of the row. When there is only one row, the SF-MRFLP is
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equivalent to the SRFLP. Where there are two rows, the SF-MRFLP is also
called the Space-Free DRFLP or the Corridor Allocation Problem, for which
a MILO formulation was proposed in [8], and an SDO approach in [46].

A special case of the SF-MRFLP that has attracted attention is the k-
PROP introduced in Section 2.3.1. Because the assignment of departments
to rows is given, and no spaces are allowed within the rows, the k-PROP
reduces to finding the optimal permutation of the departments within each
row. An SDO approach for k-PROP was mentioned in Section 2.3.1, and
another was given in [45]. When the number of rows equals two, this problem
is simply called PROP, and a MILO formulation for it was given in [9].

2.4. Computational Performance of the Models

Row FLPs remain highly challenging problems. We summarize here the
state-of-the-art in terms of the computational performance of the approaches
preserved above.

For both the SRFLP and the single-row MREFLP, the largest instances
solved to optimality had 42 departments, see [48] and [44] respectively.

For the DRFLP, the O(n2) model was used in [10] to obtain solutions
of instances with up to 12 departments within one hour. The O(n3) model
was also tested in [10] but was unable to solve instances with more than 10
departments within three hours. The corrected model of [97] was used in
[76] for asymmetric flows. The constraints are (20)–(26), and the objective
function is ∑

i∈I1

∑
j∈I2

(cij + cji)
(
v+
ij + v−ij

)
.

The conclusion of the computational tests is that with a time limit of 10
minutes, most of the heuristic algorithms perform better than CPLEX on
instances with more than 20 departments.

Finally for the MRFLP, tight global bounds were computed in [47] for
instances with up to 12 departments. The authors adapted an approach
originally proposed in [34] for the max-cut problem and several ordering
problems. The SDO-based approach was applied to instances with up to 5
rows and up to 8 departments. The results show that the SDO approach is
most effective for 4 or 5 rows. There may be an intuitive explanation for
this: as an extreme example, note that it is easier to partition 5 departments
into 5 rows than into 2 rows. This is in part because the model does not take
into account the distance between rows, so assigning department 1 to row
1 is exactly the same as assigning it to row 4. Accounting for the distances
between rows may change the nature of the results, but has not yet been
done to the best of our knowledge.
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3. Unequal-Areas FLP

The Unequal-Areas FLP (UA-FLP) is concerned with finding the opti-
mal arrangement of a given number of nonoverlapping indivisible depart-
ments with varying areas so as to minimize the total expected cost of flows
inside the facility. Unlike in the row FLPs, the dimensions of each depart-
ment are optimized (subject to the area requirement).

The UA-FLP, sometimes called the single-floor FLP, has received much
attention in the literature. It was first stated in [23], and one of the first
MILO formulations was proposed in [74] using binary variables to prevent
overlap.

We begin with an exact formulation of the UA-FLP in Section 3.1. This
allows us to establish notation, and more importantly to explicitly show
where the main difficulties are for solving UA-FLP. Exact MILO models
are covered in Section 2.2.1. This includes sequence-pair formulations in
Section 3.2.1, one of which solved instances with up to 11 departments to
global optimality, the largest such results to date [72].

Most of the approaches reviewed here are two-stage frameworks, where
the first stage determines the relative location of the departments, and the
second stage obtains a final layout via a mathematical optimization model.
Two-stage approaches are mathematical optimization-based heuristics that
are not guaranteed to find the global optimal layout but they seem to be
the most promising for handling large-scale instances of UA-FLP. The main
differences between the approaches are in the first-stage algorithms. We
present in Section 3.3 approaches that are entirely based on nonlinear op-
timization models, one of which was recently shown to be able to compute
layouts for instances with up to 100 departments in less than 15 min of com-
putation time [22]. Other two-stage approaches are summarized in Section
3.4.

A MILO formulation for the important special case of flexible bay UA-
FLP is discussed in Section 3.5

A number of heuristics for the UA-FLP make use of a slicing-tree struc-
ture. This is a binary tree that represents the floor plan after applying a
recursive partitioning process. Each node of the tree contains either a de-
partment or a cut operator, thus each slicing tree corresponds to a particular
layout. This strategy was first used in [79] in the context of VLSI design and
later extended to the UA-FLP in [93]. It was also used in [85, 33, 84, 55, 29].
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3.1. An Exact Formulation of the UA-FLP

We begin by presenting an exact formulation that uses only continuous
variables. The reasons for doing so are two-fold: we establish some notation
that will be common for the remainder of this section, and we explicit point
out where the difficulties lie in solving UA-FLP, thus motivating the solution
approaches subsequently presented.

We assume that we are given the height and width of the facility as
hF and wF respectively, and that for each department i we have lower and
upper bounds wmin

i and wmax
i on its width, and hmin

i and hmax
i on its height.

We also assume that βi, an upper bound on the aspect ratio of department
i, is given for each department i. It is necessary that βi ≥ 1, and the closer
βi is to unity, the closer the shape of department i will be to a square.

With this notation, the UA-FLP can be formulated as follows (see [94]):

min
xi,yi,hi,wi

∑
1≤i<j≤n

cij(|xi − xj |+ |yi − yj |) (30)

s.t. wmin
i ≤ wi ≤ wmax

i , for i = 1, . . . , n (31)

hmin
i ≤ hi ≤ hmax

i , for i = 1, . . . , n (32)

wihi = Ai, for i = 1, . . . , n (33)

max

{
wi
hi
,
hi
wi

}
≤ βi, for i = 1, . . . , n (34)

xi +
1

2
wi ≤

1

2
wF and

1

2
wi − xi ≤

1

2
wF , for i = 1, . . . , n (35)

yi +
1

2
hi ≤

1

2
hF and

1

2
hi − yi ≤

1

2
hF , for i = 1, . . . , n (36)

|xi − xj | ≥
1

2
(wi + wj) or |yi − yj | ≥

1

2
(hi + hj),

for all 1 ≤ i < j ≤ n.
(37)

The first four sets of constraints enforce the shape requirements. Constraints
(31) and (32) enforce the bounds on the width and height of each depart-
ment. Constraints (33) enforce the area requirement for each department.
Note that these constraints can be relaxed to wihi ≥ Ai. This relaxed form
has the advantage of being convex, and in fact it can be formulated as a
conic constraint (see Section 3.2). Because the optimization will push this
relaxed form towards equality, in general wihi will equal Ai at optimality.
Moreover Theorem 3.1 in [92] states that if

∑n
i=1Ai = hFwF then the con-

straints 33 must hold at every feasible solution. Constraints (34) enforce
the maximum aspect ratio; it is straightforward to write them as two linear
inequality constraints.
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The last two sets of constraints enforce the location requirements. Con-
straints (35)–(36) ensure that the departments are inside the facility. Fi-
nally, constraints (37) prevent overlapping; these constraints are disjunctive
and nonconvex, and are the hardest ones to handle. If the relative posi-
tion of each pair of departments is known, then the constraints (37) can
be written as linear inequalities, and the formulation becomes a (convex)
conic optimization problem that is straightforward to solve. This observa-
tion motivates the two-stage philosophy in several of the approaches in the
literature; we present the most prominent in Sections 3.3 and 3.4.

Note that this formulation locates the center of the facility at the origin,
while some of the models below locate the origin at the bottom left-hand
corner of the facility. This difference is otherwise of no consequence.

3.2. MILO Models

We begin with the MILO model introduced by [73] and enhanced in [88].
Define the binary variables

zhij =

{
1 if i must precede j horizontally,
0 otherwise,

zvij =

{
1 if i must precede j vertically,
0 otherwise.

19



The MILO formulation is as follows:

min
∑

1≤i<j≤n
cij(uij + vij) (38)

s.t.
uij ≥ xi − xj and uij ≥ xj − xi, 1 ≤ i < j ≤ n
vij ≥ yi − yj and vij ≥ yj − yi, 1 ≤ i < j ≤ n

(39)

1

2
wi ≤ xi ≤ wF −

1

2
wi, i = 1, . . . , n

1

2
hi ≤ yi ≤ hF −

1

2
hi, i = 1, . . . , n

(40)

wmin
i ≤ wi ≤ wmax

i , i = 1, . . . , n

hmin
i ≤ hi ≤ hmax

i , i = 1, . . . , n
(41)

aiwi + 4

(
wmin
i +

λ

∆− 1
(wmax

i − wmin
i )

)2

hi ≥

2ai

(
wmin
i +

λ

∆− 1
(wmax

i − wmin
i )

)
, λ = 0, 1, . . . ,∆− 1

(42)

zhij + zhji + zvij + zvji = 1, 1 ≤ i < j ≤ n (43)

xi +
1

2
wi ≤ xj −

1

2
wj + wF (1− zhij), i 6= j

yi +
1

2
hi ≤ yj −

1

2
hj + hF (1− zvij), i 6= j

(44)

zhij , z
v
ij ∈ {0, 1}, i, j ∈ N. (45)

Constraints (39) provide a linearization of the objective function (30) above.
Constraints (40) ensure that each department is within the facility; they
differ from (35)–(36) because this formulation places the origin at the bottom
left-hand corner of the facility. Constraints (41) are lower and upper bounds
for the widths and heights of the departments.

Constraints (42) are the polyhedral outer approximation on ∆ points of
(33). This approximation was introduced in [88] and also used in [72] and
[62] (see Section 3.2.1 below). This approximation is effective in practice
but less efficient that using the aforementioned convex conic relaxation that
is supported by most current MILO solvers. This is because wihi ≥ Ai is
equivalent to a second-order cone constraint:[

hi
√
Ai√

Ai wi

]
� 0⇔ wi + hi ≥

∥∥∥∥( wi − hi
2
√
Ai

)∥∥∥∥
2

. (46)

Finally, constraints (43)–(45) use the relative-location variables zhij and
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zvij to prevent overlapping: depending on which of the variables zhij , z
v
ij , z

h
ji, z

v
ji

is set to 1, i is to the left of, to the right of, below, or above j.
An alternative MILO representation of the relative positions of depart-

ments is given in the next section.

3.2.1. Sequence-Pair Formulations

Sequence-pair approaches determine the relative positions of the depart-
ments using the so-called sequence-pair representation, and combine this
representation with a MILO model similar to the one above to obtain the
optimal layout. The sequence-pair representation was first used for VLSI
design in [75], and for the FLP in [72] and [62].

A sequence-pair is a pair of sequences of departments, denoted Γ+ and
Γ−, that together encode the relative location of the departments. The
following theorem indicates how to translate a sequence-pair into a layout.

Theorem 2 ([72]). Given a sequence-pair (Γ+,Γ−) and two departments i
and j in (Γ+,Γ−), i and j satisfy the following horizontal/vertical relation-
ship in the FLP:

- if j succeeds i in both Γ+ and Γ−, then j is to the right of i;

- if j precedes i in both Γ+ and Γ−, then j is to the left of i;

- if j precedes i in Γ+ and succeeds i in Γ−, then j is above i;

- if j succeeds i in Γ+ and precedes i in Γ−, then j is below i.

The sequence-pair structure can be incorporated in a MILO model as
follows. Given a sequence-pair (Γ+,Γ−) and departments i and j, define the
binary variables:

z+
ij =

{
1 if i precedes j in Γ+,
0 otherwise,

z−ij =

{
1 if i precedes j in Γ−,
0 otherwise.

These definitions lead to Theorem 3:

Theorem 3 ([72]). For any two departments i and j, the following hold:

- if z+
ij = 1 and z−ij = 1, then i precedes j horizontally;

- if z+
ij = 0 and z−ij = 0, then j precedes i horizontally;

- if z+
ij = 0 and z−ij = 1, then i precedes j vertically;

- if z+
ij = 1 and z−ij = 0, then j precedes i vertically.
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A different MILO model (see [72]) for the FLP can now be formulated:

min
∑

1≤i<j≤n
cij(uij + vij)

s.t. (39)–(42)

z+
ij + z+

ji = 1, 1 ≤ i < j ≤ n
z−ij + z−ji = 1, 1 ≤ i < j ≤ n

(47)

z+
ik + z+

kj − z
+
ij ≤ 1, 1 ≤ i < j ≤ n

z−ik + z−kj − z
−
ij ≤ 1, 1 ≤ i < j ≤ n

(48)

xi +
1

2
wi ≤ xj −

1

2
wj + wF (2− z+

ij − z
−
ij), i, j ∈ N, i 6= j

yi +
1

2
hi ≤ yj −

1

2
hj + hF (1 + z+

ij − z
−
ij), i, j ∈ N, i 6= j

(49)

z+
ij , z

−
ij ∈ {0, 1}, i, j ∈ N. (50)

Constraints (47) ensure that every department appears exactly once in each
sequence, and constraints (48) are transitivity constraints for the two se-
quences. Together these constraints ensure that the binary variables repre-
sent valid sequences. Constraints (49) express nonoverlapping in terms of
the sequence-pair variables.

Using the MILO model above with additional valid inequalities, includ-
ing p − k symmetry-breaking constraints (see Section 5), instances of UA-
FLP with up to 11 departments were solved to global optimality in [72]. The
computational time reached almost 17 hours for the 11-department instance.

Castillo and Westerlund [27] proposed a MILO model that satisfies the
area requirements within a given accuracy ε using cutting planes. We omit
the details for this because the area constraints can be handled more effec-
tively using conic optimization, as mentioned above. We point out however
that Castillo and Westerlund [27] used the following alternative formulation
of nonoverlap that is essentially the sequence-pair representation:

1

2
(wi + wj)− (xi − xj) ≤ wF (Xij + Yij), 1 ≤ i < j ≤ n (51)

1

2
(wi + wj)− (xj − xi) ≤ wF (1 +Xij − Yij), 1 ≤ i < j ≤ n (52)

1

2
(hi + hj)− (yi − yj) ≤ hF (1−Xij + Yij), 1 ≤ i < j ≤ n (53)

1

2
(hi + hj)− (yj − yi) ≤ hF (2−Xij − Yij), 1 ≤ i < j ≤ n (54)

Xij , Yij ∈ {0, 1}, 1 ≤ i ≤ n, (55)
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where the variables Xij and Yij are a binary codification of the relative po-
sition of departments. A GA was implemented in [62] where each sequence-
pair is a chromosome; the sequence-pair gives the relative position of the
departments (first stage), and then a LO model is solved to find the best
layout (second stage). They achieved the best results up to then for in-
stances with up to 35 departments; the computational time was 26 hours
for the 35-department instance.

A branch-and-bound algorithm that uses the sequence-pair representa-
tion was presented in [96]. A minimum-cost network flow problem is solved
to obtain a feasible layout from the sequence-pair representation of the rel-
ative position layout. However, this is only valid for a restricted version of
the UA-FLP in which the department widths and heights are fixed, and the
facility has no limitations. Such an UA-FLP with just the nonoverlapping
constraints can be transformed into a network flow problem. The advantage
is that network flow algorithms can be several orders of magnitude faster
than general LO algorithms.

It was observed in [72] and [62] that the MILO model with constraints
(43) and (45) has 2n(n−1) possible combinations of the binary variables, while
the sequence-pair-based MILO formulation has (n!)2 sequences generating
the same set of relative-position combinations. The authors claim that this
difference is key to the effectiveness of the sequence-pair approach. The dif-
ference is indeed significant: Using Stirling’s approximation, we have that
(n!)2 = θ(e2(n ln(n)−n)) while 2n(n−1) = e0.693(n2−n). However, a comparison
of the two formulations shows that another important difference is the pres-
ence of the transitivity constraints (48) in the sequence-pair model. It is
not entirely clear to what extent each of these differences contributes to the
efficiency of the sequence-pair approach. It would be interesting to carry
out a computational study to clarify this question.

3.3. Two-Stage Approaches Using Nonlinear Optimization

A two-stage approach based on the attractor-repeller (AR) technique
for VLSI floorplanning was introduced in [19]. The first stage uses the AR
technique to establish the relative positions of the departments, and the
second stage finds a feasible layout satisfying the relative positions specified
by the solution to the first stage. The objective of this approach is not
to achieve global optimality but rather to efficiently compute competitive
solutions to large-scale instances of UA-FLP.

The AR model approximates each department by a circle with radius ri
proportional to the square root of Ai. The model places the circles inside
the facility while allowing some overlapping. The amount of overlapping is
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controlled via a so-called target distance: given α > 0, the target distance
tij for circles i and j is set as tij = α(ri + rj)

2. The AR model is:

min
x,y

∑
1≤i<j≤n

cijDij + f

(
Dij

tij

)
s.t. xi + ri ≤

1

2
wF , i = 1, . . . , n

xi − ri ≥ −
1

2
wF , i = 1, . . . , n

yi + ri ≤
1

2
hF , i = 1, . . . , n

yi − ri ≥
1

2
hF , i = 1, . . . , n,

where (xi, yi) is the center of circle i, Dij = (xi − xj)
2 + (yi − yj)

2 and
f(z) = 1

z − 1 is a penalty function. The constraints keep the circles inside
the facility whose center is at the origin. The objective function is a trade-off

between the attractor term cijDij and the repeller term f
(
Dij

tij

)
.

While the constraints are linear, the objective function is nonlinear and

nonconvex. It was convexified in [19] by replacing the term cijDij +f
(
Dij

tij

)
with the following piecewise function:

fij(xi, xj , yi, yj) =

 cijz +
tij
z − 1, z ≥

√
tij
cij

2
√
cijtij − 1, 0 ≤ z <

√
tij
cij

(56)

where z = (xi − xj)2 + (yi − yj)2, and it is assumed that cij > 0. Note that
the second branch of fij is constant, and that by construction, fij attains
its minimum whenever the positions of i and j satisfy Dij ≤

√
tij/cij . This

includes the case where Dij = 0, i.e., the two circles completely overlap. Of
course, such a placement is undesirable. The ideal arrangement of the circles
has Dij ≈

√
tij/cij , i.e., close to the boundary of the flat portion of fij . At

these points, the minimum of fij is attained at the same time as the overlap
is minimized. This motivates the introduction in [20] of a generalized target
distance:

Tij =

√
tij

cij + ε
, 1 ≤ i, j ≤ n, (57)

where ε > 0 is chosen sufficiently small so that Tij ≈
√
tij/cij . This modifi-

cation also removes the need for the assumption that cij > 0.
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In practice, attaining a solution with Dij ≈ Tij is not easy. The approach
in [20] sacrifices convexity and proposes a modified AR model with the
objective:

min
∑

1≤i<j≤n
fij(xi, xj , yi, yj)−K log

{
Dij

Tij

}
, (58)

where

fij(xi, xj , yi, yj) =

{
cijz +

tij
z − 1, z ≥ Tij

2
√
cijtij − 1, 0 ≤ z < Tij ,

and the logarithmic term steers the optimization away from solutions with
Dij ≈ 0. Indeed the minima of this (nonconvex) function satisfy Dij ≈ Tij .
This can be viewed as a compromise in the sense that convexity is lost, but
computational efficiency is gained because a suitable choice of starting point
and nonlinear optimization solver makes it possible to compute a solution
close to these known minima.

In the second stage, the nonoverlapping constraints (37) are formulated
as complementarity constraints. For each pair i, j, we introduce new vari-
ables Xij and Yij satisfying

Xij ≥
1

2
(wi + wj)− |xi − xj |, Xij ≥ 0,

Yij ≥
1

2
(hi + hj)− |yi − yj |, Yij ≥ 0,

XijYij = 0

This last constraint enforces nonoverlap by requiring that at least one of
Xij and Yij equal zero. Using the coordinates of the centers of the circles
in the optimal solution of the modified AR model to initialize the nonlinear
optimization solver, this approach improved on the then-best-known solu-
tions for large instances, in particular for the Armour-Buffa 20-department
instance.

There are some challenges with this approach so far. First a nonconvex
model with the repeller function 1

z − 1 was proposed in [19]; this model was
then modified in [20] to achieve convexity, but then the addition of a new
penalty term resulted again in a loss of convexity, though in a more con-
trolled manner. Moreover, the optimization problem with complementarity
constraints is difficult to solve for large-scale instances.

This motivated the significant improvements to this approach carried
out in [50]. For the first stage, fij(xi, xj , yi, yj) is replaced by a more com-
plicated expression that also integrates information about the aspect ratio
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constraints. We refer the reader to [50] for details on the first stage, and
instead present below the recent further improvements in [22].

The more significant contributions in [50] are their improved second
stage, and the linking of the two stages. They introduce the following convex
second-stage model that can be solved efficiently:

min
(xi,yi),wi,hi

∑
1≤i<j≤n

(uij + vij) (59)

s.t. uij ≥ xi − xj , for 1 ≤ i < j ≤ n (60)

uij ≥ xj − xi, for 1 ≤ i < j ≤ n (61)

vij ≥ yi − yj , for 1 ≤ i < j ≤ n (62)

vij ≥ yj − yi, for 1 ≤ i < j ≤ n (63)

wmin
i ≤ wi ≤ wmax

i , for 1 ≤ i < j ≤ n (64)

hmin
i ≤ hi ≤ hmax

i , for 1 ≤ i < j ≤ n (65)

wihi ≥ Ai, for 1 ≤ i < j ≤ n (66)

βiwi − hi ≥ 0, for 1 ≤ i < j ≤ n (67)

βihi − wi ≥ 0, for 1 ≤ i < j ≤ n, (68)

plus appropriately chosen linear inequality constraints to ensure nonoverlap.
These nonoverlap constraints are obtained as follows. Consider the coor-

dinates of the centers of the circles in the optimal solution to the first stage
as a set of points on the plane, and compute their Delaunay triangulation.
One of the properties of this triangulation is that it maximizes the minimum
angle over all the angles of the triangles; in practice this means that thin
triangles are less likely. The edges of the Delaunay triangulation are taken
to represent the relative positions of the departments, and these positions
are then enforced by the appropriate linear constraints. For example, if the
centers of i and j are connected in the triangulation and j is to the right
of i, then the constraint xj − xi ≥ 1

2(wi + wj) is added to the model. The
result is a second stage model that is a conic optimization problem and can
be solved efficiently.

The overall approach in [50] provided further improved layouts for the
classical Armour-Buffa instance, and computed high-quality layouts for sev-
eral 30-department instances in 5 minutes or less of computation time.

Most recently, [22] further developed the AR concept. As the second
stage of [50] is highly effective, the novelty in [22] is the formulation of the
first stage. Specifically they propose a more precise formulation that models
the departments as rectangles instead of approximating them by circles. The
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aspect ratio constraints can therefore be exactly enforced at the first stage,
instead of being approximated as in [50]. They still forego convexity and
use the simple objective function

cijD
2
ij +K

θ2
ij

D2
ij

− 1,

where θ2
ij = 1

4

(
(wi + wj)

2 + (hi + hj)
2
)
. Note that Dij/θij ≈ 1 indicates

that some of the borders of the rectangles are close, regardless of whether
the rectangles are overlapping (by a small amount) or not.

The resulting first-stage model is:

min
xi,yi,hi,wi

∑
1≤i<j≤n

(
cijD

2
ij +K

θ2
ij

D2
ij

− 1

)

s.t. xi +
1

2
wi ≤

1

2
wF and

1

2
wi − xi ≤

1

2
wF , for i = 1, . . . , n,

yi +
1

2
hi ≤

1

2
hF and

1

2
hi − yi ≤

1

2
hF , for i = 1, . . . , n,

wihi ≥ Ai, for i = 1, . . . , n,

βwi − hi ≥ 0, for i = 1, . . . , n,

βhi − wi ≥ 0, for i = 1, . . . , n,

wmin
i ≤ wi ≤ wmax

i , for i = 1, . . . , n,

hmin
i ≤ hi ≤ hmax

i , for i = 1, . . . , n.

where K = α
∑

1≤i<j≤n cij , and 0 < α ≤ 1. By solving for different choices
of α (and hence of K), the authors of [22] improved on the best solutions by
earlier techniques. Furthermore, they computed layouts for instances with
up to 100 departments in less than 15 min of computation time. This is the
only approach entirely based on mathematical optimization models that has
been able to reach such large-scale instances of UA-FLP.

3.4. Other Two-Stage Approaches

A heuristic based on a graph-pair representation and a simulated an-
nealing technique was proposed in [25]. One of the graphs represents the
horizontal separation of the departments, and the other represents the ver-
tical separation. Their results are generally good, but the authors make
changes in the areas of the facilities or departments. These modifications
are reasonable from a practical point of view, but they make it difficult to
compare with other techniques.
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A LO-based GA approach, which differs from [62] in the chromosome
coding, was introduced in [58]. The idea is that the GA searches for the rel-
ative locations of the departments, and the LO model determines their exact
locations and shapes. In particular, a new location/shape representation is
proposed to encode the relative locations. Specifically, the relative location
of department i is represented as (xi, yi, αi), where αi = hi/wi. For each
(xi, yi, αi), define two straight lines, one passing through (xi, yi) and the up-
per right corner (xi+wi/2, yi+hi/2), and the other passing through (xi, yi)
and the upper left corner (xi−wi/2, yi +hi/2). These lines split the facility
into four regions with reference to department i, so every other department
is above or below or left or right of i. Like the sequence-pair representation,
the location/shape representation always generates a consistent assignment
of the binary decision variables. Note that while the MILO-model does not
contain the transitivity constraints for the integer variables, this encoding
(based on continuous variables) encapsulates transitivity. The results in [58]
show that this approach outperforms previous techniques: the cost function
is reduced and the computational time is lower.

A similarly structured approach was proposed in [37] using a random-
key GA in the first stage and a LO model in the second stage. The authors
report results on several instances of UA-FLP from the literature, and find
slightly better solutions in a considerably shorter computational time, in
comparison with the other GA approaches. They also applied their approach
to larger instances with up to 125 departments, but without restrictions on
the dimensions of the facility. The computational time is reduced because
they do not solve all the LO problems originating from the relative-position
solutions: they only solve the problems that provably yield a feasible solution
with a cost not exceeding 40% of that of the previous best solution.

3.5. Flexible Bay Structure

A flexible bay structure is a continuous layout where the departments are
located in parallel bays with flexible widths. This special case of the UA-FLP
arises in manufacturing facilities [69]. The bay structure is similar to the
row structure in row FLPs, but a fundamental difference is that the width of
each bay depends on the total area of the departments in that bay, whereas
in row FLPs, the heights of the rows and of the departments are equal and
fixed. The bays have straight aisles on both sides, and departments are not
allowed to span multiple bays. This structure restricts the set of feasible
solutions, but it has advantages in practice: the bay boundaries form the
basis of an aisle structure that facilitates the transfer of the layout solution
to an actual facility design.
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A MILO formulation for this problem was proposed in [56]. The continu-
ous variables xi, yi represent the location of department i, and hik represent
the height of department i in bay k. The binary variables are defined as
follows:

zik =

{
1, if department i is assigned to bay k
0, otherwise;

rij =

{
1, if department i is above department j in the same bay
0, otherwise;

δk =

{
1, if bay k is occupied
0, otherwise.
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The MILO model is:

min
∑

1≤i<j≤n
cij(uij + vij)

s.t. uij ≥ xi − xj and uij ≥ xj − xi, 1 ≤ i < j ≤ n
vij ≥ yi − yj and vij ≥ yj − yi, 1 ≤ i < j ≤ n∑
k∈K

zik = 1, i ∈ N (69)

wk =
1

hF

∑
i∈N

zikAi, k ∈ K (70)

wmin
i zik ≤ wk ≤ wmax

i + wF (1− zik), k ∈ K, i ∈ N (71)

xi ≥
∑
j≤k

wj − 0.5wk − (wF − wmin
i )(1− zik), k ∈ K, i ∈ N

xi ≤
∑
j≤k

wj − 0.5wk + (wF − wmin
i )(1− zik), k ∈ K, i ∈ N

(72)

hik
Ai
−
hjk
aj
−max

{
`max
i

Ai
,
`min
j

aj

}
(2− zik − zjk) ≤ 0, i < j

hik
Ai
−
hjk
aj

+ max

{
`max
i

Ai
,
`min
j

aj

}
(2− zik − zjk) ≤ 0, i < j

(73)

∑
i∈N

hik = hF δk, k ∈ K (74)

hmin
i zik ≤ hik ≤ hmax

i zik, i ∈ N, k ∈ K (75)∑
i∈N

hik = hi, i ∈ N (76)

yi − 0.5hi ≥ yj + 0.5hj − wH(1− rij), i 6= j (77)

rij + rji = 1, 1 ≤ i < j ≤ n (78)

rij + rji ≥ zik + zjk − 1, 1 ≤ i < j ≤ n, k ∈ K (79)

0.5hi ≤ yi ≤ wH − 0.5hi, i ∈ N. (80)

where K is the set of bays, and N is the set of departments.
Constraints (69) ensure that each department is assigned to a single

bay. Constraints (70) calculate the width of each bay as the total area of
the departments assigned to that bay divided by the facility height. Note
that under the assumption that

∑
i∈N

Ai ≤ wFhF , we have
∑
k∈K

wk ≤ wF .

Constraints (71) impose bounds on the bay widths, based on the width
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bounds of the departments assigned to each bay. Constraints (72) determine
the horizontal locations of the department centroids. In this model, the x-
coordinate is located at the middle of the bays. Therefore, if department i
is assigned to bay k, xi is calculated as xi =

∑k
j=1wj − 0.5wk. This agrees

with constraints (72) with zik = 1. If i and j are in the same bay k, then
constraints (73) ensure that the widths of the two departments are the same
and equal to the bay width. Constraints (74) set the total heights of the
departments in a bay equal to hF if the bay is used, and zero if the bay is
empty. Constraints (75) are bounds on the department heights. They also
enforce hik = 0 when department i is not located in bay k. Constraints
(76) define the heights of the departments. Constraints (78)–(79) ensure
that department i is either above or below department j. Constraints (77)
prevent departments in the same bay from overlapping. Constraints (80)
ensure that the departments are inside the facility.

By adding symmetry-breaking constraints (see Section 5) and valid in-
equalities (see Section 6), instances with up to 14 departments were solved
to optimality in [56]. The 14-department instance needed around 120 hours
of computational time.

4. Multifloor FLP

The multifloor FLP (MF-FLP) involves finding the optimal arrangement
of departments in a facility with multiple floors. Practical applications in-
clude production facilities, hotels, office buildings, and hospitals. This prob-
lem has added complexity in comparison to the UA-FLP because we must
also consider the interactions between departments on different floors. Fur-
thermore, elevators and/or stairwells are required to transfer people and/or
material between the floors, and these need to be placed at coherent loca-
tions in every floor that they reach.

Globally optimal algorithms for MF-FLP work in general only for small
instances [38]. The problem was first investigated in [51] and later in [70],
but most of the subsequent models in the literature are designed for specific
types of MF-FLP, as the literature survey in Section 4.1 shows. Indeed
there is no commonly agreed definition of the MF-FLP because different
authors make their own assumptions about the structure of the problem.
This lack of a common definition makes it hard to compare the approaches.
We therefore propose in Section 4.2 a general formulation for the MF-FLP
that we hope will gain acceptance as a standard formulation, and will lead
to increased research activity on this problem.
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4.1. Survey of the Literature

Some approaches first distribute the departments over the floors, min-
imizing the vertical interaction costs. This is essentially the first stage of
a two-stage approach, where the second stage then optimizes the layout of
each floor independently; see [70] and [24]. Specifically the following MILO
formulation is used in [69] to assign departments to floors:

min
∑

1≤i<j≤n
cijd

v
ij (81)

s.t.

p∑
k=1

zik = 1, 1 ≤ i ≤ n (82)

dvij ≥ δ
p∑

k=1

k(zik − zjk), 1 ≤ i < j ≤ n (83)

dvij ≥ δ
p∑

k=1

k(zjk − zik), 1 ≤ i < j ≤ n (84)

n∑
i=1

Aizik ≤ wF hF , 1 ≤ k ≤ p (85)

zik ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ k ≤ p, (86)

where p is the number of floors. The variable zik equals 1 if department
i is assigned to floor k, and equals 0 otherwise. Constraints (82) assign
each department to exactly one floor. Constraints (83)-(84) compute the
vertical distance dvij between each pair i, j of departments, where δ is the
floor height. Note that ∣∣∣∣∣

p∑
k=1

k(zik − zjk)

∣∣∣∣∣
is precisely equal to the number of floors separating i and j. Constraints
(85) ensure that the departments assigned to each floor fit into that floor.

Each floor then becomes an instance of UA-FLP with some additional
constraints to ensure coherence in the location of the elevators. Computing
the vertical costs still remains a challenge and was addressed in [24].

Another possible simplification is to restrict all the departments to have
the same shape and to require that they be assigned to specific locations
in the building. This reduces the problem to a quadratic assignment prob-
lem. Such a formulation was used in [38], and was solved using the RLT
linearization technique [1, 86] within a branch-and-bound algorithm.
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A mathematical formulation of MF-FLP for process plant layout was
presented in [82]. Its objective function considers the construction and land
costs to decide the number of floors and the floor area. Another model for a
processing plant was proposed in [32]; it incorporates many structural and
operational issues, but becomes unwieldy.

A GA is also used in [61] to find a layout with inner walls and pas-
sages. The connections between the departments, passages, and elevators
are represented as an adjacency graph, and the distances are calculated us-
ing Dijkstra’s algorithm. This representation allows the measurement of
the distances of paths that use corridors and elevators. The bi-objective
model minimizes the total cost of transporting the materials and maximizes
the adjacency achieved. It is applied to a multideck ship layout with inner
walls.

Another bi-objective model is proposed in [40] for a MF-FLP formulation
that minimizes not only the material handling costs (as usual) but also the
facility construction costs. This model is similar to the one we present in
Section 4.2, but a major difference is that the length and width of the facility,
the number of elevators, and the number of floors are decision variables.

For completeness, we also mention the robust model in [49] in which
some of the usual parameters are considered to be uncertain, and the model
in [81] that takes into account safety distances in the event of an explosion.

4.2. A MF-FLP Formulation

We assume that the following parameters are given: the number of de-
partments and their areas, the number of floors, the dimensions and height
of the floors, the interconnection costs, and the number and size of the el-
evators. We consider the elevators to be a general system (incorporating
elevators, stairs, pipes, etc.) for vertical movement. We want to determine
the locations of the elevators and the locations and dimensions of the de-
partments. The horizontal distance is the rectilinear distance (which is a
reliable measure, as in the single-floor case), and the vertical distance will
be measured using the elevators. This makes the formulation complex. The
number of floors and elevators is assumed to be fixed; if necessary, we could
run the model for several different options. The floor dimensions are fixed,
but they could easily be treated as decision variables.

Let δ denote the ceiling height, p the number of floors, and e the number
of elevators. Let also M = wF + hF + δp. Define the following variables:
zik = 1 if department i is assigned to floor k, 0 otherwise;

Zij = 1 if departments i and j are allocated to the same floor, 0 otherwise;

Xij , Yij : nonoverlapping binary variables;
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(xi, yi): coordinates of the centroid of department i;

dvij : vertical distance between i and j;

dhij : horizontal distance between i and j located on the same floor;

deij : horizontal distance between i and j located on different floors, where
the path includes an elevator.

Note that the indices n+ 1, . . . , n+ e correspond to the elevators.
The formulation is as follows:

min
∑

1≤i<j≤n
cij(d

e
ij + dvij)

s.t.

p∑
k=1

zik = 1, 1 ≤ i ≤ n (87)

dvij = δ

∣∣∣∣∣
p∑

k=1

k(zik − zjk)

∣∣∣∣∣ , 1 ≤ i < j ≤ n

dhij = |xi − xj |+ |yi − yj |, 1 ≤ i < j ≤ n
deij ≥ dhij , 1 ≤ i < j ≤ n
deij ≥ |xi − x`|+ |yi − y`|+ |xj − x`|+ |yj − y`| −MZij ,

1 ≤ i < j ≤ n, n+ 1 ≤ ` ≤ n+ e

(88)

Zij ≥ zik + zjk − 1, 1 ≤ i < j ≤ n, k = 1, . . . , p

Zij ≤ 1− zik + zjk, 1 ≤ i < j ≤ n, k = 1, . . . , p

Zij ≤ 1 + zik − zjk, 1 ≤ i < j ≤ n, k = 1, . . . , p

(89)

xi +
1

2
wi ≤

1

2
wF , xi −

1

2
wi ≥ −

1

2
wF , 1 ≤ i ≤ n+ e

yi +
1

2
hi ≤

1

2
hF , yi −

1

2
hi ≥ −

1

2
hF , 1 ≤ i ≤ n+ e

(90)
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wihi = Ai, 1 ≤ i ≤ n
wi − βhi ≤ 0, hi − βwi ≤ 0, 1 ≤ i ≤ n

(91)

xi − xj ≥
1

2
(wi + wj)− wF (1− Zij +Xij + Yij), 1 ≤ i < j ≤ n+ e

xj − xi ≥
1

2
(wi + wj)− wF (2− Zij −Xij + Yij), 1 ≤ i < j ≤ n+ e

yi − yj ≥
1

2
(hi + hj)− hF (2− Zij +Xij − Yij), 1 ≤ i < j ≤ n+ e

yj − yi ≥
1

2
(hi + hj)− hF (3− Zij −Xij − Yij), 1 ≤ i < j ≤ n+ e

(92)

zik = 1, n+ 1 ≤ i ≤ n+ e, 1 ≤ k ≤ p
Zij = 1, n+ 1 ≤ i < j ≤ n+ e

(93)

Xij , Yij , Zij , zik ∈ {0, 1}, 1 ≤ i < j ≤ n+ e, 1 ≤ k ≤ p (94)

hi, wi,≥ 0, 1 ≤ i ≤ n. (95)

Constraints (87) allocate each department to exactly one floor. Con-
straints (88) compute the distances between each pair of departments; if
two departments are on different floors, the distance depends on the eleva-
tor position. Constraints (89) set Zij = 1 if i and j are on the same floor,
and 0 otherwise. Constraints (92) prevent the overlapping of departments
and elevators on the same floor. Constraints (89) and (92) have been taken
from [82]. Constraints (93) ensure that each elevator covers all the floors
and every pair of elevators shares the same floor.

5. Symmetry-Breaking Constraints

Many versions of the FLP have symmetric solutions. For example, it
is clear that flipping a solution to UA-FLP by 180 degrees gives exactly
the same solution. This matters because the presence of symmetry is often
problematic when solving mixed integer optimization problems. We briefly
summarize here the main symmetry-breaking strategies in the literature,
primarily from the point of view of the UA-FLP because this is the problem
for which they have most been used. However the strategies can be extended
in a straightforward manner to many of the MILO models discussed in this
review.

One way to break the symmetry in the UA-FLP [73] is to require some
department k to be located in a specific quarter of the facility by adding the
pair of constraints xk ≤ 0.5wF , yk ≤ 0.5hF (where it is assumed that the
origin is at the bottom left corner of the facility). This is called the position
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k method in [88]. However, if department k has its centroid located at the
facility centroid, then this method does not work. It is straightforward to
extend this method to multirow and multifloor layouts.

An alternative strategy is the position p−k method [88] that considers a
given pair of departments p and k and requires the centroid of p to be below
and to the left of the centroid of k by adding the following four constraints:

xp ≤ xk, yp ≤ yk, zhkp = zvkp = 0, and

(xk − xp) + (yk − yp) ≥ min{wmin
k + wmin

p , hmin
k + hmin

p }.

The departments p and k can be chosen in different ways; a common criterion
is to choose them to satisfy cpk = maxi,j∈N cij . It is claimed in [27] that
simply choosing departments 1 and 2 works just as well, and there the
constraints x1 − x2 ≥ 0 and y2 − y1 ≥ 0 are used. From [88], it is not clear
whether the position k method or the position p− k method is better. For
the DRFLP, the p − k method was used in [10] with p and k chosen such
that cpk = mini,j∈N cij .

Finally, several classes of hierarchical constraints that are applicable to
general symmetric MILO problems were considered in [89] for the UA-FLP.
Those authors study the effect of one such class of constraints:

4
n∑
i=1

ixi ≤ n(n+ 1)wF , 4
n∑
i=1

yi ≤ n(n+ 1)hF .

They find that these constraints can break the symmetry effectively, but
their dense structure renders the CPLEX enumeration procedure relatively
ineffective.

6. Valid inequalities

As already mentioned, valid inequalities are essential for solving math-
ematical optimization models efficiently in practice, especially MILO prob-
lems. In this Section we gather a number of valid inequalities used in the
literature to improve MILO models. As in Section 5, these results are mostly
about the UA-FLP, but unlike the symmetry-breaking constraints, they are
mostly specific to the problem at hand. A noteworthy exception are the
transitivity constraints, often called triangle inequalities, introduced for the
first in this review in the form (1)–(4), and mentioned subsequently through-
out, see e.g. constraints (6), (9) and (48). Transitivity can be applied to
nearly every variant of the FLP.
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For row layout problems, some valid inequalities have been proposed for
the SRFLP. Proposition 1 contains a description of valid inequalities, and
Amaral and Letchford [13] presented several large classes of valid inequal-
ities. For the DRFLP, the inequalities (15) in Section 2.2.1 are redundant
but may be helpful for a branching algorithm; hence they can be viewed
as valid inequalities. However, very little is known with respect to valid
inequalities for DRFLP and MRFLP.

Meller et al. [73] were the first to investigate valid inequalities for the UA-
FLP. The inequalities reduced the number of nodes in the branch and bound
tree but increased the computational time. Sherali et al. [88] determined
that the best results were obtained by incorporating only the B2 and V2
constraints of [73]. Using the notation of model (38)–(45), these inequalities
are

(B2) uij ≥ (wmin
i + wmin

j )(zhij + zhji)

(B2) vij ≥ (hmin
i + hmin

j )(zvij + zvji)

(V2) uij ≥ (wi + wj)−min{wmax
i + wmax

j , wF }(1− zhij − zhji)
(V2) vij ≥ (wi + wj)−min{hmax

i + hmax
j , wF }(1− zvij − zvji).

These constraints do not reduce the feasible set of the relaxed MILO model
because they are redundant, and they do not enforce the separation of the
departments. They are useful in branch and bound algorithms because they
improve the lower bounds. In the linear relaxation, if

zhij , z
h
ji = (wF − wi − wj)/wF and zvij , z

v
ji = (hF − hi − hj)/hF

then (44) leads to xi ≈ xj , yi ≈ yj , i.e., departments i and j overlap. Thus
the root lower bound of (38)–(45) is typically zero.

Taking this into account, [88] model the constraint uij = |xi − xj | in an
unusual way. Define the variables

thij =

{
1 if xi ≤ xj ,
0 if xi ≥ xj ,

where the choice of 0 or 1 is inconsequential when xi = xj . An upper bound
on uij is Uij = wF −wmin

i −wmin
j , and it is proved in [88] that uij = |xi−xj |

can be modeled by

0 ≤ uij + xi − xj ≤ 2Uij(1− tij), i < j

0 ≤ uij − xi + xj) ≤ 2Uijtij , i < j

tij ∈ {0, 1}, i < j.
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A similar set of inequalities exists for vij = |yi − yj |.
An alternative set of nonoverlapping constraints is proposed in [88]:

xi − xj ≥ wi + wj −Mij(1− zhij)
yi − yj ≥ hi + hj −Mij(1− zvij)
− (wF − wmin

i − wmin
j ) ≤ xi − xj ≤ wF − wmin

i − wmin
j

− (hF − hmin
i − hmin

j ) ≤ yi − yj ≤ hF − hmin
i − hmin

j

wmin
i + wmin

j ≤ wi + wj ≤ wmax
i + wmax

j

hmin
i + hmin

j ≤ hi + hj ≤ hmax
i + hmax

j

zhij + zhji + zvij + zvji = 1

z
h(v)
ij ∈ {0, 1}.

They construct a convex-hull representation of the above constraint set in
a higher dimensional space. This convex hull can also be derived using the
reformulation-linearization technique (RLT) of [87]. Because of the size of
this representation, they use it for just one pair of departments, the posi-
tively interacting (nonfixed) pair with the largest total area. Using this, to-
gether with constraints (B2) and (V2), symmetry-breaking constraints (see
Section 5), and a new branching priority rule, [88] solve instances with up
to 9 departments to global optimality. [72] use inequalities (B2) and (V2) in
the context of the sequence-pair representation formulation, plus symmetry-
breaking constraints, and the same branching priority rule to solve instances
with 11 departments within 24 hours.

Finally, symmetry-avoidance constraints and a tightening of the nonover-
lapping constraints via

1

2
(wi + wj)− uij ≤ wFXij , 1 ≤ i < j ≤ n

1

2
(hi + hj)− vij ≤ hF (1−Xij), 1 ≤ i < j ≤ n

are used in [27]. Note that these are the same as (B2) and (V2).

7. Directions for Future Research

Facility layout continues to be the focus of much research, as evidenced
for example in the bibliography of this review that includes more than 30
research articles published since 2010. We covered three classes of layout
problems, namely row layout, unequal-areas layout, and multifloor layout,
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primarily from the perspective of mathematical optimization techniques,
mostly MILO and SDO.

Within row layout problems, the single-row FLP is the one most studied
in the literature, and major progress has been achieved in recent years since
the first papers that modeled and solved this problem using SDO [17, 21].
The recent review in this journal by [54] provides a detailed exposition of
this progress. The double-row and multirow cases have also attracted at-
tention recently, but have generally been less studied. The multirow FLP
in particular sets a challenge to the research community in terms of pro-
viding new ideas for models and algorithms, including new classes of valid
inequalities, to compute global solutions.

Unequal-area layout is by far the most studied class of FLPs. Neverthe-
less only instances with up to 11 departments have been solved to global
optimality using MILO formulations. Other mathematical optimization-
based research has focused on two-stage heuristics that can provide good
solutions for instances with up to 100 departments. Moreover, unlike for
row FLPs, little work has been done with respect to applying semidefinite
optimization to this class of problems beyond the observation that the de-
partment area constraint can be relaxed in a conic form (see equation 46)
that is handled efficiently by conic optimization software. Indeed, to the
best of our knowledge, the only approach entirely based on semidefinite
optimization was given in [92] where it is applied to obtain global bounds
for benchmark instances in the area of VLSI floorplanning. The important
question of computing global bounds for instances of UA-FLP thus remains
open.

Multifloor layout has received the least attention in the literature. While
there has been an increased interest in it in different contexts, most of the
models are motivated by application-specific assumptions that are not com-
monly used in the literature. This state of affairs makes it difficult to com-
pare the performance of different approaches. Because there is no commonly
agreed definition for the MF-FLP, we proposed a general formulation in
Section 4.2 that we hope will gain acceptance in the community and will
motivate further research into this most challenging version of facility lay-
out. At the very least, we hope that this review prompts a discussion of
the assumptions that should be made in defining a standard version of the
problem. This could then lead not only to the development of novel models
and solution techniques, including classes of valid inequalities, but also to
more effective comparisons of them, which is essential to help the research
community make further progress on this difficult but important problem.

Finally, symmetry remains a key issue for the computational solution
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of FLPs. General methods for handling symmetry in MILO, such as iso-
morphism pruning [67, 68] and orbital branching [77], have proven advanta-
geous for general problems with general symmetry groups. Problem-specific
techniques have also been proposed, e.g. orbitopal fixing [52, 53] is an effi-
cient way to break symmetry in bin packing problems, and modified orbital
branching was show to be effective for for problems with structured symme-
try via the unit commitment problem [15, 78]. It remains to be seen how
these results may have an impact for the solution of certain classes of facility
layout.
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