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Improved Exact Approaches for Row Layout
Problems with Departments of Equal Length∗

Miguel F. Anjos† Anja Fischer‡ Philipp Hungerländer§

Abstract

Facility layout is a well-known operations research problem that arises in various applic-
ations. The multi-row layout is a challenging optimization problem where the task is to
determine the optimal placement of one-dimensional departments on a given number of rows.
This paper is concerned with multi-row facility layout problems in which all the departments
have the same length. This is an important special case that includes most multi-row facility
layout applications from the literature. We prove two theoretical results about the structure
of optimal layouts, namely that only spaces of unit length are necessary to obtain an optimal
solution, and that exact expressions exist for the minimum number of such spaces that need
to be added so as to preserve at least one global optimal solution. Using these results we
propose a binary linear optimization model and a binary semidefinite optimization model
for the problem, neither of which uses continuous variables, which has a significant positive
computational impact. Our computational experiments show that our specially tailored
approaches can handle much larger instances than other exact methods applicable to this
important problem class.
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1 Introduction
Facility layout is a well-known and challenging operations management problem that arises in
various applications. The task is to determine an optimal placement of departments inside a plant
according to a given objective function. This function usually reflects the transportation costs
(for the material flow) as well as the construction cost of an associated material-handling system.
Operations research techniques are often used to solve the facility layout problem effectively.
The exact solution of facility layout problems is generally extremely challenging even for

relatively small instances, see e.g. [10]. For this reason it is common to restrict the shape of
the layout or of the associated path system. For example, in the single-row facility layout
problem (SRFLP), all the departments are placed in a single row, i.e., on one side of a straight
path. In this case there always exists an optimal solution such that there are no spaces between
neighboring departments. The SRFLP is well-studied. Currently instances of the SRFLP with up
to 42 departments can be solved to optimality in reasonable time [40]. For further details on a
variety of both exact methods and heuristics for the SRFLP we refer the reader to the surveys
[9, 45, 47].

1.1 Multi-Row Facility Layout and Related Problems
The multi-row facility layout problem (MRFLP) is an extension of the SRFLP in which the
departments can be placed in two or more parallel rows. In contrast to the SRFLP where there
always exists an optimal solution without additional spaces between neighboring departments,
the optimal layouts for MRFLP may include spaces between neighboring departments in the same
row or at the margins of the rows.
Given d one-dimensional departments {1, . . . , d} = [d] with given positive lengths `1, . . . , `d,

pairwise non-negative weights wij indicating the (material) flow between each pair i, j ∈ [d], i < j,
of departments, and a set R := {1, . . . ,m} = [m] of rows available for placing the departments,
the objective of the MRFLP is to determine

1. an assignment r : [d]→ R of departments to rows, and

2. a function p : [d]→ R such that |p(i)−p(j)| ≥ 1
2(`i+ `j) if r(i) = r(j), i 6= j, i.e., horizontal

positions for the centers of the departments within each row without overlap,

so that the total weighted sum of the center-to-center distances between all pairs of departments
is minimized. The MRFLP can thus be formulated as the following optimization problem:

min
r,p

∑
i,j∈[d]
i<j

wij |p(i)− p(j)|

s. t. |p(i)− p(j)| ≥ 1
2(`i + `j), i, j ∈ [d], r(i) = r(j), i 6= j.

Note that even if we know the assignment r of the departments to the rows and the order of
the departments in each of the rows, the exact positions p of the departments are not clear
since there might be spaces between neighboring departments in the same row. But given this
information, the positions can be determined by solving a linear program.
Inter-row (vertical) distances between the departments are neglected in the above objective

function, and we assume that each department can be placed next to another department
without any clearance restrictions. If |R| = 2, then there are two rows of departments with
a straight path between them. We denote this important special case as the double-row
facility layout problem (DRFLP). Fig. 1 shows an example of a layout with three rows and
seven departments, where r(1) = r(2) = r(3) = 1, r(4) = r(5) = 2, r(6) = r(7) = 3 and
p(1) = p(4) = p(6) = 1, p(2) = 2, p(3) = p(5) = p(7) = 3.
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Figure 1: Illustration of a layout with three rows and seven departments.

Various applications and extensions of the MRFLP have been studied, see, e.g., [29, 37, 56,
59, 64, 65]. Somewhat surprisingly, the development of exact approaches to the MRFLP has
received limited attention in the literature. Heragu and Kusiak [36] proposed a nonlinear
programming model and obtained locally optimal solutions to the SRFLP and the DRFLP. More
recently, Chung and Tanchoco [20] (see also Zhang and Murray [63]) focused on the double-row
problem and proposed a mixed integer linear programming (MILP) formulation that was tested
in conjunction with several heuristics. They solved instances with up to 10 departments within
10 minutes. Amaral [3] proposed an improved MILP formulation that solves instances with up to
12 departments. With an extended model Secchin and Amaral [54] were able to solve instances
with up to 15 departments in at most eleven hours. Hungerländer and Anjos [42] put forward
a semidefinite programming (SDP) approach for the general MRFLP that can solve instances
with fewer than 12 departments to global optimality. Recently Fischer et al. [25] were able to
solve DRFLP instances with up to 16 departments to optimality by iteratively using MILPs in an
enumerative scheme.

Due to the challenging nature of the MRFLP, several simpler (but still NP-hard) variants of the
MRFLP have been considered in the literature. In each of the variations some of the following
three decisions are fixed in advance: one has to determine the row of each department, the order
of the departments in each row and the exact positions of the departments within the rows
since there might be spaces. For example, in the space-free multi-row facility layout problem,
spaces between the departments or at the left margin of the rows are forbidden. So knowing the
row of each department and the order of the departments in each row suffices for solving this
variant. The special case m = 2 of space-free row layout is also known as the corridor allocation
problem, and Hungerländer and Anjos [39] used an SDP approach that provides high-quality
global bounds for space-free double-row instances with up to 15 departments and for space-free
multi-row instances with up to 5 rows and 11 departments. Amaral [5] proposed an MILP
formulation for the corridor allocation problem that is able to solve space-free instances with
up to 13 departments. Recently Fischer et al. [25, 26] were able to solve space-free double-row
instances with up to 16 departments.

The parallel row ordering problem [6, 25, 26, 39] is again a special case of the space-free MRFLP
with the additional assumption that the assignment r of departments to rows is already given.
So only the order of the departments in each row has to be determined. Exact solutions for
instances with up to 25 departments can be determined by an MILP model in [25]. This MILP
is also called iteratively in the enumeration scheme of the currently best DRFLP solver [25]. An
SDP approach [39] allows deriving good lower and upper bounds for instances with two to five
rows and up to 100 departments.

1.2 Multi-Row Facility Layout with Departments of Equal Length
This paper is concerned with the special case of the MRFLP with departments of equal length,
denoted (MREFLP), in which spaces are allowed, the row assignments are not given, and all
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department lengths are equal. The MREFLP is also known as the equidistant MRFLP, where we
set w.l.o.g. `i = 1, i ∈ [d]. The MREFLP can also be interpreted as an extension of the classical
NP-hard [28] (weighted) linear arrangement problem [22], where at most m nodes are assigned
to one position. Hence the MREFLP is also NP-hard.

The case of SRFLP with departments of equal length (SREFLP) has been studied before, and it
turns out that the best models for the general SRFLP are also the best ones for the SREFLP [41].
This is not the case for the MREFLP, and we show in this paper that it is possible to exploit the
additional problem structure for the development of tailored approaches.

Amaral [4] proposed an MILP formulation for the minimum duplex arrangement problem, which
in our terminology is denoted as DRFLP with departments of equal length (DREFLP). His approach
exploits the sparsity of the instances considered and is able to solve randomly generated instances
with at most 10 departments (for dense instances) to 20 departments (for extremely sparse
instances). Amaral’s MILP is closely related to models for the NP-hard Quadratic Assignment
Problem (QAP) that is known to be a particularly challenging combinatorial optimization problem
in practice. The QAP asks for an assignment of n facilities to n locations that minimizes the sum
of the distances between pairs of locations multiplied by the corresponding flows between pairs
of facilities. For further details see, e.g., the survey paper [50] and the book [16].
Most of the earliest applications for the MRFLP were motivated by QAP problems where the

locations were arranged on a regular grid, see [15, 23, 24, 30, 48, 52, 55, 60] among others. These
QAPs are equivalent to MREFLPs, where the flows between pairs of facilities correspond to the
connectivities between pairs of departments. Hence the MREFLP has several applications from
this branch of literature. Additionally, the (weighted) linear arrangement problem is a further
special case. It was originally proposed by Harper [31, 32] in 1964 to develop error-correcting
codes with minimal average absolute errors. It has also applications in VLSI design [58], in
single machine job scheduling [1, 53] and in computational biology [44, 51]. It is also used for
the layout of entity relationship models [19] and data flow diagrams [27]. These applications of
the (weighted) linear arrangement problem could benefit from considering an extended version
with more than one row as well.

1.3 Research Contributions
This paper is concerned with the MREFLP and its main contributions are:

• A proof that the MREFLP always has an optimal solution on the integer grid. This implies
that it suffices to consider (multiple) spacing departments of unit length to obtain an
optimal solution.

• Exact expressions for the minimum number of such spacing departments (as a function of
the number of departments and of rows) such that from an optimal solution of the resulting
“space-free” problem, it is possible to recover at least one global optimal solution for the
MREFLP instance.

• An ILP model and an SDP model that are the first models for the MREFLP exploiting the
fact that it can be modeled using only binary variables. This fact follows from the above
theoretical results, and has a significant positive impact on the computational performance
of the models. These models do not assign a row to each department but ensure that there
are at most m departments at each (horizontal) integer position.

• Our computational experiments show that:
– For the double-row case we increase the size of the largest instances solved to optimality

from 16 departments (not extremely sparse) [25] to 25 departments.
– For 3 ≤ m ≤ 5 we increase the size of the largest instances solved to optimality from

8 departments [42] to 25 departments.
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– We achieve optimality gaps smaller than 1% for DREFLP and smaller than 4% for
MREFLP, m ∈ {3, 4, 5}, for instances with up to 50 departments.

1.4 Outline
This paper is structured as follows. In Section 2 we state and prove our theoretical results on the
structure of optimal MREFLP layouts. In Section 3 we focus on the double-row case; we present an
ILP model for it in Subsection 3.1, an SDP model in Subsection 3.2, and these two models are
extended to the multi-row case in Subsection 3.3. In Section 4 we describe a suitable combination
of optimization methods to obtain both strong lower bounds and feasible MREFLP layouts using
our proposed models. In Section 5 we report on a computational study of all relevant exact
approaches for the MREFLP. Section 6 concludes the paper and proposes directions for future
research.

2 The Structure of Optimal MREFLP Layouts
The definitions of the MRFLP and the MREFLP allow the spaces between departments to be of
arbitrary length. Thus, most optimization models use continuous variables to model the distances
between departments. In this section we prove two theoretical results about the structure of
optimal MREFLP layouts that allow to model the MREFLP with binary variables only.

In Subsection 2.1 we show that the MREFLP always has an optimal solution on the integer grid.
The key insight here is that modeling the possible spaces between departments with spacing
departments of unit length preserves at least one optimal solution.

In Subsection 2.2 we prove exact expressions for the minimum required number of such spacing
departments, given the number of departments and of rows, to preserve at least one optimal
solution.
These results are of interest because they reveal hitherto hidden structural properties of the

MREFLP, and in turn these properties can be used to improve the practical performance of our
models in Sections 3 and 3.3. These properties also allow improving other models applicable to
the MREFLP [3, 20] by reducing the big-M value in these models.

2.1 A Combinatorial Property of MREFLP Layouts on the Integer Grid
In this section we prove that the MREFLP always has an optimal solution on the integer grid. For
a closely related result on general MRFLP layouts, we refer to [42, Theorem 2].

Theorem 1. There is always an optimal solution to the MREFLP on the integer grid.

Proof. Let an optimal solution of the MREFLP be given. We define an integer grid such that the
centers of the leftmost department(s) is/are on a grid point. Next we divide the departments into
two sets, a set S containing those departments with their centers already on the integer grid, and a
set T containing the other departments. We assume, w.l.o.g., that the indices of the departments
in S are all larger than the indices of the departments in T , i.e., T = {1, . . . , |T |}, S = [d] \ T ,
and that T 6= ∅.
We now iteratively decrease the size of T by changing the position of all the departments in

T . For this note that because none of the departments in T lies on a grid point, there exists
ε > 0 such that we can move all the departments in T simultaneously, either to the left or to
the right, by a distance ε, without traversing a grid point (which might be the middle of some
department in S) by some department of T or forcing an overlap of some departments from S
and T . This is true because all departments have (the same) integer length that fits to the grid
and the departments in S are arranged on the integer grid. For an illustration see Figure 2. Let
us now calculate the change in the objective function from any such shift of the departments in
T either to the left or to the right. Here for i, j ∈ [d], i 6= j, we denote by i<̇j that the center of
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Figure 2: Visualization of the shifting of departments of T = {1, 2, 3} given some optimal solution
(left picture) to the left (middle picture) and to the right (right picture) by ε in the
proof of Theorem 1. The departments in S = {4, 5, 6, 7, 8} (gray) lie on a grid point.
In both variants we choose ε > 0 as large as possible. Shifting to the left we cannot
enlarge ε because otherwise departments 3 and 6 would overlap and department 3
would traverse a grid point. In the shift to the right ε cannot be enlarged because
otherwise departments 1 and 2 would traverse a grid point.

department j is to the right of the center of department i in the original arrangement (before
shifting). A shift of the departments in T by ε to the left results in a change of the objective
function value by

δl :=
∑
i∈T

ε∑
j∈S
i<̇j

wij − ε
∑
j∈S
j<̇i

wij


because the distance between some i ∈ T to all departments j ∈ S with center originally to the
right of it is enlarged by ε and with center originally to the left of it is decreased by ε. Similarly,
a shift of the departments in T to the right changes the objective function value by

δr :=
∑
i∈T

−ε∑
j∈S
i<̇j

wij + ε
∑
j∈S
j<̇i

wij

 = −δl.

So by the optimality of the given layout we have δr = δl = 0. Hence the proposed shifting
operation does not change the objective value. Now we choose ε maximal such that after the shift
the center of at least one department in T lies on a grid point afterwards. Next, we determine
again the sets S and T and continue as long as T is non-empty. Since the size of T decreases
in each step by at least one, this procedure stops after at most d− 1 shifting operations. This
proves Theorem 1.

Figure 3 depicts an MREFLP layout on the integer grid, where s denotes a spacing department
and di denotes department i. For layouts satisfying the grid property, we say that department i
lies in column j if the center of i is located at the jth grid point. For example, department 5 lies
in column 4 in Fig. 3.

s

s

d3

sd1

d2

d4

d5

d6

d7

d8
s

s

s

Row 1
Row 2

Figure 3: Illustration of the grid property of layouts.

We number the columns from 1 to d as for d departments obviously at most d columns are
needed. By Theorem 1 we can represent an optimal solution of the MREFLP by an assignment
α : [d]→ [d] of the d departments to d different columns with the interpretation

α(i) = j, if department i lies in column j, i, j ∈ [d], (1)

where additionally at most m departments are assigned to each column j ∈ [d], i.e.,

|{i ∈ [d] : α(i) = j}| ≤ m.
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Note that the modeling approach in [4] builds directly on this assignment.
For the remainder of the paper we restrict our analysis, w.l.o.g., to layouts satisfying the grid

property. This restriction is clearly advantageous from both a theoretical and a practical point of
view. Note that the grid property is automatically satisfied for the minimum duplex arrangement
problem [4], the (weighted) linear arrangement problem [17, 18, 22, 46] and its extension, where
two or more nodes can be assigned to the same position. By Theorem 1, all these problems are
special cases of the MREFLP.

2.2 Exact Expressions for the Minimum Number of Spacing Departments
We now consider the minimum number of spacing departments of length one, or simply spaces,
that must be added to an instance of the MREFLP so that after solving the problem with the
added spaces, we can recover at least one optimal solution for the original instance. Clearly this
number is a function of the numbers of departments and the number of rows. Since for given
cost coefficients we do not have a priori knowledge of the structure of optimal solutions, our
function does not depend on the weights wij other than on their non-negativity.
We first state three additional assumptions that allow us to reduce the number of spaces

required. We then prove that Lemma 2 ensures that at least one optimal layout is preserved
under these assumptions, i.e., there always exists an optimal solution α∗ : [d]→ [d] that satisfies
these three assumptions. Using Lemma 2, we then prove Theorem 3 that gives exact expressions
for the minimum number of spacing departments. We conclude this section with two examples
whose optimal layouts contain many spaces and hence the results of Theorem 3 are tight.

Assumption 1 Columns that contain solely spaces can be deleted. Equivalently, if we number
the columns from 1 to d there exists k′ ∈ [d] such that each column with index at most k′
contains at least one department.

Assumption 2 If two nonempty neighboring columns together contain no more than m depart-
ments, then all corresponding departments can be assigned to the left column, and the
right column can be deleted.
Thus, with k′ as in Assumption 1, we know that columns i and i + 1 with i ∈ [k′ − 1]
contain at least m+ 1 departments.

Assumption 3 If d > 2m and the first and third columns contain in total at most m departments,
then all corresponding departments can be assigned to the third column, and the first
column can be deleted. An analogous argument holds for columns k′ − 2 and k′, with k′ as
in Assumption 1.

Figure 4 illustrates these assumptions: the left-hand side depicts a feasible layout and the
right-hand side depicts the adaptation of that layout so that the respective assumption holds.
Note that the adaptations cannot worsen the objective value of the layout.

d1

d2

d3 d4

d5
Assumption 1:

d1

d2

d3 d4

d5

d1

d2

d3 d4 d5

d6
Assumption 2:

d1

d2

d3

d4

d5

d6

d1

d2

d3 d4

d5

d6

d7

d8
Assumption 3:

d1

d4

d2

d3

d5

d6

d7

d8

Figure 4: Illustration of Assumptions 1, 2, and 3.
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Lemma 2. Let d,m ∈ N. Then there always exists an optimal solution α∗ : [d] → [d] of the
MREFLP (satisfying the grid structure) that assigns each department i ∈ [d] to a column α∗(i) ∈ [d]
that satisfies the following properties:

1. There exists a k′ ∈ [d] such that |{i ∈ [d] : α∗(i) = l}| ≥ 1 for all l ∈ [d], l ≤ k′, and
|{i ∈ [d] : α∗(i) ≥ k′ + 1}| = 0.

2. If |{i ∈ [d] : α∗(i) = j}| > 0 and |{i ∈ [d] : α∗(i) = j + 1}| > 0 for some j ∈ [d], j < d, then
|{i ∈ [d] : α∗(i) = j}|+ |{i ∈ [d] : α∗(i) = j + 1}| ≥ m+ 1.

3. Let d > 2m. Then |{i ∈ [d] : α∗(i) ≥ k′ + 1}| = 0 and |{i ∈ [d] : α∗(i) = k′}| > 0 for some
k′ ∈ [d] imply |{i ∈ [d] : α∗(i) = k′ − 2}| + |{i ∈ [d] : α∗(i) = k′}| ≥ m + 1. Furthermore,
|{i ∈ [d] : α∗(i) = 1}|+ |{i ∈ [d] : α∗(i) = 3}| ≥ m+ 1.

Proof. Let d,m ∈ N and α∗ be an optimal solution of the MREFLP satisfying the grid structure.

1. If |{i ∈ [d] : α∗(i) = j − 1}| = 0 and |{i ∈ [d] : α∗(i) = j}| ≥ 1 for some j ∈ [d], then the
solution α′ : [d]→ N with α′(l) = α∗(l) if α∗(l) < j and α′(l) = α∗(l)− 1 otherwise is also
optimal for the MREFLP because the distances between departments are not increased. The
repeated deletion of empty columns proves the statement.

2. Assume that |{i ∈ [d] : α∗(i) = j}|+ |{i ∈ [d] : α∗(i) = j + 1}| ≤ m for some j ∈ [d], j < d.
Then α′ : [d] → N with α′(l) = α∗(l) if α∗(l) ≤ j and α′(l) = α∗(l) − 1 otherwise is a
feasible multi-row assignment and it is optimal because all distances are not increased
(some are even decreased) and there are at most m departments in each row. Applying this
approach repeatedly we get an optimal assignment ᾱ such that |{i ∈ [d] : ᾱ(i) = j}| > 0 and
|{i ∈ [d] : ᾱ(i) = j + 1}| > 0 for some j ∈ [d− 1] imply |{i ∈ [d] : ᾱ(i) ∈ {j, j + 1}}| > m.

3. Assume w.l.o.g. that there exists an optimal solution α∗ of the MREFLP and k′ ∈ [d] such
that |{i ∈ [d] : α∗(i) = k′}| > 0, |{i ∈ [d] : α∗(i) ≥ k′ + 1}| = 0. By the previous statements
we may assume |{i ∈ [d] : α∗(i) = k′−1}| > 0 and |{i ∈ [d] : α∗(i) ∈ {k′−1, k′}}| > m. If in
addition |{i ∈ [d] : α∗(i) ∈ {k′−2, k}}| ≤ m, the solution α′ : [d]→ N with α′(l) = α∗(l)−2
if α∗(l) = k′ and α′(l) = α∗(l) otherwise is also optimal because all distances between
departments are not increased.

Theorem 3. The minimum number of columns sufficient to preserve at least one optimal layout
for an instance with d departments is

1. equal to 1 if d ≤ m, and equal to 2 if m < d < 3
2m+ 3

2 ;

2. equal to
⌈

2d
3

⌉
− 1 for the DREFLP with d ≥ 9;

3. equal to
⌊

2d
m+1

⌋
for the MREFLP with an odd number of rows m; and

4. equal to or at most 2l + 1 for the MREFLP with an even number of rows m and d ∈
{m2 + 2 + (m+ 1)(l − 1), . . . , m2 + 1 + (m+ 1)l} for some l ∈ N.

Proof. We prove each of the four claims in turn:

• Proof of 1: Let d,m ∈ N be given. If d ≤ m, it is clear that arranging all departments in
one column leads to a cost of zero. Furthermore, as long as m < d < 3

2m+ 3
2 there exists

an arrangement such that only two columns are used because, w.l.o.g., we can assume that
the first two columns contain m+ 1 departments and that the second column contains at
most dm2 e of these departments. Then the remaining departments could also be included
in one of the first two columns, either all in the second column or also some of them in the
first column.
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• Proof of 2: Let m = 2, d ≥ 9 and let α∗ be an optimal solution of the DREFLP satisfying the
grid structure and the properties given in Lemma 2. Then there exists a k′ ∈ [d] such that
|{i ∈ [d] : α∗(i) = l}| ≥ 1 for all l ∈ [d], l ≤ k′ and |{i ∈ [d] : α∗(i) > k′}| = 0. (Note: d ≥ 9
implies k′ ≥ 5.) By Lemma 2 the solution α∗ satisfies |{i ∈ [d] : α∗(i) ∈ {j, j + 1}}| ≥ 3
for all j ∈ [d], j < k′, as well as |{i ∈ [d] : α∗(i) ∈ {1, 2, 3}}| ≥ 5 and |{i ∈ [d] : α∗(i) ∈
{k′ − 2, k′ − 1, k′}}| ≥ 5. We consider two cases for k′. If (k′ − 6)mod 2 ≡ 0, then the
first k′ columns contain at least 10 + (k′ − 6)3

2 = 3
2k
′ + 1 departments. Otherwise, if

(k′ − 6)mod 2 ≡ 1, then the first k′ columns contain at least 5 + (k′ − 3)3
2 = 3

2k
′ + 1

2
departments. Now, assume that k′ ≥

⌈
2d
3

⌉
. Then the first k′ columns contain at least⌈(

3
2

⌈
2d
3

⌉
+ 1

2

)⌉
> d departments, a contradiction. The claim follows.

• Proof of 3: Let m be odd and d > 2m. Let α∗ be an optimal solution of the MREFLP that
satisfies the properties given in Lemma 2. By Lemma 2 there exists k′ ∈ [d] such that
|{i ∈ [d] : α∗(i) = l}| ≥ 1 for all l ∈ [d], l ≤ k′ and |{i ∈ [d] : α∗(i) ≥ k′ + 1}| = 0. Then
we know by Lemma 2 that |{i ∈ [d] : α∗(i) = j}|+ |{i ∈ [d] : α∗(i) = j + 1}| ≥ m+ 1 for
all j ∈ [d], j < k′. Suppose now that k′ >

⌊
2d
m+1

⌋
, then the k′ columns contain at least

m+1
2 · k′ ≥ m+1

2 (
⌊

2d
m+1

⌋
+ 1) > d departments, a contradiction.

• Proof of 4: Let m be even and d > 2m. Let α∗ be an optimal solution of the MREFLP
that satisfies the properties given in Lemma 2. Assume d ∈ {m2 + 2 + (m + 1)(l −
1), . . . , m2 + 1 + (m+ 1)l} for some l ∈ N. By Lemma 2 there exists a k′ ∈ [d] such that
|{i ∈ [d] : α∗(i) = m}| ≥ 1 for all m ∈ [d], m ≤ k′ and |{i ∈ [d] : α∗(i) ≥ k′ + 1}| = 0. Then
we know by Lemma 2 that |{i ∈ [d] : α∗(i) = j}|+ |{i ∈ [d] : α∗(i) = j + 1}| ≥ m+ 1 for all
j ∈ [d], j < k′. Assume now that k′ ≥ 2l + 2. Then the first k′ columns contain at least
2l+2

2 (m+ 1) = (m+ 1)l +m+ 1 > (m+ 1)l + m
2 + 1 ≥ d departments, a contradiction.

Table 1 gives exact values of the minimum number of columns c for instances with 2, 3 and
4 rows and up to 16 departments. Note that c · m − d spaces are needed for the respective
row-department combinations.

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 rows 1 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10
3 rows 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
4 rows 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6

Table 1: Minimum number of columns required for d ≤ 16 and m ∈ {2, 3, 4}.

We conclude this section with two examples for which the number of columns required as per
Table 1 is tight.

1. Consider m = 3 rows, d = 2l departments for some l ∈ N, and weights wi(i+1) = 1, i =
1, 3, 5, . . . , 2l − 1, and wij = ε otherwise. For ε sufficiently small, the optimal solution
contains exactly one space in each column. The left-hand side of Fig. 5 illustrates the case
d = 10. In this example the objective value is not worsened if we reduce the number of
rows from 3 to 2.

2. For m > 2 even, the exact calculation of the bounds is complicated and might be slightly
improved if d cannot be written as m

2 + 1 + (m + 1)l for some l ∈ N. Nevertheless no
improvement of the (seemingly) large number of spaces is possible if we want to preserve
an optimal solution. To see this consider a problem with four rows and 13 departments
with w12 = w13 = w45 = w67 = w68 = w9 10 = w11 12 = w11 13 = 1 and all other weights
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equal to a small ε > 0. Then all optimal solutions have a structure like the one visualized
on the right-hand side of Fig. 5. In this case d = 13 = 4

2 + 1 + 5l with l = 2.

Figure 5: Worst-case examples for Theorem 3.

In summary Theorem 3 allows us to reduce the number of spaces, and hence of variables, in
formulations such as the MILP model in [4] and the ILP and SDP models that we propose in
the next section. Theorem 3 also helps to eliminate some of the symmetries in the problem, like,
e.g., the position of empty columns.

3 New Formulations for the DREFLP and MREFLP

In this section we present two new models for the DREFLP and their extensions to the MREFLP. Our
models take only horizontal distances between the departments into account as they are assumed
to be one-dimensional. This is a typical assumption in the row layout literature, especially for
exact approaches that usually only discuss the double-row case because it is the most important
case in practice.

For the MREFLP and the MRFLP, the only exact methods that are able to take vertical distances
into account use an enumeration scheme to deal with each row assignment individually [25, 42].
For d ≥ 17 these approaches have to consider a prohibitive number of NP-hard subproblems to
even obtain a lower bound and hence are not competitive for MREFLP instances of challenging
size.
Our new models highly rely on the results of Section 2. Introducing appropriately many

spacing departments there always exists an optimal solution of the extended problem that does
not have spaces between neighboring departments in the same row. Instead of assigning a specific
row to each department, our suggested ILP and SDP models solely ensure that at most m
departments are assigned to each column, which allows them to scale well for instances with
up to 60 departments and up to 5 rows. Apart from that, in contrast to all DRFLP and MRFLP
models in the literature, we do not need some kind of big-M-constraint for coupling continuous
position variables with binary row or/and ordering variables. However, our models cannot be
used for applications where vertical distances matter.

In Subsection 3.1 we propose an ILP formulation for the DREFLP that uses betweenness variables
together with variables modeling whether pairs of departments are assigned to the same column.
In Subsection 3.2 an SDP formulation for DREFLP based on products of ordering variables is
presented. To the best of our knowledge, Amaral [4] suggested the only other approach tailored
specifically to the DREFLP. His MILP uses position variables and is loosely related to formulations
for the QAP. In Subsection 3.3 we extend the two approaches to the MREFLP.

3.1 An ILP Formulation for the DREFLP

Our first model is an ILP formulation for the DREFLP that extends the model proposed in [2]
for the SRFLP. We use additional variables to model that two departments can be assigned to
the same column. We also fill up the c columns with spaces, i.e., departments of length 1 and
pairwise weights equal to 0 with all the departments (including other spaces). We collect all
these spaces in a set S. To simplify notation we set the total number of departments (original
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ones plus spaces) to n := 2c and the number of spaces is thus s = n− d. After the insertion of
spaces we deal in fact with a space-free problem, and by Theorems 1 and 3 the optimal solution
of the corresponding optimization problem is an optimal solution of the DREFLP.

Our model makes use of betweenness variables bijk = bkji ∈ {0, 1}, i, j, k ∈ [n], i < k, i 6= j 6= k,
and of column overlap variables aij = aji ∈ {0, 1}, i, j ∈ [n], i < j. These two sets of binary
variables have the following interpretations:

bijk =
{

1, if department j lies between departments i and k,
0, otherwise;

aij =
{

1, if departments i and j are assigned to the same column,
0, otherwise.

Our resulting ILP formulation of the DREFLP is

min
∑
i,j∈[n]
i<j

wij

2 ·

 ∑
k∈[n]\{i,j}

bikj + 2(1− aij)

 (2)

s. t. aij + aik + ajk + bijk + bikj + bjik = 1, i, j, k ∈ [n], i < j < k, (3)∑
j∈[n]\{i}

aij = 1, i ∈ [n], (4)

bihj + bihk + bjhk ≤ 2, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (5)
− bihj + bihk + bjhk + bikj ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (6)
+ bihj − bihk + bjhk + bijk ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (7)
+ bihj + bihk − bjhk + bjik ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (8)
− bihj + bihk + bjhk + ahk ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (9)
+ bihj − bihk + bjhk + ahj ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (10)
+ bihj + bihk − bjhk + ahi ≥ 0, i, j, k, h ∈ [n], i < j < k 6= h, i 6= h 6= j, (11)
bijk ∈ {0, 1}, i, j, k ∈ [n], i < j, i 6= k 6= j, (12)
aij ∈ {0, 1}, i, j ∈ [n], i < j. (13)

The objective function (2) counts all departments that lie between the departments i and j,
because the distance between i and j equals the number of columns between them, regardless of
which row they are in. This is equal to half of the number of departments between i and j, plus
a term accounting for whether they lie in the same column or not. Specifically we divide the
coefficient of the betweenness variables by 2 and count wij towards the cost if departments i and
j do not lie in the same column.
Equations (3) ensure that for every choice of three different departments either these lie

in three different columns and one of the betweenness variables equals 1, or two of the three
departments lie in the same column and the associated overlap variable equals 1. Equations (4)
ensure that each department i ∈ [n] lies in the same column as exactly one other department.
Inequalities (5) to (11) are extensions of the inequalities in [2] for the SRFLP: inequality (5)
ensures that a department h cannot lie between each two of every choice of three departments
i, j, k ∈ [n] \ {h}, i < j < k, and inequalities (6)–(11) ensure that if department h lies between
departments i and j, then h lies also between i, k, or between j, k, or in the same column as k
(which also implies that k lies between i and j).

Due to the introduction of spacing departments, our model contains some symmetries that we
break to improve its practical performance. The following constraints enforce an order of the s
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spaces such that space i is to the left of space j or in the same column as j iff i < j, i, j ∈ S:

aij = 0, i, j ∈ S, i+ 2 ≤ j, (14)
bijk = 1, i, j, k ∈ S, i+ 4 ≤ j + 2 ≤ k, (15)
bijk = 0, i, j, k ∈ S, i 6= k, (j > max{i, k} ∨ j < min{i, k}). (16)

A further improvement to the model is to include a variation on a class of inequalities for the
SRFLP introduced by Amaral [2]. The precise statement of our proposed inequalities is given in
Theorem 4. We note that taking β = 4 in Theorem 4 yields (6)–(11).

Theorem 4. Let β ∈ N, β ≥ 4, be even and let T ⊆ [n] with |T | = β. For a partition of T in
T1, T2, {k} such that T = T1∪̇T2∪̇{k}, (T1 ∩ T2 = ∅, k /∈ T1, k /∈ T2) and |T1| = β

2 the following
inequalities are valid for the DREFLP∑

p,q∈T1
p<q

bpkq +
∑
p,q∈T2
p<q

bpkq −
∑
p∈T1
q∈T2

bpkq ≤
∑
p∈T2

akp, (17)

∑
p,q∈T1
p<q

bpkq +
∑
p,q∈T2
p<q

bpkq −
∑
p∈T1
q∈T2

bpkq ≤
∑
p,q∈T1
o∈T2
p<q

bpoq. (18)

Proof. Let β ∈ N, β ≥ 4, even and T ⊆ [n] with |T | = β be given. We consider a partition
of T into T1, T2, {k} such that T = T1∪̇T2∪̇{k} and |T1| = β

2 (so |T2| = β
2 − 1). In order to

prove that inequalities (17) and (18) are valid for the DREFLP we consider a fixed double-row
assignment α : [n] → [n2 ] that assigns each of the n departments (original and spaces) to one
of the columns. We define σ1

1 := |{i ∈ T1 : α(i) < α(k)}|, σ2
1 := |{i ∈ T2 : α(i) < α(k)}|, σ1

2 :=
|{i ∈ T1 : α(i) > α(k)}|, σ2

2 := |{i ∈ T2 : α(i) > α(k)}|, σ1
3 := |{i ∈ T1 : α(i) = α(k)}|,

σ2
3 := |{i ∈ T2 : α(i) = α(k)}|. Then σ1

1 + σ1
2 + σ1

3 = β
2 , σ

2
1 + σ2

2 + σ2
3 = β

2 − 1 and σ1
3 + σ2

3 ≤ 1.
The left-hand side of (17) and (18) is equal to γ, where

γ := σ1
1σ

1
2 + σ2

1σ
2
2 − σ1

1σ
2
2 − σ1

2σ
2
1 = −(σ1

1 − σ2
1)2 + σ1

1 − σ2
1 − σ1

1σ
1
3 + σ1

1σ
2
3 + σ1

3σ
2
1 − σ2

1σ
2
3.

The last equality follows by direct computations using σ1
2 = β

2 −σ
1
1−σ1

3 and σ2
2 = β

2 −1−σ2
1−σ2

3.
We consider three cases:

• σ1
3 = σ2

3 = 0: Then γ = −(σ1
1 − σ2

1)2 + σ1
1 − σ2

1 = −(σ1
1 − σ2

1)(σ1
1 − σ2

1 − 1) ≤ 0 and with
aij ≥ 0, i, j ∈ [n], i < j, bijk ≥ 0, i, j, k ∈ [n], i < k, |{i, j, k}| = 3, the validity follows in
this case.

• σ1
3 = 1, σ2

3 = 0: Then γ = −(σ1
1 − σ2

1)2 + σ1
1 − σ2

1 − σ1
1 + σ2

1 = −(σ1
1 − σ2

1)2 and with
aij ≥ 0, i, j ∈ [n], i < j, bijk ≥ 0, i, j, k ∈ [n], i < k, |{i, j, k}| = 3, the validity follows in
this case.

• σ1
3 = 0, σ2

3 = 1: Then γ = −(σ1
1 − σ2

1)2 + σ1
1 − σ2

1 + σ1
1 − σ2

1 = −(σ1
1 − σ2

1)(σ1
1 − σ2

1 − 2).
This term is positive if and only if σ1

1 − σ2
1 = 1 by the integrality of the σji .

So, it suffices to show that the right-hand sides of (17) and (18) are at least one if σ1
3 = 0, σ2

3 = 1
and σ1

1 − σ2
1 = 1. For (17) the term σ2

3 = 1 implies the existence of an o ∈ T2 that lies in the
same column as k. Considering (18), σ2

3 = 1 and σ1
1 − σ2

1 = 1 imply σ1
1 > 0, σ1

2 > 0 and so there
exist p, q ∈ T1, p 6= q, and o ∈ T2 such that o lies between p, q.

3.2 An SDP Formulation for the DREFLP

Our second formulation for the DREFLP is based on a quadratic formulation using ordering
variables that we rewrite using symmetric matrices. The matrix-based formulation is then relaxed

12



into an SDP problem, and this SDP relaxation can be tightened using several classes of valid
constraints. For more details on semidefinite programming we refer to the handbooks [7, 61].
We introduce the ordering variables xij , i, j ∈ [n], i 6= j, where xij is 1 if department i lies

left of department j, and −1 otherwise. We observed in Subsection 3.1 that the center-to-center
distances between departments can be encoded using betweenness and column-overlap variables.
Because we are willing to work with quadratic terms, we can express those two kinds of variables
in terms of the ordering variables:

bikj = 1
4(xikxkj + xjkxki + xik + xkj + xjk + xki) + 1

2 , i, j, k ∈ [n], i < j,

aij = −1
2(xij + xji), i, j ∈ [n], i < j.

(19)

It directly follows that we can rewrite the objective function (2) as a linear-quadratic function of
the ordering variables:

K +
∑
i,j∈[n]
i<j

wij
8

( ∑
k∈[n]\{i,j}

(xikxkj + xjkxki)
)

+
∑
i,j∈[n]
i<j

wij
4 (xij + xji), (20)

where K is a constant defined as

K :=
∑
i,j∈[n]
i<j

n · wij
4 . (21)

Any feasible ordering of the departments has to satisfy the well-known 3-cycle inequalities

−1 ≤ xij + xjk − xik ≤ 1, i, j, k ∈ [n], i 6= j 6= k, i 6= k. (22)

that together with integrality conditions on the ordering variables suffice to describe feasible
orderings, see e.g. [57, 62]. In the present context we need the following additional constraints

xij + xji ≤ 0, i, j ∈ [n], i < j, (23)

that model the fact that either department i lies to the left of department j or department j lies
to the left of department i or both departments are assigned to the same column.
Note from the definition of the ordering variables that if two departments i and j are placed

in different columns then xij + xji equals zero, while if they are assigned to the same column
the sum is −2. In contexts where the departments cannot overlap, such as the SRFLP, this
observation is often used to halve the number of variables in models using ordering variables
by requiring that xij + xji = 0. While some overlap is allowed here, we ensure that exactly two
departments are assigned to each column using the constraints∑

j∈[n]\{i}
(xij + xji) = −2, i ∈ [n]. (24)

Lemma 5. Minimizing the objective function (20) over x ∈ {−1, 1}n(n−1) and (22)–(24) solves
the DREFLP.

Proof. The constraints (22)–(24) together with the integrality conditions on x suffice to induce
feasible double-row layouts and the definition of the objective function ensures that the distances
between departments are computed correctly.

Next we collect the ordering variables in a vector x and reformulate the DREFLP as a quadratic
program in ordering variables.
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We define X := xx> and rewrite the quadratic objective function (20) in matrix notation to
obtain:

min {〈CX , X〉+ c>x x+K : X = xx>, x ∈ {−1, 1}n(n−1) satisfies (22)–(24)}. (DREFLP)

The cost matrix CX and the cost vector cx are deduced from (20):

〈CX , X〉 =
∑
i,j∈[n]
i<j

wij
8

∑
k∈[n]\{i,j}

(xikxkj + xjkxki),

c>x x =
∑
i,j∈[n]
i<j

wij
4 (xij + xji).

We can further rewrite the above formulation as an SDP by relaxing the non-convex equation
X − xx> = 0 to the positive semidefinite constraint X − xx> < 0. Moreover, the main diagonal
entries of X correspond to squared {−1, 1} variables, hence diag(X) = e, where e denotes the
vector of all ones. To simplify notation let us introduce

Z = Z(x,X) :=
(

1 x>

x X

)
, (25)

where dim(Z) = n(n− 1) + 1. By the Schur complement theorem [8, Theorem 1.6], X − xx> <
0⇔ Z < 0. Hence any feasible layout is contained in the elliptope E := {Z : diag(Z) = e, Z < 0}.
In order to express constraints on x in terms of X, they have to be reformulated as quadratic
conditions in x. A natural way to do this for the 3-cycle inequalities (22) is to express them as
|xij + xjk − xik| = 1 and square both sides [40]. Additionally using x2

ij = 1, we obtain

xij,jk − xij,ik − xik,jk = −1, i, j, k ∈ [n], i 6= j 6= k, i 6= k. (26)

These conditions were first used for the SRFLP in [11].
Now we can formulate the DREFLP as a semidefinite optimization problem in binary variables.

Theorem 6. The problem

min
{
K + 〈CZ , Z〉 : Z satisfies (26), Z ∈ E, x ∈ {−1, 1}n(n−1) satisfies (23) and (24)

}
where Z is given by (25), K is defined in (21) and the cost matrix CZ is given by

CZ :=
(

0 1
2cx

1
2cx CX

)
,

is equivalent to the DREFLP.

Proof. Since x2
i = 1, i ∈ {1, . . . , n(n − 1)}, we have diag(X − xx>) = 0, which together with

X − xx> < 0 shows that in fact X = xx> is integral. Equations (26) ensure |xij + xjk − xik| = 1,
and constraints (23) and (24) together with the integrality of x suffice to induce feasible double-
row layouts due to Lemma 5. Finally the definition of K and CZ ensures that the distances
between departments are computed correctly.

Dropping the integrality condition on the first row and column of Z yields the basic semidefinite
relaxation of the DREFLP:

min {K + 〈CZ , Z〉 : Z satisfies (26), Z ∈ E, x satisfies (23) and (24)} . (SDPbasic)

We now consider possible ways to tighten the above relaxation. First we observe that adding
equations (3) from our ILP model does not improve SDPbasic.
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Observation 7. Equations (3) can be expressed as the sum of two equations of the form (26)
using (19).

We can add symmetry-breaking constraints arising from the addition of spaces (as already
seen in Subsection 3.1):

x21 = −1, (27)
xij = 1, i, j ∈ S, i+ 2 ≤ j, (28)
xij = −1, i, j ∈ S, j < i, (29)

xi(i+1)xki − xki − xi(i+1) = −1,
xi(i+1)xk(i+1) − xk(i+1) − xi(i+1) = −1,

i ∈ S, i 6= n, k ∈ [d]. (30)

Constraint (27) breaks the symmetry of the overall arrangement. Constraints (28) ensure that
two spaces i and j can be assigned to the same column only if i + 1 = j. Constraints (29)
guarantee that in all layouts considered the labels of the spaces increase from left to right. Finally,
constraints (30) are related to Assumption 1 in Subsection 2.2: if two spaces i, j ∈ S lie in the
same column, then each department k ∈ [d] has to lie left to them (see also Fig. 4). Direct
computations using (19) give the following result:

Observation 8. The ILP symmetry-breaking equations (14)–(16) can be derived from (28)–(30).

Equations (28) and (29) allow us to reduce the size of the semidefinite problem for the
computational experiments in Section 5. However, this requires all constraints containing the
relevant variables to be transformed accordingly. While this is a straightforward exercise, it
involves technical detail that does not provide further insight, so we omit the details of this
transformation and of the resulting constraints. (For the same reason, we chose not to exploit
(27) though this could be done in principle.)

Again because we allow quadratic terms, we can express the inequalities (23) as equations:

xijxji + xij + xji = −1, i, j ∈ [n], i < j. (31)

Equation (31) is valid because either xij = xji = −1 (both departments lie in the same column)
or xij + xji = 0 and xijxji = −1 (they lie in different columns).

The theoretically smoothest way to deal with equations (24) would be to use them to reduce
the dimension of the problem by n (for details see [38, Proposition 4.4]). Unfortunately, this
would make their practical implementation much more complicated. An alternative is to lift (24)
into quadratic space via multiplication by an arbitrary ordering variable xlm, l,m ∈ [n], l 6= m,
and the addition of the resulting linear-quadratic equations to the semidefinite relaxation:∑

j∈[n]
j 6=i

(xijxlm + xjixlm) = −2xlm, i, l,m ∈ [n], l 6= m. (32)

A well-known class of valid inequalities for our model is the triangle inequalities of the max-cut
polytope, see e.g. [21]. Since Z is generated as the outer product of the vector

(
1 x

)>
that

has merely {−1, 1} entries in the (non-relaxed) SDP formulation, any matrix Z representing a
feasible layout belongs to the metric polytope M:

M =

Z :


−1 −1 −1
−1 1 1

1 −1 1
1 1 −1


 zij
zjk
zik

 ≤ e, 1 ≤ i < j < k ≤ n(n− 1) + 1

 , (33)

which is defined through ≈ 4n6 facets.
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In summary, we get the following tractable semidefinite relaxation of the DREFLP:

min {K + 〈CZ , Z〉 : Z ∈ E ∩M satisfies (26)–(32)} . (SDPfull)

All variables in Z with cost coefficient greater than zero appear in a 3-cycle equality (26) or in
equations (32) and thus are tightly constrained in the relaxation.

3.3 Extensions to the MREFLP

In this section we extend the models for double-row problems presented in Sections 3.1 and 3.2
to multi-row problems.

We again use Theorem 3 to reduce the MREFLP to a space-free version by introducing enough
spacing departments. Let c be the minimum number of columns needed to preserve at least
one of the original optimal solutions. Then our transformed problem has n := cm departments,
where s = n− d are spaces.

3.3.1 Extension of the ILP Formulation

We extend the ILP formulation for DREFLP proposed in Subsection 3.1 to the following formulation
of the MREFLP:

min
∑
i,j∈[n]
i<j

wij

m ·

 ∑
k∈[n]\{i,j}

bikj +m(1− aij)

 (34)

s. t. (5)–(13)
aij + bijk + bikj + bjik ≤ 1, i, j, k ∈ [n], i < j < k, (35)
aik + bijk + bikj + bjik ≤ 1, i, j, k ∈ [n], i < j < k, (36)
ajk + bijk + bikj + bjik ≤ 1, i, j, k ∈ [n], i < j < k, (37)
aij + ajk − aik ≤ 1, i, j, k ∈ [n], i < k, i 6= j 6= k, (38)∑
j∈[n]\{i}

aij = m− 1, i ∈ [n], (39)

∑
i,j,k∈[n],

i<k, j 6=k, j 6=i

bijk = m3
(
c

3

)
. (40)

In the objective function (34), the distance between two departments i, j ∈ [n], i 6= j, in the same
column is zero (all associated betweenness variables are zero). If i, j are not in the same column,
the distance is at least one and we add the number of departments between i and j divided by
m in the objective (so we derive the number of columns between i, j for that part).

Inequalities (35)–(37) ensure that three departments i, j, k ∈ [n], i < j < k, either lie next to
each other or at least two of them are in the same column. Note that in the double-row case we
used the strengthened version (3).

The inequalities (38) enforce the transitivity property that if departments i and j as well as j
and k lie in the same column, then i and k also lie in the same column.
Equations (39) are the generalization of (4): each i lies in the same column as m− 1 other

departments (possibly including spaces).
Finally, we enforce exactly how many betweenness variables must equal 1 in a feasible solution.

Let c1, c2, c3 ∈ {1, . . . , c} be three different columns of a solution, then for each choice of one
department from each of the three columns, we count 1 towards the left-hand side of (40).
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3.3.2 Extension of the SDP Formulation

The starting point for our semidefinite relaxation for the MREFLP is again a quadratic problem in
ordering variables. We use the x-ordering variables and the 3-cycle inequalities (22) as well as
(23). We change (24) to ∑

j∈[n]\{i}
(xij + xji) = −2m+ 2, i ∈ [n], (41)

and adjust the objective function (20) to

Km +
∑
i,j∈[n]
i<j

wij

4m
∑

k∈[n]\{i,j}
(xikxkj + xjkxki) +

∑
i,j∈[n]
i<j

(m−1)wij

2m (xij + xji). (42)

where Km = n
2m
∑
i,j∈[n],i<j wij .

The following result for the MREFLP follows directly from Theorem 5.

Corollary 9. Minimizing (42) over x ∈ {0, 1}n(n−1) and (22), (23), (41) solves the MREFLP.

In analogy to the double-row case, we can rewrite the MREFLP in matrix notation as

min {〈CmX , X〉+ cmx x+Km : x ∈ {−1, 1}n(n−1) satisfies (22),(23) and (41)}, (MREFLP)

where X := xx> and the cost matrix CmX and cost vector cmx are deduced from (42). Rewriting
the above formulation along the lines of the double-row case gives

min
{
Km + 〈CmZ , Z〉 : Z satisfies (26), Z ∈ E, x ∈ {−1, 1}n(n−1) satisfies (23) and (41)

}
where Z is given by (25), Km is defined right after (42), and the cost matrix CmZ is given by

CmZ :=
(

0 1
2c
m
x

1
2c
m
x CmX

)
.

The basic semidefinite relaxation of the MREFLP reads

min {Km + 〈CmZ , Z〉 : Z satisfies (26), Z ∈ E, x satisfies (23) and (41)} . (SDPmbasic)

To strengthen this relaxation we use∑
j∈[n]\{i}

(xijxkl + xjixkl) = (−2m+ 2)xkl, i, k, l ∈ [n], k 6= l, (43)

which can be derived by multiplying (41) for fixed i with an x-variable xkl, k, l ∈ [n], k 6= l.
Furthermore we use (31) instead of (23).
Finally, we add constraints to break the symmetry of the spaces S:

xij = 1, i, j ∈ S, i+m ≤ j, (44)
xij = −1, i, j ∈ S, j < i, (45)

xijxki − xki − xij = −1, i, j ∈ S, j = i+m− 1, k ∈ [d], (46)
xijxkj − xkj − xij = −1, i, j ∈ S, j = i+m− 1, k ∈ [d], (47)

−xi(i+j)xi(i+k) + xi(i+k) − xi(i+j) = −1, i ∈ S, j, k ∈ N, k < j < m, i+ j ≤ n. (48)

The constraints (44) and (45) ensure that two spaces i, j ∈ S, i < j, can lie in the same column
only if i+m > j. If two spaces i, (i+m− 1) ∈ S lie in the same column each of the original
departments k ∈ [d] lies left to them, see (46)–(47). Furthermore, if two spaces i, (i+ j) ∈ S lie in
the same column, then all spaces i+ 1, . . . , i+ j − 1 also lie in this column by (48). Additionally,
we can use (27) and the triangle inequalities described in (33).

In summary we obtain the following tractable semidefinite relaxation of the MREFLP:

min {Km + 〈CmZ , Z〉 : Z ∈ E ∩M satisfies (26), (27), (31) and (43)–(48)} . (SDPmfull)
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4 Computational Implementation
We now describe our implementation of exact approaches based on our two new formulations.
In Subsection 4.1 we discuss how we solve the linear and semidefinite optimization problems to
obtain lower bounds on the optimal solution value. In Subsection 4.2 we describe heuristics for
the semidefinite approach that yield feasible layouts and hence upper bounds.

4.1 Computing the Lower Bounds
For the models from Chung and Tanchoco [20] (we use the variant proposed in [63]), Amaral
[3] and [4] we included all the constraints directly and used CPLEX [43] as an ILP solver. For
our new ILP model (2)–(16), tests with CPLEX showed that one should not add all inequalities
at once, but should separate inequalities (5)–(11). Note that there are O(n4) many inequalities
in each of the inequality classes (5)–(11) and so enlarging n the number of inequalities grows
rather quickly. Then, even solving the linear relaxation neglecting integrality can be rather time
consuming. We separate (5)–(11) exactly and dynamically in a branch-and-cut approach, i.e.,
we enumerate over all the possible constraints in our separation routine. We decided to not
additionally separate (17), (18) because handling (5)–(11) is already computationally challenging.
The same separation procedure was applied in the multi-row case.

For the SDP approach, we solve our new SDP relaxation using a spectral bundle method
[34, 35], which is a first order method, in conjunction with primal cutting plane generation [33].
In general the optimal objective value v of the relaxation is not integer but then dve is a global
lower bound for the layout instance (if all weights are integral). We also use this property in
the linear approaches. For the application of a spectral bundle method in the solution of the
max-cut and bisection problems, see [13, 33].

One of the main advantages of the spectral bundle method is the ability to exploit the sparsity
of the SDP relaxation [33]. In the objective function all the entries xijxkl with |{i, j, k, l}| = 4
are zero, and the support of equations (26)–(31) is also small. However (32) and the triangle
inequalities of the metric polytope M have a larger support. To keep the small support consisting
of the first row and column and the entries xijxkl with i, j, k, l ∈ [n], i 6= j, k 6= l, |{i, j, k, l}| ≤ 3,
we restrict to inequalities (32) with i ∈ {l,m}, i.e., we only multiply (24) for i ∈ [n] fixed with
xlm, l,m ∈ [n], l 6= m, if i ∈ {l,m}. Moreover we do not include the triangle inequalities and
instead add the odd-cycle inequalities [14] (transformed to the −1/1-setting) on the small support
of the objective function, where the coefficient matrix is interpreted as the adjacency matrix of a
graph. In our tests we used a separator by C. Helmberg that is a variant of that by M. Jünger.
Note that if we work with the full support (and thus on a complete graph) and exactly separate
the triangle inequalities, then there is no need for an additional odd-cycle separator because all
odd-cycles with length at least five are not chordless and are therefore implied by the triangle
inequalities [14].
As mentioned before, for the DREFLP equalities (28) and (29) (respectively equalities (44)

and (45) for the MREFLP) are used to reduce the size of the semidefinite relaxations. In our
implementation we add all the equations of (SDPfull) (respectively (SDPmfull)) right from the
beginning (except the ones with large support mentioned above), and then iteratively include
the odd-cycle inequalities. After 50 (null or descent) steps of the spectral bundle method [34] we
determine violated odd-cycle inequalities and restrict the separation to adding at most 100 of
the most-violated constraints. To speed up the implementation we also delete constraints if they
are no longer important, see, e.g., [13]. Our solution approach is summarized in Algorithm 1.

4.2 Computing the Upper Bounds
CPLEX provides upper bounds while solving ILP formulations. We describe here how we derive
feasible layouts using SDP primal information.
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Algorithm 1: SDP Solution Approach
Input : instance of MREFLP with integral weights, time limit t, stopping criterion for

subgradient norm ε
Output : lower v and upper bound v or optimal value v∗ = v = v for the MREFLP instance

1 v ← −∞, v ←∞
2 i← 0 // counter of the iterations of spectral bundle method ConicBundle
3 while no termination criterion met do

do iteration of bundle method (descent step or null step): i← i+ 1, and update v
if i mod 50 = 0 then

separate odd cycle constraints
call heuristics: update v if solution was improved

if v − v < 0.99 then
STOP. // optimal solution found

if subgradient norm < ε or running time > t or some internal stopping criterion of
ConicBundle is met then

STOP.
if iteration i is a descent step then

Delete unimportant constraints.

4 return v, v

Let
(
1 x̃

)
denote the first row of the SDP matrix Z. Hence x̃ gives the values of the x-

variables in the relaxation. Given a partial solution consisting of k completely filled columns,
k ∈ {0, . . . , nm} (we arrange departments and spaces simultaneously), we determine and position
the next column in a greedy manner. First, we determine for each subset T of the remaining
departments and spaces with |T | = m the sum τT =

∑
i,j∈T,i6=j x̃ij . A small value of τT indicates

that them elements of T should be arranged in the same column. (Note that if all the departments
in T lie in the same column, then

∑
i,j∈T,i6=j x̃ij = −m(m− 1).) Hence we choose the smallest

τT and place the departments in T in the same column, that we denote by C.
Finally we decide on the position of the new column using again the information encoded in x̃.

More precisely let N ⊂ [n] denote the set of all departments and spaces that have already been
assigned and set l = |N |

m . The function αpart : N →
[
|N |
m

]
gives an assignment of the elements of

N to the |N |m columns. Now we calculate for the departments in C

γp =
∑

i∈C, j∈N
αpart(j)<p

x̃ji +
∑

i∈C, j∈N
αpart(j)≥p

x̃ij

for all possible positions p ∈ [l + 1]. Finally we determine p̂ = argmaxp∈[l+1] γp, update αpart by

αpart(i)←


p̂, i ∈ C,
αpart(i), i ∈ N,αpart(i) < p̂,

αpart(i) + 1, i ∈ N, p̂ ≤ αpart(i),

and set N ← N ∪ C.
When all departments and spaces have been arranged, we try to improve the layout using

a 3-OPT heuristic (see e.g. [49]) that searches for advantageous exchanges of two or three
departments in a greedy manner. We also test if the solution can be improved by reallocation of
any column or by exchanging two or three columns. Apart from the presented heuristic, we use an
adapted version of this in order to save running time. This determines the departments that lie in
the same row in an alternative way. For each new column we start with the pair {i, j} ⊂ [n] \N
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of the currently unassigned departments that minimizes x̃ij + x̃ji and set D = {i, j}. Next we
iteratively add the department k ∈ [n] \ (N ∪D) to D that minimizes the sum

∑
l∈D(x̃kl + x̃lk)

until |D| = m. Then we set N ← N ∪D. If every department has been assigned to a column,
we finally determine the order of the columns in the same way as above. For m = 2 the two
heuristics are exactly the same. Additionally we use the first heuristic for m = 3 and the second
computationally cheaper one for m ∈ {3, 4, 5}.

5 Computational Experiments
In this section we present our computational results.

Test Setting and Instances We use double-row instances from the literature as well as instances
originally studied for the SREFLP with at least 10 departments in order to highlight the practical
impact of our theoretical results. All experiments were conducted on an INTEL-Core-I7-4770 (4x
3400MHz, 8 MB Cache) with 32 GB RAM in single processor mode using openSUSE Linux 42.1.
We test instances with d ≥ 10 used for the SREFLP in [41], instances proposed for the DREFLP by
Amaral [4] (denoted by A-d-{edge probability·100}) where the pairwise weights wij are either
zero or one because of the underlying graph problem, and instances constructed by Hungerländer
and Anjos [39] (denoted by E-d-{edge probability·100}). The instances together with information
on the source and the density are available at http://www.miguelanjos.com/flplib.

In the following we compare the computational times and final gaps calculated by the following
five approaches:

• TAN: The MILP model from [20] (corrected according to [63]) that can be used directly for
solving the MRFLP with m ≥ 3.

• AMA: The MILP model of Amaral [3] that cannot be easily extended to the MRFLP with
m ≥ 3.

• AMA2: The MILP model of Amaral [4] that can be easily extended to the MRFLP with m ≥ 3.

• ILP: The ILP models in Section 3.1 for the DRFLP and Section 3.3.1 for the MRFLP.

• SDP: The SDP relaxations in Section 3.2 for the DRFLP and in Section 3.3.2 for the MRFLP.

We tested these approaches on all available benchmark instances from the literature with
d ≥ 10 departments. We considered m ∈ {2, 3, 4, 5} rows, except for AMA that is only applicable
for m = 2. Note that AMA2 is the only approach specifically tailored to MRFLP with departments
of equal size known in the literature before. We also compare our approaches to general MRFLP
approaches because the best approaches for SRFLP are also the best approaches for SREFLP, see,
e.g., [41].
We improve the models TAN, AMA and AMA2 from the literature by setting the big-M term or

the number of possible positions of the departments according to Theorem 3. We do not test
against the approaches in [42] and [25] for the MRFLP that are both based on enumerating over all
different row assignments and so for larger d even deriving strong lower bounds is out of scope
due to the large number of challenging subproblems to be (approximately) solved.

Comparison of the Results Next we compare the running times and the gaps of the different
approaches. We calculate the percentage gap between the best upper bound found (regardless of
which method(s) derived it) and each lower bound:(upper bound

lower bound − 1
)
· 100%.
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Consider for example (see also instance A-14-30 in Table 2) an upper bound of 36 and lower
bounds of l1 = 17.9041 and l2 = 21.3571. Then using the integrality of the optimal solution
value we get gaps of 36−18

18 = 1 (so of 100%) and 36−22
22 ≈ 0.6364 (so of 63.64%), respectively.

Note that except for a simple start construction heuristic for SDP, each method determines its
own upper bound during the solution process.

We start with comparing the different approaches using a time limit of one hour, see Tables 2
and 3 and the columns in Tables 4 and 5 specified with 1h.

TAN and AMA: First we consider the results of the two approaches not specifically tailored to
DREFLP and MREFLP, TAN and AMA, for m = 2 in Tables 2 and 3. One can see that both
approaches are usually slower than our new approaches. AMA is in most cases the faster of
the two and if the time limit is reached, the gaps are smaller. With TAN 24 instances and
with AMA 32 instances out of 61 instances could be solved to optimality within the time
limit of one hour for m = 2. For m ∈ {3, 4, 5} we also tested TAN. In total 23 instances
for m = 3, 21 for m = 4, and 22 for m = 5 could be solved to optimality within the time
limit. Usually, the running times for m ∈ {3, 4, 5} are larger than for m = 2; only when
the number of departments is small in comparison to the number of rows the running
times partially decrease. One explanation for this behavior might be that the big-M value
is rather small then. Both approaches from the literature have in common, that for the
medium-sized instances (d = 13, 14, 15) usually optimality cannot be proved within the
time limit of one hour and the gaps are relatively large. For this reason we do not test
them on the larger instances with d ≥ 16. In general, it seems that sparsity of the objective
function helps in both approaches to reduce the running times or to derive good bounds.
In particular, this can be seen on the instances A-13-10, A-13-20, A-14-10 and A-14-20
that are the only instances with d ≥ 13 that were solved to optimality by both methods.

AMA2: Tables 2 and 3 show that for sparse instances, this approach is sometimes the best approach
if m = 2. For m ∈ {3, 4, 5} it is very often the best approach for small instances, especially
for the sparse ones. If the instances could not be solved within the time limit, the gaps
are usually rather high in comparison to SDP, but better than the ones of TAN and AMA.
The running times decrease with increasing m. The main reason for this seems to be
our improvement of the model presented in [4] according to Theorem 3 that significantly
reduces the number of potential positions, and hence the number of variables. All instances
with d ≤ 15 could be solved to optimality for m = 5 within one hour. Due to this good
performance we also tested AMA2 on the medium-sized instances with a time limit of one
and of three hours. Table 4 shows that only sparse instances can be solved to optimality.
But usually the gaps are extremely large and SDP (as well as ILP for m = 2) behaves much
better. This is not surprising since the model is closely related to formulations for the
quadratic assignment problem [50]. Comparing the results for different values of m, AMA2
also works better for larger m on the medium-sized instances. But even for m = 5 the gaps
are greater than 10% for 13 of 21 instances after three hours (for m = 2 the gap of 20 of
the 21 instances is greater than 39% after three hours).

ILP: ILP is the best approach for small and medium-sized instances with up to 20 departments
in the case m = 2. All instances with d ≤ 18 and m = 2 could be solved to optimality in
less than 5 minutes. For larger m, the solution times are much higher than for m = 2 and
the obtained lower bounds are rather weak. Furthermore, CPLEX has difficulties proving
optimality: sometimes, although the lower bound equals the optimal solution value (found
by a different method), the calculation goes on because of the higher upper bound, see e.g.
instance A-20-10 in Table 4. One explanation for this behavior could be that equations (3)
for m = 2 are rather strong in comparison to inequalities (35)–(37) for m ≥ 3. Furthermore,
ILP and SDP both seem to suffer from the fact that for larger d, the number of spaces
(additional departments) needed grows with m, see Tables 4 and 5 for large d.
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SDP: One can see that the lower bounds for MREFLP determined using SDP are often very strong,
while the quality of the bounds is even a bit better for the case m = 2. Although we do
not combine the lower bound computation with a bounding scheme, we are able to prove
optimality for 76 instances with m = 2 and for 60/58/65 instances with m = 3/4/5 within
a time limit of one hour. The largest instances solved to optimality have 25 departments for
m = 2 and at least 20 departments for m ∈ {3, 4, 5}, see Tables 4 and 5. For the instances
that cannot be solved exactly within the time limit, we achieve gaps of less than 2% or an
absolute difference of at most 1 for 102/103/90/95 instances out of 108 when m = 2/3/4/5.
Table 5 shows as well that the gaps get worse as the number of departments increases.
Comparing SDP to ILP for m = 2 shows that for small instances, ILP is faster and allows
to solve all instances to optimality. But for instances with d ≥ 21 the bounds with SDP are
much stronger whereas the gaps with ILP are often greater than 10%.

For ILP and SDP and d ≥ 16, we further increased the time limit to three hours for m = 2 for
both approaches, and for m ∈ {3, 4, 5} for SDP only, see the columns specified with 3h in Tables 4
and 5.

ILP and SDP, 3h: The increased time limit mainly helps SDP as the gaps can be reduced signific-
antly. For ILP the improvements are small, especially for instances with d ≥ 30. Here it
seems that the solver has some problems handling the large number of constraints (usually
a large number of constraints is violated during the solution process).

We also looked at the upper bounds derived with the various approaches. In most cases our
SDP construction heuristic is the best and provides rather high-quality solutions. These good
upper bounds make it possible to stop our SDP relaxation approach because we are close enough.
Indeed for proving optimality and in the calculation of the lower bound, in all approaches we
used the fact that in the instances from the literature all weights are integer and so the optimal
solution value is also integer. If our SDP heuristic fails to determine an optimal solution, then
the solution process might continue although theoretically the gap is closed, see e.g. instance
A-20-60 and m = 4.

In summary, we suggest to use the following approaches depending on the size of d and m:

• for d ≤ 19 and m = 2 use ILP,

• for d = 20,m = 2 one can use ILP as well as SDP because there is not a clear winner, and

• for m = 2, d ≥ 21 and m ∈ {3, 4, 5}, d ≥ 15 use SDP. For larger m and small d ≤ 14, AMA2
is a good alternative to SDP.

Moreover our results show that the SDP approach is well-suited for providing good lower bounds
for large MREFLP instances in a reasonable time. Finally the upper bounds derived from the SDP
fractional solutions are of high-quality.

6 Conclusions and Future Work
We considered the special case of multi-row layout problems in which all departments have the
same length. We showed that only spaces of unit length are required when modeling the problem,
and we stated and proved exact expressions for the minimum number of spaces that need to be
added so as to preserve at least one optimal solution. These results show that the MREFLP can be
modeled using only binary variables, which has a significant computational impact.
Using the results on the structure of optimal solutions, we proposed ILP and SDP models

for the DREFLP and the general MREFLP. Our results show that the SDP approach dominates for
medium-sized and large instances. For the double-row case we increased the largest instances
solved to optimality from 16 departments [25] to 25 departments. When considering 3 to 5
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m = 2 m = 3 m = 4 m = 5
TAN AMA AMA2 ILP SDP TAN AMA2 ILP SDP TAN AMA2 ILP SDP TAN AMA2 ILP SDP

best gap time gap time gap time gap time gap time best gap time gap time gap time gap time best ub gap time gap time gap time gap time best gap time gap time gap time gap time
A-10-10 2* 0.00 0:00 0.00 0:00 0.00 0:00 0 0:00 0 0:00 1* 0.00 0:01 0.00 0:00 0.00 0:53 0 0:04 0* 0.00 0:00 0.00 0:00 0.00 1:17 0.00 0:02 0* 0.00 0:00 0 0:00 0.00 0:42 0 0:02
A-10-20 3* 0.00 0:01 0.00 0:00 0.00 0:00 0 0:00 0 0:00 3* 0.00 0:10 0.00 0:00 0.00 1:33 0 0:60 1* 0.00 0:00 0.00 0:00 0.00 0:02 0.00 0:03 1* 0.00 0:01 0 0:00 0.00 0:14 0 0:03
A-10-30 7* 0.00 0:09 0.00 0:01 0.00 0:00 0 0:00 0 0:00 5* 0.00 0:25 0.00 0:00 0.00 0:18 0 0:28 3* 0.00 0:32 0.00 0:00 0.00 0:52 0.00 0:10 1* 0.00 0:00 0 0:00 0.00 0:00 0 0:01
A-10-40 30* 0.00 3:03 0.00 1:39 0.00 0:04 0 0:00 0 0:07 20* 0.00 7:04 0.00 0:02 5.26 TL 0 0:44 13* 0.00 5:00 0.00 0:00 0.00 3:02 0.00 0:03 10* 0.00 7:35 0 0:00 0.00 0:18 0 0:06
A-10-50 28* 0.00 3:52 0.00 0:53 0.00 0:04 0 0:00 0 0:01 19* 0.00 5:22 0.00 0:01 0.00 45:04 0 1:06 13* 0.00 3:38 0.00 0:00 0.00 1:19 0.00 0:14 9* 0.00 7:46 0 0:00 0.00 0:07 0 0:05
A-10-60 25* 0.00 1:39 0.00 1:02 0.00 0:03 0 0:01 0 1:47 15* 0.00 1:38 0.00 0:00 0.00 4:25 0 0:13 11* 0.00 3:51 0.00 0:00 0.00 7:37 0.00 0:21 8* 0.00 3:10 0 0:00 0.00 0:00 0 0:06
A-10-70 49* 0.00 13:17 0.00 4:42 0.00 0:20 0 0:00 0 0:01 33* 0.00 18:43 0.00 0:06 10.00 TL 0 0:37 24* 0.00 31:40 0.00 0:01 4.35 TL 0.00 0:27 16* 0.00 14:32 0 0:00 0.00 0:10 0 0:04
A-10-80 65* 0.00 40:50 0.00 0:44 0.00 0:45 0 0:00 0 0:02 44* 7.32 TL 0.00 0:11 12.82 TL 0 2:48 32* 14.29 TL 0.00 0:03 10.34 TL 0.00 1:18 21* 0.00 27:49 0 0:00 0.00 0:00 0 0:02
A-10-90 65* 0.00 44:26 0.00 0:40 0.00 0:48 0 0:00 0 0:02 44* 4.76 TL 0.00 0:12 7.32 TL 0 2:07 32* 10.34 TL 0.00 0:03 10.34 TL 0.00 0:54 21* 0.00 29:03 0 0:00 0.00 0:00 0 0:02
A-11-10 0* 0.00 0:00 0.00 0:00 0.00 0:00 0 0:01 0 0:01 0* 0.00 0:00 0.00 0:00 0.00 1:27 0 0:04 0* 0.00 0:00 0.00 0:00 0.00 8:34 0.00 0:04 0* 0.00 0:00 0 0:00 0.00 1:10 0 0:02
A-11-20 17* 0.00 05:12 0.00 2:10 0.00 0:03 0 0:06 0 0:14 11* 0.00 8:40 0.00 0:01 0.00 TL 0 0:20 8* 0.00 12:19 0.00 0:00 0.00 39:12 0.00 0:38 5* 0.00 5:10 0 0:00 0.00 0:01 0 0:02
A-11-30 25* 0.00 4:47 0.00 2:01 0.00 0:08 0 0:01 0 0:18 16* 0.00 8:31 0.00 0:01 0.00 2:31 0 0:12 12* 0.00 22:09 0.00 0:00 0.00 27:35 0.00 0:21 8* 0.00 20:10 0 0:00 0.00 0:03 0 0:03
A-11-40 30* 0.00 12:34 0.00 5:37 0.00 0:12 0 0:01 0 0:13 20* 0.00 22:08 0.00 0:02 5.26 TL 0 4:53 14* 0.00 40:21 0.00 0:00 0.00 48:12 0.00 0:21 11* 10.00 TL 0 0:00 0.00 1:39 0 0:39
A-11-50 51* 24.39 TL 0.00 32:00 0.00 1:17 0 0:02 0 0:22 34* 9.68 TL 0.00 0:06 9.68 TL 0 2:09 24* 20.00 TL 0.00 0:01 9.09 TL 0.00 0:36 18* 28.57 TL 0 0:00 0.00 9:11 0 1:37
A-11-60 37* 0.00 6:43 0.00 4:11 0.00 0:14 0 0:00 0 0:03 24* 0.00 7:25 0.00 0:01 0.00 57:51 0 0:05 18* 0.00 23:36 0.00 0:00 0.00 4:31 0.00 0:17 14* 0.00 49:40 0 0:00 0.00 0:38 0 0:22
A-11-70 54* 22.73 TL 0.00 24:54 0.00 1:34 0 0:02 0 0:56 35* 9.38 TL 0.00 0:07 2.94 TL 0 0:46 26* 30.00 TL 0.00 0:01 13.04 TL 0.00 2:03 19* 26.67 TL 0 0:00 0.00 3:46 0 0:30
A-11-80 74* 21.31 TL 0.00 41:04 0.00 6:09 0 0:00 0 0:29 49* 40.00 TL 0.00 0:16 8.89 TL 0 1:50 36* 50.00 TL 0.00 0:04 09.09 TL 0.00 1:50 27* 58.82 TL 0 0:01 0.00 2:60 0 1:32
A-11-90 101* 71.19 TL 0.00 6:47 0.00 58:32 0 0:06 0 4:01 66* 78.38 TL 0.00 3:12 15.79 TL 0 2:20 48* 84.62 TL 0.00 0:27 20.00 TL 0.00 2:15 37* 105.56 TL 0 0:03 8.82 TL 0 8:22
A-12-10 1* 0.00 0:00 0.00 0:00 0.00 0:00 0 0:00 0 0:01 1* 0.00 0:01 0.00 0:00 0.00 5:03 0 0:42 0* 0.00 0:00 0.00 0:00 0.00 0:21 0.00 0:03 0* 0.00 0:00 0 0:00 0.00 20:16 0 0:12
A-12-20 11* 0.00 1:19 0.00 0:28 0.00 0:00 0 0:01 0 0:02 7* 0.00 2:29 0.00 0:00 0.00 58:21 0 0:40 5* 0.00 5:59 0.00 0:00 0.00 0:26 0.00 0:13 4* 0.00 33:39 0 0:00 0.00 8:06 0 0:56
A-12-30 13* 0.00 5:33 0.00 1:09 0.00 0:07 0 0:01 0 0:13 8* 0.00 2:26 0.00 0:01 0.00 25:00 0 0:41 5* 0.00 1:08 0.00 0:00 0.00 4:30 0.00 0:12 4* 0.00 8:38 0 0:00 0.00 TL 0 0:37
A-12-40 37* 19.35 TL 0.00 39:14 0.00 1:12 0 0:02 0 0:06 24* 4.35 TL 0.00 0:12 9.09 TL 0 0:60 16* 0.00 33:14 0.00 0:01 0.00 1:36 0.00 0:04 15* 66.67 TL 0 0:01 15.38 TL 0 11:58
A-12-50 43* 7.50 TL 0.00 24:37 0.00 0:37 0 0:01 0 0:16 27* 0.00 53:05 0.00 0:08 3.85 TL 0 0:20 20* 25.00 TL 0.00 0:01 0.00 TL 0.00 0:39 17* 54.55 TL 0 0:01 13.33 TL 0 4:12
A-12-60 53* 29.27 TL 8.16 TL 0.00 2:20 0 0:01 0 0:28 33* 13.79 TL 0.00 0:13 3.12 TL 0 0:14 24* 26.32 TL 0.00 0:02 0.00 10:27 0.00 0:18 21* 75.00 TL 0 0:01 16.67 TL 0 10:14
A-12-70 77* 79.07 TL 35.09 TL 0.00 22:32 0 0:01 0 0:35 49* 63.33 TL 0.00 1:48 11.36 TL 0 0:16 34* 70.00 TL 0.00 0:05 0.00 5:48 0.00 0:01 30* 130.77 TL 0 0:04 15.38 TL 0 9:19
A-12-80 102* 82.14 TL 64.52 TL 0.00 40:31 0 0:01 0 0:07 65* 91.18 TL 0.00 3:46 22.64 TL 0 0:07 47* 88.00 TL 0.00 0:17 9.30 TL 0.00 0:07 40* 150.00 TL 0 0:11 14.29 TL 0 8:55
A-12-90 108* 103.77 TL 0.00 55:11 0.00 30:04 0 0:01 0 0:14 70* 89.19 TL 0.00 5:45 20.69 TL 0 0:32 50* 100.00 TL 0.00 0:12 11.11 TL 0.00 0:10 42* 147.06 TL 0 0:09 13.51 TL 0 10:25
A-13-10 2* 0.00 0:01 0.00 0:01 0.00 0:00 0 0:02 0 0:02 1* 0.00 0:01 0.00 0:00 0.00 1:13 0 0:21 1* 0.00 0:01 0.00 0:00 0.00 29:18 0.00 0:36 1* 00.00 0:04 0 0:00 0.00 21:27 0 0:44
A-13-20 24* 0.00 15:22 0.00 22:05 0.00 1:01 0 0:18 0 1:57 15* 0.00 23:54 0.00 0:03 7.14 TL 0 1:05 11* 0.00 58:29 0.00 0:01 10.00 TL 0.00 2:06 9* 28.57 TL 0 0:00 12.50 TL 0 5:44
A-13-30 38* 31.03 TL 5.56 TL 0.00 1:15 0 0:13 0 0:32 25* 25.00 TL 0.00 0:09 8.70 TL 0 1:19 19* 46.15 TL 0.00 0:03 18.75 TL 0.00 8:21 14* 55.56 TL 0 0:00 7.69 TL 0 0:42
A-13-40 42* 55.56 TL 27.27 TL 0.00 10:49 0 0:07 0 0:44 27* 50.00 TL 0.00 0:35 0.00 51:29 0 1:16 20* 66.67 TL 0.00 0:06 11.11 TL 0.00 2:45 16* 100.00 TL 0 0:01 14.29 TL 0 2:40
A-13-50 68* 106.06 TL 51.11 TL 0.00 27:36 0 0:24 0 2:12 44* 76.00 TL 0.00 1:14 10.00 TL 0 2:07 32* 88.24 TL 0.00 0:14 14.29 TL 0.00 2:37 26* 116.67 TL 0 0:04 23.81 TL 0 4:22
A-13-60 70* 94.44 TL 62.79 TL 0.00 16:46 0 0:02 0 0:57 46* 91.67 TL 0.00 1:20 6.98 TL 0 2:16 33* 94.12 TL 0.00 0:12 10.00 TL 0.00 2:33 26* 116.67 TL 0 0:03 13.04 TL 0 3:13
A-13-70 105* 144.19 TL 114.29 TL 17.98 TL 0 0:13 0 2:06 69* 137.93 TL 0.00 12:36 15.00 TL 0 6:07 50* 177.78 TL 0.00 1:13 19.05 TL 0.00 6:01 41* 215.38 TL 0 0:18 20.59 TL 0 33:39
A-13-80 138* 165.38 TL 72.50 TL 43.75 TL 0 0:02 0 2:06 90* 210.34 TL 0.00 42:58 16.88 TL 0 2:07 66* 153.85 TL 0.00 4:40 20.00 TL 0.00 4:60 53* 194.44 TL 0 0:43 15.22 TL 0 6:20
A-13-90 153* 173.21 TL 45.71 TL 54.55 TL 0 0:03 0 5:13 101* 225.81 TL 10.99 TL 18.82 TL 0 20:35 74* 236.36 TL 0.00 8:20 27.59 TL 0.00 22:32 58* 205.26 TL 0 0:55 16.00 TL 0 4:40
A-14-10 4* 0.00 0:07 0.00 0:08 0.00 0:00 0 0:17 0 0:11 3* 0.00 0:07 0.00 0:00 0.00 TL 0 3:07 1* 0.00 0:02 0.00 0:00 0.00 TL 0.00 1:32 1* 0.00 0:14 0 0:00 0.00 20:57 0 0:17
A-14-20 24* 0.00 58:11 0.00 39:32 0.00 0:46 0 1:23 0 3:11 16* 14.29 TL 0.00 0:09 14.29 TL 0 32:04 11* 22.22 TL 0.00 0:03 10.00 TL 0.00 8:35 8* 33.33 TL 0 0:00 0.00 47:49 0 0:40
A-14-30 36* 100.00 TL 63.64 TL 0.00 41:39 0 0:40 0 1:60 24* 84.62 TL 0.00 1:16 14.29 TL 0 11:51 18* 100.00 TL 0.00 0:20 38.46 TL 5.88 TL 13* 85.71 TL 0 0:01 8.33 TL 0 1:41
A-14-40 43* 86.96 TL 38.71 TL 0.00 28:35 0 0:12 0 1:31 28* 86.67 TL 0.00 1:46 7.69 TL 0 3:43 21* 110.00 TL 0.00 0:31 31.25 TL 0.00 24:54 16* 100.00 TL 0 0:01 14.29 TL 0 5:25
A-14-50 94* 193.75 TL 147.37 TL 30.56 TL 0 0:39 0 2:26 63* 231.58 TL 0.00 56:53 21.15 TL 0 39:53 47* 235.71 TL 0.00 14:16 38.24 TL 2.17 TL 35* 191.67 TL 0 0:09 20.69 TL 0 6:17
A-14-60 99* 160.53 TL 153.85 TL 28.57 TL 0 0:06 0 0:43 65* 182.61 TL 0.00 20:31 10.17 TL 0 1:34 49* 250.00 TL 0.00 6:23 32.43 TL 0.00 20:41 37* 184.62 TL 0 0:08 8.82 TL 0 1:50
A-14-70 138* 228.57 TL 187.50 TL 72.50 TL 0 4:42 0 4:27 92* 283.33 TL 22.67 TL 19.48 TL 0 18:36 68* 325.00 TL 0.00 45:13 30.77 TL 0.00 32:37 52* 271.43 TL 0 0:39 13.04 TL 0 3:32
A-14-80 167* 209.26 TL 169.35 TL 62.14 TL 0 2:53 0 2:01 111* 362.50 TL 21.98 TL 23.33 TL 0 6:11 83 361.11 TL 12.16 TL 36.07 TL 1.22 TL 64* 433.33 TL 0 1:13 16.36 TL 0 5:19
A-14-90 187* 297.87 TL 128.05 TL 136.71 TL 0 1:18 0 1:46 125* 420.83 TL 48.81 TL 20.19 TL 0 28:19 93 342.86 TL 20.78 TL 38.81 TL 1.09 TL 71* 446.15 TL 0 5:01 18.33 TL 0 6:37

Table 2: Computation times (in (m)m:ss) and gaps (in percent) for instances of Amaral [4] with 10 to 14 departments. The optimal solution values of
the instances are in columns “best”; if not all instances could be solved to optimality the best known upper bounds can be found in columns
“best ub”. Additionally we highlighted all provably optimal solution values with an asterisk “*”. A time “TL” indicates that an optimal
solution could not be determined within the time limit of one hour.
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m = 2 m = 3 m = 4 m = 5
TAN AMA AMA2 ILP SDP TAN AMA2 ILP SDP TAN AMA2 ILP SDP TAN AMA2 ILP SDP

best gap time gap time gap time gap time gap time best ub gap time gap time gap time gap time best ub gap time gap time gap time gap time best gap time gap time gap time gap time
E-10-100 427* 0.00 22:07 0.00 10:57 0.00 1:43 0 0:01 0 0:59 277* 0.00 27:34 0.00 0:16 12.60 TL 0.00 0:57 209* 8.85 TL 0.00 0:04 13.59 TL 0.00 7:52 133* 0.00 16:49 0 0:00 0.00 0:00 0.00 0:11
E-10-50 191* 0.00 4:24 0.00 1:06 0.00 0:06 0 0:02 0 3:35 114* 0.00 01:35 0.00 0:01 0.00 12:50 0.00 0:15 89* 0.00 4:36 0.00 0:00 7.23 TL 0.00 1:46 59* 0.00 02:59 0 0:00 0.00 0:00 0.00 0:14
E-11-100 539* 35.77 TL 11.36 TL 0.00 14:22 0 0:01 0 1:48 351* 51.29 TL 0.00 0:49 10.73 TL 0.00 4:04 256* 56.10 TL 0.00 0:08 15.84 TL 0.00 22:13 191* 076.85 TL 0 0:01 0.00 7:54 0.00 5:00
N-15 1064* 247.71 TL 166.00 TL 61.46 TL 0 0:04 0 4:02 668* 307.32 TL 0.00 33:08 6.37 TL 0.00 7:11 500* 267.65 TL 0.00 10:59 30.21 TL 0.81 TL 382* 274.51 TL 0 1:01 18.27 TL 0.79 TL
O-10 670* 0.00 12:17 0.00 6:20 0.00 0:26 0 0:00 0 0:09 450* 0.00 25:26 0.00 0:10 12.22 TL 0.00 0:59 334* 0.00 52:05 0.00 0:02 6.71 TL 0.00 1:24 222* 0.00 25:53 0 0:00 0.00 0:01 0.00 0:54
O-15 2556* 266.19 TL 256.98 TL 158.44 TL 0 0:04 0 4:55 1660* 492.86 TL 39.73 TL 12.93 TL 0.00 28:25 1250 392.13 TL 17.92 TL 35.14 TL 0.73 TL 914* 603.08 TL 0 6:36 17.03 TL 0.00 5:41
S-12 2167* 116.27 TL 92.28 TL 17.90 TL 0 0:00 0 0:54 1404* 113.05 TL 0.00 21:23 16.32 TL 0.07 49:53 995* 108.16 TL 0.00 0:45 12.56 TL 0.00 4:08 841* 148.82 TL 0 0:29 18.79 TL 0.00 16:01
S-13 2940* 177.88 TL 127.20 TL 79.71 TL 0 0:15 0 7:48 1938 224.08 TL 20.22 TL 18.68 TL 0.16 TL 1413* 242.96 TL 0.00 14:33 25.27 TL 0.00 19:19 1132* 208.45 TL 0 1:52 21.98 TL 0.00 50:06
S-14 3608* 221.00 TL 217.33 TL 124.66 TL 0 0:60 0 33:55 2408 357.79 TL 42.99 TL 21.43 TL 0.08 TL 1794 340.79 TL 24.24 TL 45.03 TL 1.36 TL 1369* 508.44 TL 0 5:31 20.19 TL 0.00 18:33
S-15 4466* 289.70 TL 304.90 TL 180.00 TL 0 0:24 0 50:22 2883* 513.40 TL 90.80 TL 14.31 TL 0.00 21:44 2180 393.21 TL 41.94 TL 46.80 TL 1.02 TL 1612* 588.89 TL 0 28:26 21.11 TL 0.31 TL
Y-10 1697* 3.60 TL 0.00 21:02 0.00 1:54 0 0:00 0 0:21 1140* 9.83 TL 0.00 0:33 19.25 TL 0.00 6:30 845* 26.31 TL 0.00 0:07 19.52 TL 0.00 10:42 530* 0.00 32:35 0 0:00 0.00 0:00 0.00 0:36
Y-11 2008* 53.99 TL 34.31 TL 0.00 52:24 0 0:00 0 2:10 1314* 71.09 TL 0.00 2:33 8.60 TL 0.00 4:36 947* 71.87 TL 0.00 0:17 18.37 TL 0.00 3:04 724* 95.15 TL 0 0:02 0.00 26:56 0.00 8:24
Y-12 2342* 124.54 TL 82.68 TL 18.76 TL 0 0:00 0 0:44 1510* 128.44 TL 0.00 18:34 13.79 TL 0.00 2:59 1070* 115.29 TL 0.00 0:35 12.39 TL 0.00 0:41 908* 157.95 TL 0 0:35 18.85 TL 0.00 15:43
Y-13 2730* 177.16 TL 152.31 TL 55.64 TL 0 0:01 0 11:13 1798* 226.32 TL 19.87 TL 17.98 TL 0.00 26:48 1314* 265.00 TL 0.00 15:41 24.31 TL 0.00 21:59 1048* 217.58 TL 0 1:46 22.43 TL 0.00 29:40
Y-14 3164* 229.93 TL 180.50 TL 158.50 TL 0 0:06 0 7:18 2110* 432.83 TL 46.32 TL 20.99 TL 0.00 42:54 1574 333.61 TL 29.23 TL 46.55 TL 1.35 TL 1201* 469.19 TL 0 7:04 21.44 TL 0.00 58:23
Y-15 3676* 296.55 TL 278.58 TL 180.40 TL 0 0:05 0 51:48 2357* 526.86 TL 73.31 TL 12.45 TL 0.00 3:41 1782 395.00 TL 50.51 TL 47.15 TL 0.96 TL 1322* 567.68 TL 0 54:42 22.18 TL 0.30 TL

Table 3: Computation times (in (m)m:ss) and gaps (in percent) for instances with 10 to 14 departments. The optimal solution values of the instances
are in columns “best”; if not all instances could be solved to optimality the best known upper bounds can be found in columns “best ub”.
Additionally we highlighted all provably optimal solution values with an asterisk “*”. A time “TL” indicates that an optimal solution could
not be determined within the time limit of one hour.
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m = 2 m = 3 m = 4 m = 5
AMA2 1h AMA2 3h ILP 1h ILP 3h SDP 1h SDP 3h AMA2 1h AMA2 3h SDP 1h SDP 3h AMA2 1h AMA2 3h SDP 1h SDP 3h AMA2 1h AMA2 3h SDP 1h SDP 3h

instance best ub gap time gap time gap time gap time gap time gap time best ub gap time gap time gap time gap time best ub gap time gap time gap time gap time best ub gap time gap time gap time gap time
A-20-10 12* 0.00 4:29 n/a n/a 0.00 TL 0 TL 9.09 TL 0.00 2:28:32 7* 0.00 0:29 n/a n/a 16.67 TL 16.67 TL 4* 0.00 0:02 n/a n/a 33.33 TL 0.00 1:25:38 3* 0.00 0:00 n/a n/a 0.00 13:11 n/a n/a
A-20-20 73* 170.37 TL 108.57 TL 0.00 TL 0 1:25:41 0.00 17:53 n/a n/a 49 44.12 TL 28.95 TL 2.08 TL 2.08 TL 34* 0.00 13:31 n/a n/a 0.00 43:35 n/a n/a 27* 0.00 1:56 n/a n/a 0.00 42:55 n/a n/a
A-20-30 111* 258.06 TL 164.29 TL 0.00 26:39 n/a n/a 0.00 10:00 n/a n/a 74* 54.17 TL 39.62 TL 1.37 TL 0.00 1:21:36 54* 22.73 TL 8.00 TL 1.89 TL 0.00 2:24:31 42* 0.00 4:51 n/a n/a 2.44 TL 0.00 1:03:11
A-20-40 149* 210.42 TL 148.33 TL 0.00 20:50 n/a n/a 0.00 19:36 n/a n/a 98* 122.73 TL 92.16 TL 0.00 42:15 n/a n/a 73 52.08 TL 37.74 TL 1.39 TL 1.39 TL 58* 7.41 TL 0.00 1:21:14 1.75 TL 1.75 TL
A-20-50 249* 591.67 TL 352.73 TL 0.00 57:37 n/a n/a 0.00 28:21 n/a n/a 166 127.40 TL 102.44 TL 0.61 TL 0.61 TL 122 90.62 TL 64.86 TL 0.83 TL 0.83 TL 96 33.33 TL 18.52 TL 1.05 TL 1.05 TL
A-20-60 345* 618.75 TL 618.75 TL 0.00 21:46 n/a n/a 0.00 20:30 n/a n/a 229* 252.31 TL 172.62 TL 0.44 TL 0.00 1:29:48 167* 131.94 TL 96.47 TL 0.00 TL 0.00 1:01:46 132 53.49 TL 40.43 TL 0.76 TL 0.76 TL
A-20-70 385* 474.63 TL 352.94 TL 0.00 13:12 n/a n/a 0.00 9:17 n/a n/a 258 309.52 TL 226.58 TL 1.18 TL 0.39 TL 187* 139.74 TL 101.08 TL 0.54 TL 0.00 1:28:58 146* 65.91 TL 46.00 TL 0.00 34:26 n/a n/a
A-20-80 434* 600.00 TL 600.00 TL 0.00 38:29 n/a n/a 0.00 15:28 n/a n/a 290 308.45 TL 215.22 TL 1.05 TL 0.69 TL 211* 197.18 TL 134.44 TL 0.48 TL 0.00 1:24:21 165* 81.32 TL 55.66 TL 0.61 TL 0.00 1:21:09
A-20-90 521* 740.32 TL 689.39 TL 0.00 TL 0 2:38:36 0.19 47:03 n/a n/a 347* 298.85 TL 230.48 TL 0.58 TL 0.00 1:22:25 252* 300.00 TL 215.00 TL 0.00 22:02 n/a n/a 197* 105.21 TL 79.09 TL 0.00 8:13 n/a n/a
N-16a 1496* 119.68 TL 89.37 TL 0.00 0:18 n/a n/a 0.00 4:47 n/a n/a 1002* 48.01 TL 29.12 TL 0.80 TL 0.00 1:10:20 706* 0.00 42:20 n/a n/a 0.00 6:31 n/a n/a 584* 0.00 7:21 n/a n/a 1.57 TL 0.00 2:02:19
N-16b 1168* 63.59 TL 39.71 TL 0.00 0:17 n/a n/a 0.00 2:45 n/a n/a 792* 14.78 TL 0.00 2:05:12 1.15 TL 0.76 TL 570* 0.00 11:27 n/a n/a 0.71 TL 0.00 1:50:17 462* 0.00 1:41 n/a n/a 1.76 TL 1.09 TL
N-17 1678* 250.31 TL 180.60 TL 0.00 0:59 n/a n/a 0.00 12:45 n/a n/a 1114* 66.77 TL 41.73 TL 0.00 58:58 n/a n/a 808* 23.36 TL 0.00 2:43:27 0.00 14:03 n/a n/a 662* 0.00 17:52 n/a n/a 1.69 TL 0.30 TL
N-18 1970* 200.30 TL 149.05 TL 0.00 1:55 n/a n/a 0.00 25:31 n/a n/a 1292* 125.09 TL 92.84 TL 0.31 TL 0.00 1:34:43 972* 41.28 TL 23.19 TL 0.00 34:11 n/a n/a 772* 11.08 TL 0.00 1:26:27 1.45 TL 0.00 1:47:02
N-20 2782* 990.98 TL 522.37 TL 0.00 5:20 n/a n/a 0.00 17:43 n/a n/a 1856 235.02 TL 159.58 TL 1.31 TL 0.49 TL 1360 115.19 TL 81.33 TL 1.42 TL 0.97 TL 1068 37.98 TL 23.61 TL 1.33 TL 0.47 TL
O-20 6414* 1055.68 TL 728.68 TL 0.00 9:41 n/a n/a 0.00 30:34 n/a n/a 4284 537.50 TL 335.81 TL 0.59 TL 0.45 TL 3118 320.22 TL 224.45 TL 0.42 TL 0.32 TL 2444 100.66 TL 75.07 TL 0.70 TL 0.53 TL
S-16 5446* 219.04 TL 154.13 TL 0.00 0:20 n/a n/a 0.00 8:28 n/a n/a 3638 134.86 TL 105.65 TL 0.89 TL 0.30 TL 2600* 54.30 TL 38.52 TL 0.00 26:32 n/a n/a 2094* 24.13 TL 12.10 TL 0.48 TL 0.00 1:24:53
S-17 6577* 412.23 TL 277.34 TL 0.00 1:18 n/a n/a 0.03 TL 0.00 1:31:08 4354 202.57 TL 148.66 TL 0.23 TL 0.02 TL 3225 108.20 TL 82.10 TL 1.07 TL 0.84 TL 2577 46.25 TL 28.02 TL 0.98 TL 0.27 TL
S-18 7788* 477.74 TL 411.02 TL 0.00 3:53 n/a n/a 0.08 TL 0.01 TL 5110* 307.17 TL 226.94 TL 0.10 TL 0.00 1:41:13 3892 175.25 TL 131.39 TL 1.35 TL 0.36 TL 3083 76.88 TL 53.77 TL 2.12 TL 0.29 TL
S-19 9343* 643.87 TL 488.72 TL 0.00 31:18 n/a n/a 0.39 TL 0.34 TL 6190 431.79 TL 288.82 TL 0.98 TL 0.52 TL 4599 285.50 TL 194.43 TL 1.66 TL 0.79 TL 3612 111.23 TL 82.89 TL 1.06 TL 0.56 TL
S-20 10841* 930.51 TL 562.25 TL 0.01 TL 0 2:00:20 0.06 40:00 n/a n/a 7227 542.40 TL 392.64 TL 0.85 TL 0.54 TL 5260 308.07 TL 215.54 TL 0.32 TL 0.17 TL 4105* 118.93 TL 91.73 TL 0.00 34:22 n/a n/a
Y-20 6046* 1200.22 TL 581.62 TL 0.00 20:04 n/a n/a 0.05 TL 0.00 1:20:46 4033 540.16 TL 399.13 TL 0.55 TL 0.30 TL 2934 260.89 TL 179.16 TL 0.24 TL 0.17 TL 2282* 117.54 TL 88.28 TL 0.00 9:31 n/a n/a

Table 4: Computation times (in h:mm:ss or (m)m:ss) and gaps (in percent) for medium-sized instances solved with SDP and AMA2 as well as with ILP
in the case m = 2. The best known upper bounds can be found in columns “best ub”. Additionally we highlighted all provably optimal
solution values with an asterisk “*”. A time “TL” indicates that an optimal solution could not be determined within the time limit of one or
three hours, respectively. If an optimal solution could be determined within a time limit of one hour, then we mark this by n/a in entries
under a time limit of three hours.
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m = 2 m = 3 m = 4 m = 5
ILP 1h ILP 3h SDP 1h SDP 3h SDP 1h SDP 3h SDP 1h SDP 3h SDP 1h SDP 3h

instance best ub gap time gap time gap time gap time best ub gap time gap time best ub gap time gap time best ub gap time gap time
A-25-10 41* 20.59 TL 0.00 TL 0.00 34:36 n/a n/a 27 3.85 TL 3.85 TL 20 17.65 TL 11.11 TL 15* 7.14 TL 0.00 1:42:25
A-25-20 110* 64.18 TL 34.15 TL 0.92 TL 0.00 1:29:15 75 7.14 TL 4.17 TL 55 10.00 TL 5.77 TL 40* 2.56 TL 0.00 1:06:29
A-25-30 222* 55.24 TL 21.31 TL 0.45 TL 0.00 1:24:44 146* 0.69 TL 0.00 1:42:06 110 3.77 TL 1.85 TL 87 3.57 TL 1.16 TL
A-25-40 400 34.23 TL 22.70 TL 0.50 TL 0.25 TL 265 1.15 TL 0.76 TL 198 3.66 TL 2.06 TL 156 3.31 TL 2.63 TL
A-25-50 511 22.84 TL 14.32 TL 0.39 TL 0.39 TL 340 1.49 TL 0.89 TL 254 3.25 TL 2.42 TL 196 1.55 TL 0.51 TL
A-25-60 549 19.87 TL 12.50 TL 0.73 TL 0.37 TL 364 1.39 TL 0.83 TL 271 2.65 TL 1.88 TL 212 1.92 TL 1.44 TL
A-25-70 660 59.04 TL 5.60 TL 0.46 TL 0.30 TL 441 1.85 TL 1.38 TL 325 1.88 TL 1.25 TL 255 1.59 TL 1.19 TL
A-25-80 910 1.68 TL 0.78 TL 0.44 TL 0.33 TL 604 0.83 TL 0.50 TL 450 1.58 TL 1.35 TL 350* 0.29 TL 0.00 2:45:03
A-25-90 1084 0.65 TL 0.00 TL 0.37 TL 0.28 TL 721 0.98 TL 0.70 TL 537 1.51 TL 1.13 TL 417* 0.00 58:58 n/a n/a
N-21 2512* 0.00 51:32 n/a n/a 0.08 TL 0.00 1:18:51 1664 1.59 TL 1.16 TL 1248 2.89 TL 1.79 TL 972 1.78 TL 0.62 TL
N-22 3064 0.23 TL 0.16 TL 0.56 TL 0.20 TL 2034 1.60 TL 0.35 TL 1530 2.89 TL 2.00 TL 1188* 1.19 TL 0.00 2:03:13
N-24 4120 3.75 TL 0.59 TL 0.81 TL 0.54 TL 2712 0.97 TL 0.59 TL 2022 2.59 TL 1.66 TL 1624 3.24 TL 2.07 TL
N-25 4604* 10.43 TL 1.10 TL 0.70 TL 0.00 2:03:36 3062 1.16 TL 0.69 TL 2286 2.93 TL 1.83 TL 1796 2.16 TL 1.35 TL
N-30 8230 21.60 TL 21.60 TL 0.48 TL 0.23 TL 5442 1.34 TL 0.68 TL 4086 3.36 TL 1.95 TL 3232 3.06 TL 1.99 TL
S-21 12431* 0.00 26:51 n/a n/a 0.44 TL 0.24 TL 8144* 0.11 TL 0.00 2:52:34 6136 1.86 TL 1.44 TL 4849 2.43 TL 1.83 TL
S-22 14208 0.04 TL 0.04 TL 0.04 TL 0.02 2:09:55 9484 1.18 TL 0.85 TL 7082 1.72 TL 0.88 TL 5623 2.03 TL 0.92 TL
S-23 16521 0.40 TL 0.07 TL 0.51 TL 0.42 TL 10974 1.07 TL 0.71 TL 8159 1.22 TL 0.80 TL 6523 1.99 TL 1.10 TL
S-24 18658 0.38 TL 0.04 TL 0.06 TL 0.05 TL 12349 0.32 TL 0.19 TL 9147 0.41 TL 0.29 TL 7342 1.61 TL 0.96 TL
S-25 21172 1.37 TL 0.31 TL 0.68 TL 0.40 TL 14070 1.04 TL 0.85 TL 10487 1.81 TL 1.44 TL 8149* 0.30 TL 0.00 2:26:56
Y-25 10170 1.86 TL 1.24 TL 0.39 TL 0.37 TL 6761 1.00 TL 0.87 TL 5050 2.04 TL 1.61 TL 3930 0.69 TL 0.33 TL
Y-30 13790 3.67 TL 2.86 TL 0.17 TL 0.14 TL 9133 0.54 TL 0.12 TL 6889 2.18 TL 1.62 TL 5390 0.92 TL 0.62 TL
Y-35 19087 27.02 TL 27.02 TL 0.48 TL 0.26 TL 12705 1.28 TL 0.69 TL 9492 2.02 TL 1.32 TL 7504 1.28 TL 0.67 TL
Y-40 23739 31.37 TL 31.37 TL 0.55 TL 0.38 TL 15825 1.82 TL 1.18 TL 11801 2.86 TL 1.26 TL 9381 2.45 TL 1.22 TL
Y-45 31442 35.78 TL 35.78 TL 1.08 TL 0.66 TL 20887 2.74 TL 0.68 TL 15664 5.19 TL 2.33 TL 12434 4.21 TL 1.70 TL
Y-50 41517 39.56 TL 39.56 TL 1.94 TL 0.62 TL 27695 3.46 TL 1.29 TL 20760 7.73 TL 3.24 TL 16483 5.80 TL 2.46 TL
Y-60 55986 46.83 TL 46.83 TL 8.26 TL 1.51 TL 37304 15.44 TL 3.18 TL 27913 14.92 TL 5.47 TL 22291 15.34 TL 5.66 TL

Table 5: Computation times (in h:mm:ss or mm:ss) and gaps (in percent) for large instances solved with SDP and with ILP for m = 2. The best
known upper bounds can be found in columns “best ub”. Additionally we highlighted all provably optimal solution values with an asterisk
“*”. A time “TL” indicates that an optimal solution could not be determined within the time limit of one or three hours, respectively. If an
optimal solution could be determined within a time limit of one hour, then we mark this by n/a in entries under a time limit of three hours.
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rows, we increased the largest instances solved to optimality from 8 departments [42] to 25
departments. Furthermore we achieved optimality gaps smaller than 1% for instances with up to
45 departments.

One direction for future research is the use of the SDP relaxation within a branch-and-bound
scheme in order to solve larger instances to optimality. This is worth exploring given the very
good lower bounds provided by the SDP approach for instances with up to 60 departments and
up to 5 rows.
Our approaches to the MREFLP can also be used for the development of new exact solution

methods for the MRFLP. For example one might apply our approaches to compute tight lower
bounds of MRFLP instances if the lengths of the departments of the given instance do not vary
much. In this case we suggest to reduce all department lengths to multiples of the minimum
length over all departments and then to compute an optimal solution, or at least a lower bound,
for this modified instance containing only departments of equal length.
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