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Proteins with Pumilio RNA binding domains (Puf proteins) are ubiquitous in eukaryotes. Some Puf
proteins bind to the 30-untranslated regions of mRNAs, acting to repress translation and promote
degradation; others are involved in ribosomal RNA maturation. The genome of Trypanosoma brucei
encodes eleven Puf proteins whose function cannot be predicted by sequence analysis. We show
here that epitope-tagged TbPUF7 is located in the nucleolus, and associated with a nuclear cyclophi-
lin-like protein, TbNCP1. RNAi targeting PUF7 reduced trypanosome growth and inhibited two steps
in ribosomal RNA processing.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Proteins with domains of the Pumilio family (Puf) are ubiqui-
tous in eukaryotes [1]; they are involved in various processes that
require RNA binding. When several Puf domains are linked to-
gether, they form a crescent-like structure: the inner face binds
to RNA while other surfaces are available for protein–protein inter-
actions [2,3].

The genome of Saccharomyces cerevisiae encodes seven proteins
with Puf domains. Five of them (ScPufs1-5) bind to, and regulate,
specific subsets of mRNAs in the cytosol [4]. The remaining two,
ScPuf6 and ScNop9, are predominantly nucleolar [5] (http://yeast-
gfp.ucsf.edu/). For Puf6, this is paradoxical because its only known
function is in translational repression and localisation of the Ash1
mRNA [6,7]. The function of Nop9, in contrast, is consistent with
the localisation since it plays a role rRNA maturation: it migrates
with pre-ribosomes on a sucrose gradient, associates with pre-
ribosomal particles and various ribosomal assembly factors, and
is required for the first steps of cleavage of the rRNA precursor
[8]. Puf6 and Nop9 associate with a variety of nucleolar proteins
[9,10].

Trypanosoma brucei diverged from the animal/fungal branch
early in eukaryotic evolution. It has eleven Puf proteins [11]. Phy-
chemical Societies. Published by E

(C. Clayton).
logenetic analysis for TbPUF7 (Tb11.01.6600) gave conflicting
information: using only the Puf domains placed TbPUF7 together
with TbPUF8 (Tb927.3.2470), ScNop9 and ScPuf6 [11]. In contrast,
when we used the whole TbPUF7 sequence, instead of the Puf do-
mains alone, the protein sequence was grouped with Saccharomy-
ces Pufs 3, 4 and 5. Since TbPUF7 also lacks a nuclear targeting
signal, we therefore suspected that it might have a function in reg-
ulation of mRNA abundance or translation. We describe here re-
sults that indicate that TbPUF7 has a function in the nucleolus.
2. Methods

2.1. Plasmid constructs

A PUF7 RNAi construct was generated using p2T7 TAblu, with
the Puf7 insert and oligonucleotide primers designed using RNAit
[12]. This construct was transfected into T. brucei Lister 427 single
marker (‘S16’) bloodstream-form cells expressing T7 RNA polymer-
ase and the tetracycline repressor, and transfectants selected. The
PUF7 construct used for RNAi in procyclic forms was based on
p2T7 TAblu but targeted a different region of the gene than that de-
scribed in [11]. Primers were cz3012 (gagaagatctgcatgcAAAATGTC
TCCCAGCGAC) and cz3013 (cggaattcgtcgacCGAAGAGCGCTTTAC)
(restriction sites are underlined and the hybridising parts of the
primers are in upper case). The NMD3 (Tb927.7.970) RNAi
lsevier B.V. All rights reserved.

http://yeastgfp.ucsf.edu/
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construct was made using the stem-loop strategy [13] and RNAit;
this and the PUF7 RNAi plasmid were transfected into procyclic try-
panosomes expressing the tet repressor and T7 polymerase [14].

To express PUF7-TAP, pHD918 [15] was modified by addition of
a polylinker (Avr I–Asc I–Xma I–Sph I) to give pHD1744. The PUF7
open reading frame was amplified and cloned into the Avr I–Asc I
sites. For V5 tagging (pHD1911), the plasmid used was from [16]
and the primers were: ORF–cz2992 (gacctcgagATGCCAAAAA TGCG-
TTTAGA), cz2991 (gacgggcccGCCAAGGTAAGGGAGGAAAC); 50-UTR–
cz2994 (gacccgcggGAGTGGTGGCCTTCATTCAC), cz2993 (gactctaga-
TGCTCCCTTTAGTTCACTTCAA).

For myc tagging, the TbNCP1 open reading frame (CZ2989 (ga-
caagcttATGCTAAAGAGCCCGCAAAATTTTCG) and CZ2990 (gacggat
ccTTTCTCTTCCGCCTGGGC)) was cloned into pHD1700 [17].

Trypanosome transfection and growth analysis were as de-
scribed previously [13,18].

2.2. Northern blots and immunofluorescence

RNA was prepared using TRIzol, denatured with formamide and
formaldehyde, and separated on denaturing formaldehyde-agarose
or urea-acrylamide gels. RNA was blotted onto Nytran and hybri-
dised. The NMD3 probe was made from a plasmid by random prim-
ing with 32P label. Oligonucleotide probes were labeled with 32P
using polynucleotide kinase. These were: 30 of the mature SSU
rRNA, CZ3252 (ATTTTTGGTTGCATACTGTG); pre 5.8s, CZ1427
(GTTTTTATATTCGACACTG); mature 5.8S, CZ1193 (ACT-
TTGCTGCGTTCTTCAAC); 7SL, CZ1478 (CAACACCGACACGCAACC).
Hybridisation with oligonucleotides was as described [15] except
that for the SSU rRNA, washing was at 30 �C. Probes were detected
by phosphorimager.

For immunofluorescence, Cells were prepared, labeled with pri-
mary antibodies to the V5 tag (Invitrogen), the TAP tag (peroxi-
dase-anti-peroxidase, GE Healthcare) or RNA polymerase I (kind
gift from Miguel Navarro, Granada, Spain), and secondary antibod-
ies coupled to Alexa594, 488 or 568 (Molecular Probes), as in [19].

2.3. Tandem affinity purification (TAP) and co-immunoprecipitation

PUF7-TAP was purified, and proteins identified, as described
[15,20]. For immunoprecipitation, the cell lysate was obtained as
for TAP, and bound to myc-(Bethyl) or V5-(Sigma) coupled beads.
After washing, bound protein was eluted by boiling with reducing
SDS loading buffer and analysed by Western blotting. Blots were
probed with antibodies to the myc tag (Santa Cruz Biotechnology),
V5 tag (Invitrogen), or, for the TAP tag, with the ECL secondary
antibody (GE Healthcare).

RNA associated with PUF7-TAP, after UV cross-linking, was ob-
tained as previously described [21,22].
3. Results and discussion

3.1. Sequence alignments

To investigate the phylogeny of S. cerevisiae Nop9 and Puf6, and
of TbPUF7 and TbPUF8 in more detail, we used the S. cerevisiae
genes to perform BLASTp searches on selected genomes from all
major eukaryotic groups, then made a phylogenetic tree. Se-
quences with E values of less than 10�6 were checked by perform-
ing a BLASTp search back onto the S. cerevisiae genome, and
sequences that gave the original input sequence as the best match,
and had Puf domains, were included in subsequent analyses. Clear
homologues of S. cerevisiae Puf6 were found in all groups, but sev-
eral organisms appeared to lack Nop9. We constructed a phyloge-
netic tree with these sequences and all of the T. brucei and
S. cerevisiae Puf proteins, and discovered that TbPUF8 was clustered
with the Puf6 homologues, while TbPUF7, TbPUF10 and sometimes,
TbPUF11, grouped with Nop9 proteins (not shown). A phylogenetic
tree including fewer yeast and trypanosome Puf proteins is shown
in Fig. 1A. Most branches were extremely poorly supported with
bootstrap values below 20. The Puf6 group remained constant
independent of which sequences were included, and TbPUF8 was
always found within it (not shown), although the branching order
was not at all robust. TbPUF7 and TbPUF10 did not branch with the
Puf6’s, and their position relative to the putative Nop9 homologues
changed every time the list of included proteins was altered. The
Giardia protein with accession number EES98274 was consistently
least related to all of the others, although the BLASTp analysis with
Nop9 worked in both directions. From this analysis we could con-
clude that TbPUF8 could be a homologue of ScPUF6, but ScNop9 is
poorly conserved in eukaryotic evolution. The status of TbPUF7 re-
mained unresolved.

3.2. TbPUF7 is required for growth and is located in the nucleolus

Previous trypanosome PUF7 RNA interference experiments re-
vealed no effect on cell growth [11]. We here transfected two try-
panosome life cycle stages, bloodstream forms and procyclic forms,
with new RNAi plasmids. Several clones were obtained. Procyclic
forms showed only negligible growth inhibition after RNAi (not
shown). To check the level of PUF7 depletion, we tagged one
PUF7 allele [16] to give expression of PUF7 with a V5 tag at the
N-terminus, and subjected the cells to RNAi. In those cells after
RNAi induction, PUF7 mRNA was decreased to 20–40% of normal
while the level of V5-PUF7 was approximately halved (Fig. 1B
and C). Although it is possible that the V5 tag affects protein stabil-
ity, this suggests that substantial amounts of PUF7 protein re-
mained after RNAi. In contrast, we observed severe growth
inhibition in three different bloodstream-form lines. This was
accompanied by an accumulation of cells blocked in cytokinesis:
arrested cells increased to 20% in 24 h, with aberrant numbers of
kinetoplasts and nuclei (not shown). The bloodstream-form cells
rapidly lost the RNAi so we continued the work mainly with procy-
clic forms.

We inducibly expressed PUF7 with a C-terminal tandem affinity
(TAP) tag. There was no growth effect and PUF7-TAP was located in
a poorly DAPI-stained region of the nucleus (Fig. 2A), the nucleolus
[23]. In dividing cells PUF7-TAP was distributed between the nu-
clei, the region expected to contain the mitotic spindle (Fig. 2A,
bottom panel). To check that the localisation was not an artifact
of tagging or over-expression, we examined V5-PUF7 in the
in situ tagged procyclic forms. The localisation was the same as be-
fore (Fig. 2B) and the V5 tag colocalised with RNA polymerase I,
confirming that it was in the nucleolus (Fig. 2C). Neither tag causes
nuclear localisation in trypanosomes [11,16]. Bridges between nu-
clei were previously seen in dividing trypanosomes stained for
other nuclear and nucleolar proteins [24–26]. Similar experiments
with V5-tagged TbPUF8 confirmed the expected nucleolar location
(C. Helbig, ZMBH, data not shown).

3.3. Depletion of TbPUF7 inhibits ribosomal RNA processing

We next analysed the pattern of rRNAs after growth-inhibitory
PUF7 RNAi (Fig. 3). As a control we used cells with RNAi against
NMD3. Yeast NMD3 is involved in export of large ribosomal sub-
units: mutations cause feedback inhibition of rRNA processing
[27,28]. Trypanosome NMD3 is associated with rRNA export fac-
tors [29].

A summary of rRNA processing in trypanosomes is shown in
Fig. 3A [30,31]. A 9.2 kb precursor is cleaved to give a 3.4 kb small
subunit (SSU) precursor, and a 5.8 kb precursor for the large
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subunit (LSU) and smaller rRNAs. The 3.4 kb RNA is processed via
2.6 kb and 2.5 kb intermediates; the 5.8 kb LSU precursor is pro-
cessed via 5.0 kb and 3.9 kb intermediates. The 5.8 kb large subunit
precursor is visible by total RNA staining (Fig. 3B). NMD3 RNAi
inhibited growth (not shown) and large subunit processing, caus-
ing accumulation of the 5.0 kb fragment (Fig. 3B). After PUF7 RNAi,
the initial processing step was inhibited such that the relative
abundance of the 9.2 kb RNA increased two-to-four fold (Fig. 3B,
C and D), while the 2.6 kb intermediate decreased (Fig. 3C and
D). Neither RNAi affected maturation of the 5.8S rRNA, the 7SL
(SRP) RNA, or the overall staining pattern of mature rRNA and
small RNAs (not shown). In three bloodstream form RNAi lines,
the baseline level of the 9.2 kb precursor was lower but PUF7 RNAi
had the same effect as in procyclics (Fig. 3D). The results therefore
indicated that PUF7 is required, either directly or indirectly, for
efficient cleavage of the 9.2 kb precursor, and perhaps also for pro-
cessing of the 3.4 kb pre-SSU RNA to 2.6 kb. The PUF7 RNAi did not
inhibit these processes sufficiently for either to become rate-limit-
ing in overall rRNA maturation, since neither the pre-LSU interme-
diates, nor steady-state SSU rRNA were affected.
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In S. cerevisiae, the role of Nop9 in rRNA biogenesis was ana-
lysed by conditional expression under a Gal promoter. 12 h after
repression, Nop9 was no longer detectable. A defect in processing
of pre-rRNA to give 18S rRNA was evident from pulse-chase label-
ing, while production of the 25S rRNA was relatively unaffected.
Steady-state levels of the 35S precursor (equivalent to the trypano-
some 9.2 kb rRNA precursor) were strongly increased while the
amounts of all smaller small subunit rRNA precursors, as well as
the small subunit rRNA itself, were decreased [8]. The effects seen
after PUF7 depletion were, in some ways, similar, but not as strong,
perhaps because PUF7 down-regulation by RNAi was inefficient.
Thus although our data suggest that PUF7 has a role in rRNA mat-
uration, we cannot conclude that it is a functional homologue of
yeast Nop9.
3.4. TbPUF7 is associated with a cyclophilin-like protein

S. cerevisiae Nop9 was found to be associated with a multitude
of rRNA processing factors and with rRNA and pre-rRNA [8]. To find
out if PUF7 was stably associated in an rRNA-processing complex,
PUF7-TAP was purified. When RNA was purified from the prepara-
tions [21,22] we obtained a very low RNA yield, and reverse-tran-
scription PCR revealed no specific association with pre-rRNA (not
shown).

The gel picture of purification of PUF7-TAP was published as the
control-TAP lane in Fig. 2 of [20]. Two strong bands were seen. One
was tagged PUF7 (migrating at 75 kDa, MOWSE score 1323, 38
peptides, 30.7% coverage) and the other was a 34 kDa protein en-
coded by locus Tb927.8.2000 (MOWSE score 583, 16 peptides,
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38.1% coverage). The association appeared stoichiometric by
SyproRuby staining [20]. No other specifically-associated proteins
were present. A few clusters of bands were nevertheless se-
quenced, and found to contain ribosomal proteins. This might be
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a genuine association, but we cannot be certain because we have
found ribosomal proteins as contaminants in every protein purifi-
cation we have analysed so far. No proteins involved in rRNA pro-
cessing or assembly were detected, although very few of these are
actually known in trypanosomes. Thus our evidence so far suggests
that PUF7 is not stably associated with pre-ribosomal particles.

BLASTp searches with Tb927.8.2000 yielded cytoplasmic pepti-
dyl-prolyl cis–trans isomerases so we designated it nuclear cyclo-
philin 1 (NCP1). We confirmed the interaction between PUF7 and
NCP1 by expressing NCP1 with a C-terminal myc tag in cells
expressing V5-PUF7. In cells expressing both tagged proteins, pre-
cipitation with anti-V5 antibody resulted in co-precipitation of
NCP1-myc (Fig. 4A, lane 6). Precipitation with anti-V5 from ex-
tracts of cells expressing NCP1-myc alone did not result in co-
immunoprecipitation (Fig. 4A, lane 5). In cells expressing both
tagged proteins, precipitation with anti-myc antibody resulted in
co-precipitation of V5-PUF7 (Fig. 4B, lane 6), with no co-precipita-
tion in the control (Fig. 4B, lane 5).

Inducibly expressed NCP1-myc was throughout the nucleus,
and in thin inter-nuclear bridges during mitosis (Fig. 4C). In cells
grown in the absence of tetracycline, a faint myc signal was still
visible, again throughout the nucleus (not shown); thus the distri-
bution was not due to over-expression. RNAi targeting NCP1 in pro-
cyclic trypanosomes had no effect on growth, but the extent of
protein depletion was unknown. The distribution throughout the
nucleus suggests that NCP1 may have several functions.

In other organisms, several cyclophilin-like proteins have been
reported to be located in the nucleus, or to shuttle between nucleus
and cytoplasm, but none is a clear NCP1 homologue. S. cerevisiae
cyclophilin A has been implicated in control of meiosis [32] and of
nuclear protein trafficking [33]. Arabidopsis Cyp59 interacts with
SR-domain proteins and RNA polymerase II [34]; the best trypano-
some match is Tb927.5.3750. Yeast Pin1 has roles in mitotic chromo-
some condensation [35]; Tb927.8.690 is a likely homologue.

The location of PUF7, together with the effects of RNAi, indi-
cated that PUF7 has a role in pre-rRNA processing; but we have
no evidence for stable association with pre-ribosomal particles.
We speculate, therefore, that the NCP1-PUF7 complex might assist
in rearrangement of the rRNA processing complex, or in reorgani-
sation of ribosomal proteins during small subunit assembly. Inhibi-
tion of this activity could cause a feedback inhibition on earlier
steps, including rRNA processing.
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