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Marginal Jobs, Heterogeneous Firms and Unemployment

Flows

By MICHAEL W. L. ELSBY AND RYAN MICHAELS
∗

This paper introduces a notion of firm size into a search and match-

ing model with endogenous job destruction. The outcome is a rich, yet

analytically-tractable framework that can be used to analyze a broad set

of features of both the cross-section and aggregate dynamics of the labor

market. The model provides a coherent account of a) the distributions

of employer size and employment growth across establishments; b) the

amplitude and propagation of cyclical fluctuations in worker flows; c)

the negative comovement of unemployment and vacancies; and d) the

dynamics of the distribution of employer size over the business cycle.

The study of the macroeconomics of labor markets has been dominated by two influ-

ential approaches in recent research: the development of search and matching models

(Pissarides 1985; Mortensen and Pissarides 1994) and the empirical analysis of estab-

lishment dynamics (Davis and Haltiwanger 1992). This paper provides an analytical

framework that unifies these approaches by introducing a notion of firm size into a

search and matching model with endogenous job destruction. The outcome is a rich,

yet analytically-tractable framework that can be used to analyze a broad set of features

of both the cross section and the dynamics of the aggregate labor market. In a set of

quantitative applications we show that the model can provide a coherent account of a)

the salient features of the distributions of employer size, and employment growth across

establishments; b) the amplitude and propagation of cyclical fluctuations in flows be-

tween employment and unemployment; c) the negative comovement of unemployment

and vacancies in the form of the Beveridge curve; and d) the dynamics of the distribution

of employer size over the business cycle.

A notion of firm size is introduced by relaxing the common assumption that firms

face a linear production technology.1 Though conceptually simple, incorporating this

feature is not a trivial exercise. The existence of a nonlinear production technology,
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and the associated presence of multi-worker firms, complicates wage setting because

the surplus generated by each of the employment relationships within a firm is not the

same—“the” marginal worker generates less surplus than infra-marginal workers. In

section 1, we apply the bargaining solution of Stole and Zwiebel (1996) to derive a

very intuitive wage bargaining solution for this environment, something that has been

considered challenging in recent research (see Cooper, Haltiwanger and Willis 2007,

and Hobijn and Şahin forthcoming). The solution is a very natural generalization of the

wage bargaining solution in standard search and matching models. The simplicity of our

solution is therefore a useful addition to the literature.2

The wage bargaining solution enables us to characterize the properties of the optimal

labor demand policy of an individual firm in the presence of idiosyncratic firm hetero-

geneity. We demonstrate that the labor demand solution is analogous to that of a model

of kinked hiring costs in the spirit of Bentolila and Bertola (1990), but where the hiring

cost is endogenously determined by frictions in the labor market. This yields an analyti-

cal solution for the optimal labor demand policy, summarizing microeconomic behavior

in the model.

In section 2, we take on the task of aggregating this behavior to the macroeconomic

level. This is a challenge because the presence of a nonlinear production technology and

idiosyncratic heterogeneity imply that a representative firm interpretation of the model

does not exist. To address this, we develop a method that allows us to solve analytically

for the equilibrium distribution of employment across firms (the firm size distribution).

In turn, this allows us to determine the level of the aggregate (un)employment stock,

which is implied by the mean of that distribution. We also provide a related method that

allows us to solve for aggregate unemployment flows (hires and separations) implied by

microeconomic behavior. Together, these characterize the aggregate steady-state equi-

librium of the model economy.

In section 3 we explore the dynamics of the model by introducing aggregate shocks.

A difficulty that arises in the model is that, out of steady state, individual firms must

forecast future wages, which involves forecasting the future path of the distribution of

employment across firms, an infinite-order state variable. A useful feature of our analyti-

cal solution for optimal labor demand is that it allows us to simplify part of this problem.

In particular, we are able to derive an analytical approximation to a firm’s optimal labor

demand policy in the presence of aggregate shocks, obviating the need for a numeri-

cal solution. Using this, we employ an approach that mirrors the method proposed by

Krusell and Smith (1998) to solve for the transition paths for the unemployment stock

and flows in the presence of aggregate shocks.

These results form the basis of a series of quantitative applications, which we turn to

2Bertola and Caballero (1994) solve a related bargaining problem by taking a linear approximation to the marginal

product function and specializing productivity to a two-state Markov process. The present paper relaxes these restrictions.

More recent research that models endogenous separations has set worker bargaining power to zero in order to derive wages

(Cooper et al. 2007; Hobijn and Şahin forthcoming). In the presence of exogenous separations, Acemoglu and Hawkins

(2011) characterize wages, but focus instead on a time-to-hire aspect to job creation, which leads to a more challenging

bargaining problem. The wage bargaining solution for models with exogenous job destruction has been characterized by

Smith (1999), Cahuc and Wasmer (2001), and Krause and Lubik (2007).
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in section 4. An attractive feature of the model is that, by incorporating both a notion of

firm size as well as idiosyncratic heterogeneity, it delivers important cross-sectional im-

plications.3 We show that the model can be used to match key features of the distribution

of firm size, and of employment growth across establishments. This is achieved through

two aspects of the model. First, due to the existence of kinked hiring costs, optimal la-

bor demand features a region of inaction whereby firms choose neither to hire nor fire

workers. This matches a key property of the distribution of employment growth—the

existence of a mass point at zero establishment growth—noted at least since the work of

Davis and Haltiwanger (1992).4 Second, informed by the well-known shape of the distri-

bution of firm size, we adopt a Pareto specification for idiosyncratic firm productivity. A

surprising outcome of this approach is that the Pareto specification also provides a very

accurate description of the tails of the distribution of employment growth, something that

cannot be achieved using more conventional lognormal specifications of heterogeneity.

We then use these steady-state features of the model to provide a novel perspective

on the cyclical dynamics of worker flows implied by the model. It is well-known that

the cyclical amplitude of unemployment, and of the job-finding rate in particular, relies

critically on the size of the surplus to employment relationships (Shimer 2005; Hagedorn

and Manovskii 2008). Intuitively, small reductions in aggregate productivity can easily

exhaust a small surplus, and lead firms to cut back substantially on hiring. The presence

of large and heterogeneous firms in our model opens up a new approach to calibrating the

payoff from unemployment, and thereby the match surplus. Because the model is capable

of matching the observed cross-sectional distribution of employment growth, we obtain

a sense of the plausible size of idiosyncratic shocks facing firms. Given this, a higher

payoff from unemployment implies a smaller surplus, so that jobs will be destroyed more

frequently, raising the rate of worker turnover. We discipline the model by choosing the

payoff from unemployment that matches the empirical rate at which employed workers

flow into unemployment.

Applying this approach to an otherwise standard calibration reveals that our gener-

alized model can replicate both the observed procyclicality of the job-finding rate, as

well as the countercyclicality of the employment-to-unemployment transition rate in the

U.S.5 We show that this is a substantial improvement over standard search and matching

models. As shown by Shimer (2005), these are unable to generate enough cyclicality in

job creation. To overcome this, the standard model must reduce the size of the surplus,

which in turn yields excessive employment-to-unemployment transitions.6 The general-

3In terms of its implications for cross-sectional establishment dynamics, the model shares many of the features of

the seminal work of Hopenhayn and Rogerson (1993). We show that these cross-sectional features are very useful for

disciplining aspects of the model driven by search frictions, notably the magnitude of the average surplus to employment

relationships, which are crucial for the aggregate implications of models with matching frictions.
4Earlier work by Hamermesh (1989), which analyzed data from seven manufacturing plants, also drew attention to

the “lumpy” nature of establishment-level employment adjustment.
5For evidence on the countercyclicality of employment-to-unemployment flows, see Perry (1972); Marston (1976);

Blanchard and Diamond (1990); Elsby, Michaels, and Solon (2009); Fujita and Ramey (2009); Pissarides (2007); Shimer

(2012); and Yashiv (2007).
6This formalizes the intuition of recent research that has argued that the average surplus required for the standard

model to match the observed cyclicality of the job-finding rate is implausibly small (Mortensen and Nagypal 2007). A

small average surplus also jars with widespread evidence for the prevalence of long-term employment relationships in the
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ized model does not face this tension between reproducing the cyclicality of job creation

and the rate of worker turnover. Due to the diminishing marginal product of labor, the

model generates simultaneously a large average surplus and a small marginal surplus

to employment relationships. The former allows the model to match the rate at which

workers flow into unemployment, the latter the volatility of the job-finding rate over the

cycle.7

A potential concern in models that incorporate countercyclical job destruction, such as

the model in this paper, has been that they often cannot generate the observed procycli-

cality of vacancies (Shimer 2005; Mortensen and Nagypal 2008). Importantly, we find

that our model makes considerable progress in this regard: Our calibration of the model

generates most of the observed comovement between vacancies and output per worker.

As a result, it reproduces a key stylized fact of the U.S. labor market: the negative co-

movement between unemployment and vacancies in the form of the Beveridge curve.

The model therefore provides a coherent and quantitatively accurate picture of the joint

cyclical properties of both flows of workers in and out of unemployment, as well as the

behavior of unemployment and vacancies.

A less well-documented limitation of the standard search and matching model relates

to the propagation of the response of the job-finding rate to aggregate shocks to labor

productivity. The job-finding rate is a jump variable in the standard model, responding

instantaneously to aggregate shocks, while it exhibits a sluggish response in U.S. data.

An appealing feature of the generalized model is that it delivers a natural propagation

mechanism: The job-finding rate is a function of the distribution of employment across

firms, which we show is a slow-moving state variable in our model. Simulations reveal

that this aspect of the model can help account for the persistence of the decline in job

creation following an adverse shock.

Our efforts to understand the amplification and propagation of labor market flows over

the business cycle are related to the important early work of Cooper, Haltiwanger, and

Willis (2007). They also study a random matching model with decreasing returns. This

paper’s model differs from theirs in at least two regards. First, Cooper et al. suppress

worker bargaining power. This simplifies wage bargaining, but at the cost of severing

the link between the bargained wage, on the one hand, and market tightness on the other.

This paper investigates a more general bargaining rule that allows workers to extract

some of the rents. Second, Cooper et al. include additional labor market frictions, such

as fixed costs to hire and fire. We agree that the interaction of these adjustment costs with

matching frictions deserves further attention. However, we find it helpful to abstract from

these for a number of reasons. In particular, we are able to make substantial headway in

characterizing the analytics of optimal establishment-level labor demand and aggregate

job creation. This in turn allows us to highlight the effects of decreasing returns and to

U.S. economy, which researchers have taken to imply substantial rents to ongoing matches (Hall 1982; Stevens 2005).
7One might imagine that a symmetric logic holds on the supply side of the labor market if there is heterogeneity

in workers’ valuations of leisure so that “the” marginal worker obtains a low surplus from employment. Interestingly,

Mortensen and Nagypal (2007) argue that this is not the case. They show that if firms cannot differentiate workers’ types

when making hiring decisions, they will base their decision on the average, rather than the marginal, valuation of leisure

among the unemployed. The same is unlikely to be true of the model studied here, since firms presumably know their

production technology when making hiring decisions.
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contrast our model more tightly with that in Mortensen and Pissarides. Thus, we see our

paper as complementary to Cooper et al., who study a richer model but rely principally

on numerical solution methods.

In the closing sections of the paper, we move beyond characterizing the business cycle

properties of the model and turn to evaluating its implications for a number of additional

cross-sectional outcomes. First, recent literature has emphasized empirical regularities

in the cyclical behavior of the cross-sectional distribution of establishment size: While

the share of small establishments with fewer than 20 workers rises during recessions, the

shares of larger firms decline (Moscarini and Postel-Vinay 2008). The model replicates

this observation: For each establishment size class considered, it broadly matches the

comovement with unemployment over the business cycle observed in U.S. data. Given

that these implications of the model are venturing farther afield from the moments it was

calibrated to match, we view these results as an important achievement.

In our final quantitative application, we evaluate the model’s ability to account for

the observation that workers employed in larger firms are often paid higher wages—

the employer size-wage effect (Brown and Medoff 1989). A distinctive attribute of the

model is that, by incorporating large firms with heterogeneous productivities, it can speak

to this empirical regularity. The magnitude of the size-wage effect implied by the model

is mediated by two competing forces, as noted by Bertola and Garibaldi (2001). On the

one hand, the existence of diminishing returns in production might lead one to anticipate

a negative relation between employer size and wages. On the other, larger firms also tend

to be more productive. Quantitatively, the latter dominates, generating one quarter of the

empirical size-wage effect.

The remainder of the paper is organized as follows. Section 1 describes the set-up of

the model, and characterizes the wage bargaining solution together with the associated

optimal labor demand policy of an individual firm. Given this, section 2 develops a

method for aggregating this microeconomic behavior up to the macroeconomic level,

and uses it to characterize the steady state equilibrium of the model. Section 3 introduces

aggregate shocks to the analysis. It presents an approach to computing the out of steady

state dynamics of the model through the use of analytical approximations. We then use

the model in section 4 to address a wide range of quantitative applications. Finally,

section 5 summarizes our results, and draws lessons for future research.

I. The Firm’s Problem

In what follows we consider a model in which there is a mass of firms, normalized to

one, and a mass of potential workers equal to the labor force, L . The assumption of a

fixed mass of firms enables the model to depart from the standard search model. Free

entry would yield an economy of infinitesimal firms that converges to the Mortensen

and Pissarides (1994) limit. For now, we abstract from entry. We do this in part for

simplicity, but our choice is also informed by recent evidence on the cyclicality of net job

creation by new firms. Coles and Moghaddasi (2011) use data from the Census Bureau’s

Business Dynamics Statistics (BDS) to assess the impact of firm entry on the cyclicality

of job creation. What they find is that, although entrants account for a non-trivial fraction



6 AMERICAN ECONOMIC JOURNAL MONTH YEAR

of average net job creation, their contribution to the cyclicality of aggregate employment

growth is small. In section 5, we return to the issue of entry in a more extended discussion

of the recent literature.

In order to hire unemployed workers, firms must post vacancies. However, frictions in

the labor market limit the rate at which unemployed workers and hiring firms can meet.

As is conventional in the search and matching literature, these frictions are embodied in

a matching function, M = M (U, V ), that regulates the number of hires, M , that the

economy can sustain given that there are V vacancies and U unemployed workers. We

assume that M (U, V ) exhibits constant returns to scale.8 Vacancies posted by firms are

therefore filled with probability q = M/V = M (U/V, 1) each period. Likewise, un-

employed workers find jobs with probability f = M/U = M (1, V/U ). Thus, the ratio

of aggregate vacancies to aggregate unemployment, V/U ≡ θ , is a sufficient statistic

for the job filling (q) and job finding ( f ) probabilities in the model. Taking these flow

probabilities as given, firms choose their optimal level of employment, to which we now

turn.

A. Labor Demand

We consider a discrete-time, infinite-horizon model in which firms use labor, n, to

produce output according to the production function, y = px F (n) where F ′ > 0 and

F ′′ ≤ 0. The latter is a key generalization of the standard search model that we consider:

When F ′′ < 0, the marginal product of labor will decline with firm employment, and

thereby will generate a downward-sloped demand for labor at the firm level. p represents

the state of aggregate labor demand, whereas x represents shocks that are idiosyncratic

to an individual firm. We assume that the evolution of the latter idiosyncratic shocks is

described by the c.d.f. G
(
x ′|x

)
.

A typical firm’s decision problem is completely analogous to that in Mortensen and

Pissarides (1994), and is as follows. Firms observe the realization of their idiosyncratic

shock, x , at the beginning of a period. Given this, they then make their employment

decision. Specifically, they may choose to separate from part or all of their workforce,

which we assume may be done at zero cost. Any such separated workers then join the

unemployment pool in the subsequent period. Alternatively, firms may hire workers by

posting vacancies, v ≥ 0, at a flow cost of c per vacancy. If a firm posts vacancies, the

matching process then matches these up with unemployed workers inherited from the

previous period. After the matching process is complete, production and wage setting

are performed simultaneously.

It follows that we can characterize the expected present discounted value of a firm’s

profits, 5(n−1, x), recursively as:9

8See Petrongolo and Pissarides (2001) for a summary of empirical evidence that suggests this is reasonable.
9We adopt the convention of denoting lagged values with a subscript, −1, and forward values with a prime, ′.
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(1) 5(n−1, x) = max
n,v

{
px F (n)− w (n, x) n − cv + β

∫
5
(
n, x ′

)
dG

(
x ′|x

)}
,

wherew (n, x) is the bargained wage in a firm of size n and productivity x . A typical firm

seeks a level of employment that maximizes its profits subject to a dynamic constraint on

the evolution of a firm’s employment level. Specifically, firms face frictions that limit the

rate at which vacancies may be filled: A vacancy posted in a given period will be filled

with probability q < 1 prior to production. Thus, the number of hires an individual firm

achieves is given by:

(2) 1n1+ = qv,

where 1n is the change in employment, and 1+ is an indicator that equals one when the

firm is hiring, and zero otherwise. Substituting the constraint, (2), into the firm’s value

function, we obtain:10

(3) 5(n−1, x) = max
n

{
px F (n)− w (n, x) n −

c

q
1n1+ + β

∫
5
(
n, x ′

)
dG

}
.

Note that the value function is not fully differentiable in n: There is a kink in the value

function around n = n−1.11 This reflects the (partial) irreversibility of separation deci-

sions in the model. While firms can shed workers costlessly, it is costly to reverse such

a decision because hiring (posting vacancies) is costly. In this sense, the labor demand

side is formally analogous to the kinked employment adjustment cost model of the form

analyzed in Bentolila and Bertola (1990), except that the per-worker hiring cost, c/q (θ),
is endogenously determined.12

In order to determine the firm’s optimal employment policy, we take the first-order

conditions for hires and separations (i.e. conditional on 1n 6= 0):

(4) px F ′ (n)− w (n, x)− wn (n, x) n −
c

q
1+ + βD (n, x) = 0, if 1n 6= 0,

where D (n, x) ≡
∫
5n

(
n, x ′

)
dG

(
x ′|x

)
reflects the marginal effect of current employ-

ment decisions on the future value of the firm. Equation (4) is quite intuitive. It states

10Henceforth, “dG” without further elaboration is to be taken to mean “dG
(
x ′|x

)
”.

11An implicit assumption is that there are no exogenous quits in the model. Fujita and Nakajima (2009) have analyzed

an extension of our model that includes exogenous quits, with very similar results.
12A drawback of the kinked adjustment cost structure implied by the model is that it is inconsistent with evidence on

the establishment-level covariance of hours and employment. Cooper, Haltiwanger and Willis (2004, 2007) document

a negative correlation between hours growth and employment growth at the establishment level. They show that the

latter can be reconciled with a model of fixed adjustment costs. Intuitively, in the presence of a fixed cost of adjustment,

whenever firms hire, they hire a lot—i.e. discretely—and simultaneously cut back on hours. This channel is absent in a

kinked adjustment cost model since firms do not adjust discretely in such an environment.
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that the marginal product of labor (px F ′ (n)) net of any hiring costs ( c

q
1+), plus the dis-

counted expected future marginal benefits from an additional unit of labor (βD (n, x))
must equal the marginal cost of labor (w (n, x)+ wn (n, x) n). To provide a full charac-

terization of the firm’s optimal employment policy, it remains to characterize the future

marginal benefits from current employment decisions, D (n, x), and the wage bargaining

solution, w (n, x), to which we now turn.

B. Wage Setting

The existence of frictions in the labor market implies that it is costly for firms and

workers to find alternative employment relationships. As a result, there exist quasi-rents

over which the firm and its workers must bargain. The assumption of constant marginal

product in the standard search model has the tractable implication that these rents are

the same for all workers within a given firm. It follows that firms can bargain with

each of their workers independently, because the rents of each individual employment

relationship are independent of the rents of all other employment relationships.

Allowing for the possibility of diminishing marginal product of labor F ′′ (n) < 0,

however, implies that these rents will depend on the number of workers within a firm.

Intuitively, the rent that a firm obtains from “the” marginal worker will be lower than

the rent obtained on all infra-marginal hires due to diminishing marginal product. An

implication of the latter is that the multilateral dimension of the firm’s bargain with its

many workers becomes important: The rents of each individual employment relationship

within a firm are no longer independent.

To take this into account, we adopt the bargaining solution of Stole and Zwiebel (1996)

which generalizes the Nash solution to a setting with diminishing returns.13 Stole and

Zwiebel present a game where the bargained wage is the same as the outcome of simple

Nash bargaining over the marginal surplus. The game that supports this simple result is

one in which a firm negotiates with each of its workers in turn, and where the breakdown

of a negotiation with any individual worker leads to the renegotiation of wages with all

remaining workers.14

The empirical validity of the Stole and Zwiebel bargaining solution has yet to be as-

sessed. Instead, our motivation for using the Stole and Zwiebel protocol is to keep the

behavior of wages as close to that implied by the standard search model, in order to

draw out the implications of decreasing returns. We will see in what follows that the

bargaining solution implied by the Stole and Zwiebel protocol is helpful in this regard,

since it bears a strong resemblance to the Nash bargaining solution in the Mortensen and

Pissarides (1994) model.

13This approach was first used by Cahuc and Wasmer (2001) to generate a wage equation for the exogenous job

destruction case.
14The intuition for the Stole and Zwiebel result is as follows. If the firm has only one worker, the firm and worker sim-

ply strike a Nash bargain. If a second worker is added, the firm and the additional worker know that, if their negotiations

break down, the firm will agree to a Nash bargain with the remaining worker. In this sense, the second employee regards

herself as being on the margin. By induction, then, the firm approaches negotiations with the nth worker as if that worker

were marginal too. Therefore, the wage that solves the bargaining problem is that which maximizes the marginal surplus.
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In accordance with the timing of decisions each period, wages are set after employment

has been determined. Thus, hiring costs are sunk at the time of wage setting, and the

marginal surplus, which we denote as J (n, x), is equal to the marginal value of labor

gross of the costs of hiring:

(5) J (n, x) = px F ′ (n)− w (n, x)− wn (n, x) n + βD (n, x) .

The surplus from an employment relationship for a worker is the additional utility a

worker obtains from working in her current firm over and above the utility she obtains

from unemployment. The value of employment in a firm of size n and productivity x ,

W (n, x), is given by:

(6) W (n, x) = w (n, x)+ βE
[
sϒ ′ + (1− s)W

(
n′, x ′

)
|n, x

]
.

While employed, a worker receives a flow payoff equal to the bargained wage, w (n, x).
She loses her job with (endogenous) probability s next period, upon which she flows into

the unemployment pool and obtains the value of unemployment, ϒ ′. With probability

(1− s), she retains her job and obtains the expected payoff of continued employment in

her current firm, W
(
n′, x ′

)
. Likewise, the value of unemployment to a worker is given

by:

(7) ϒ = b + βE
[
(1− f )ϒ ′ + f W

(
n′, x ′

)]
.

Unemployed workers receive flow payoff b, which represents unemployment benefits

and/or the value of leisure to a worker. They find a job next period with probability f ,

upon which they obtain the expected payoff from employment, W
(
n′, x ′

)
.

Wages are then the outcome of a Nash bargain between a firm and its workers over the

marginal surplus, with worker bargaining power denoted as η:

(8) (1− η) [W (n, x)− ϒ] = ηJ (n, x) .

Given this, we are able to derive a wage bargaining solution with the following simple

structure:

PROPOSITION 1: The bargained wage, w (n, x), solves the differential equation15

(9) w (n, x) = η

[
px F ′ (n)− wn (n, x) n + β f

c

q

]
+ (1− η) b.

The intuition for (9) is quite straightforward. As in the standard search model, wages

are increasing in the worker’s bargaining power, η, the marginal product of labor, px F ′ (n),

15This solution extends the solution obtained by Cahuc and Wasmer (2001) to the case with endogenous job destruc-

tion. It is also consistent with Acemoglu and Hawkins’ (2011) Lemma 1, except that it holds both in and out of steady

state.
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workers’ job finding probability, f , the marginal costs of hiring for a firm, c/q, and

workers’ flow value of leisure, b. There is an additional term, however, in wn (n, x) n.

To understand the intuition for this term, consider a firm’s negotiations with a given

worker. If these negotiations break down, the firm will have to pay its remaining workers

a higher wage. The reason is that fewer workers imply that the marginal product of labor

will be higher in the firm, which will partially spillover into higher wages (wnn < 0).

The more powerful this effect is (the more negative is wnn), the more the firm loses from

a given breakdown of negotiations with a worker, and the more workers can extract a

higher wage from the bargain.

In what follows, we will adopt the simple assumption that the production function is

of the Cobb-Douglas form, F (n) = nα with α ≤ 1. Given this, the differential equation

for the wage function, (9), has the following simple solution:16

(10) w (n, x) = η

[
pxαnα−1

1− η (1− α)
+ β f

c

q

]
+ (1− η) b.

Setting α = 1 yields the discrete time analogue to the familiar wage bargaining solution

for the Mortensen and Pissarides (1994) model.

C. The Firm’s Optimal Employment Policy

Now that we have obtained a solution for the bargained wage at a given firm, we can

combine this with the firm’s first-order condition for employment and thereby character-

ize the firms optimal employment policy, which specifies the firm’s optimal employment

as a function of its state, n (n−1, x). Thus, combining (4) and (9) we obtain:

(11) (1− η)

[
pxαnα−1

1− η (1− α)
− b

]
− ηβ f

c

q
−

c

q
1+ + βD (n, x) = 0.

Given (11) we are able to characterize the firm’s optimal employment policy as follows:17

PROPOSITION 2: The optimal employment policy of a firm is of the form

(12) n (n−1, x) =


R−1
v (x) if x > Rv (n−1) ,

n−1 if x ∈
[
R (n−1) , Rv (n−1)

]
,

R−1 (x) if x < R (n−1) ,

16As in Cahuc and Wasmer (2008), the constant of integration is pinned down by the condition that the wage bill does

not explode in the limit as firm employment n shrinks to zero, limn→0 w (n, x) n = 0.
17It is difficult to prove that (9) and (12) constitute the unique solution to the firm’s problem (3). To facilitate the

analysis, we instead seek a solution for the wage bargain such that it preserves the concavity and supermodularity of flow

profit. Within this class of wage bargains, the appendix shows that (12) is the unique optimal labor demand rule and (9) is

the unique solution of the Stole and Zwiebel bargaining problem. We have been unable to determine if another solution

exists outside of this class.
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where the functions Rv (·) and R (·) satisfy

(13) (1− η)

[
pRv (n) αnα−1

1− η (1− α)
− b

]
− ηβ f

c

q
+ βD (n, Rv (n)) ≡

c

q
,

(14) (1− η)

[
pR (n) αnα−1

1− η (1− α)
− b

]
− ηβ f

c

q
+ βD (n, R (n)) ≡ 0.

The firm’s optimal employment policy will be similar to that depicted in Figure 1. It

is characterized by two reservation values for the firm’s idiosyncratic shock, R (n−1) and

Rv (n−1). Specifically, for sufficiently bad idiosyncratic shocks (x < R (n−1) in the fig-

ure), firms will shed workers until the first-order condition in the separation regime, (14),

is satisfied. Moreover, for sufficiently good idiosyncratic realizations (x > Rv (n−1) in

the figure), firms will post vacancies and hire workers until the first-order condition in

the hiring regime, (13), is satisfied. Finally, for intermediate values of x , firms freeze

employment so that n = n−1. This occurs as a result of the kink in the firm’s profits at

n = n−1, which arises because hiring is costly to firms, while separations are costless.

[FIGURE 1 HERE]

To complete our characterization of the firm’s optimal employment policy, it remains

to determine the marginal effect of current employment decisions on future profits of the

firm, D (n, x). It turns out that we can show that D (n, x) has the following recursive

structure:

PROPOSITION 3: The marginal effect of current employment on future profits, D (n, x),
is given by

(15) D (n, x) = d (n, x)+ β

∫ Rv(n)

R(n)

D
(
n, x ′

)
dG,

where

(16) d (n, x) ≡

∫ Rv(n)

R(n)

{
(1− η)

[
px ′αnα−1

1− η (1− α)
− b

]
− ηβ f

c

q

}
dG +

∫ ∞
Rv(n)

c

q
dG.

Equation (15) is a contraction mapping in D (n, ·), and therefore has a unique fixed

point.

The intuition for this result is as follows. Because of the existence of kinked adjustment

costs (costly hiring and costless separations) the firm’s employment will be frozen next

period with positive probability. In the event that the firm freezes employment next pe-

riod (x ′ ∈ [R (n) , Rv (n)]), the current employment level persists into the next period and

so do the marginal effects of the firm’s current employment choice. Proposition 3 shows
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that these marginal effects persist into the future in a recursive fashion. Propositions 2

and 3 thus summarize the microeconomic behavior of firms in the model.18

To get a sense for how the microeconomic behavior of the model works, we next derive

the response of an individual firm’s employment policy function to changes in (exoge-

nous) aggregate productivity, p, and the (endogenous) aggregate vacancy-unemployment

ratio, θ . To do this, we assume that the evolution of idiosyncratic shocks is described by:

(17) x ′ =

{
x with probability 1− λ,

x̃
c.d. f.
∼ G̃ (x̃) with probability λ.

Thus, idiosyncratic shocks display some persistence (λ < 1) with innovations drawn

from the distribution function G̃. The process (17) substantially facilitates the analysis.

In addition, it mirrors the specification of idiosyncratic shocks adopted in Mortensen and

Pissarides (1994), which enables a cleaner comparison to their model. Nonetheless, it

should be noted that this specification has drawbacks. For instance, since it displays

mean reversion, it is not consistent with Gibrat’s Law.

Given (17), we can establish the following result:

PROPOSITION 4: If idiosyncratic shocks, x, evolve according to (17), then the effects

of the aggregate state variables p and θ on a firm’s optimal employment policy are

(18)
∂Rv

∂p
< 0;

∂R

∂p
< 0;

∂Rv

∂θ
> 0; and

∂R

∂θ
> 0 ⇐⇒ n is sufficiently large.

The intuition behind these marginal effects is quite simple. First, note that increases

in aggregate productivity, p, shift a firm’s employment policy function downwards in

Figure 1. Thus, unsurprisingly, when labor is more productive, a firm of a given idio-

syncratic productivity, x , is more likely to hire workers, and less likely to shed workers.

Second, increases in the vacancy-unemployment ratio, θ , unambiguously reduce the like-

lihood that a firm of a given idiosyncratic productivity will hire workers (Rv increases for

all n). The reason is that higher θ implies a lower job-filling probability, q , and thereby

raises the marginal cost of hiring a worker, c/q. Moreover, higher θ implies a tighter

labor market and therefore higher wages (from (9)) so that the marginal cost of labor

rises as well. Both of these effects cause firms to cut back on hiring. Finally, increases

in the vacancy-unemployment ratio, θ , will reduce the likelihood of shedding workers

for small firms, but will raise it for large firms. This occurs because higher θ has coun-

tervailing effects on the separation decision of firms. On the one hand, higher θ reduces

the job-filling probability, q , rendering separation decisions less reversible (since future

hiring becomes more costly), so that firms become less likely to destroy jobs. On the

other hand, higher θ implies a tighter labor market, higher wages, and thereby a higher

marginal cost of labor, rendering firms more likely to shed workers. The former effect is

18It is straightforward to show that equations (10) to (16) reduce down to the discrete time analogue to the Mortensen

and Pissarides (1994) model when α = 1.
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dominant in small firms because the likelihood of their hiring in the future is high.

II. Aggregation and Steady-State Equilibrium

A. Aggregation

Since we are ultimately interested in the equilibrium behavior of the aggregate unem-

ployment rate, in this section we take on the task of aggregating up the microeconomic

behavior of section 1 to the macroeconomic level. This exercise is non-trivial because

each firm’s employment is a nonlinear function of the firm’s lagged employment, n−1,

and its idiosyncratic shock realization, x . As a result, there is no representative firm

interpretation that will aid aggregation of the model.

To this end, we are able to derive the following result which characterizes the steady-

state aggregate employment stock and flows in the model:

PROPOSITION 5: If idiosyncratic shocks, x, evolve according to (17), the steady-state

c.d.f. of employment across firms is given by

(19) H (n) =
G̃ [R (n)]

1− G̃ [Rv (n)]+ G̃ [R (n)]
.

Thus, the steady-state aggregate employment stock is given by

(20) N =

∫
nd H (n) ,

and the steady-state aggregate number of separations, S, and hires, M, is equal to

(21) S = λ

∫
[1− H (n)] G̃ [R (n)] dn = λ

∫
H (n)

(
1− G̃ [Rv (n)]

)
dn = M.

Proposition 5 is useful because it provides a tight link between the solution for the mi-

croeconomic behavior of an individual firm and the macroeconomic outcomes of that

behavior. Specifically, it shows that once we know the optimal employment policy func-

tion of an individual firm (that is, the functions R (n) and Rv (n)) then we can directly

obtain analytical solutions for the distribution of firm size, and the aggregate employment

stock and flows.

The three components of Proposition 5 are also quite intuitive. The steady-state dis-

tribution of employment across firms, (19), is obtained by setting the flows into and out

of the mass H (n) equal to each other. The inflow into the mass comes from firms who

reduce their employment from above n to below n. There are [1− H (n)] such firms,

and since they are reducing their employment, it follows from (12) that each firm will

reduce its employment below n with probability equal to Pr [x < R (n)] = λG̃ [R (n)].
Thus, th̀e inflow into H (n) is equal to λ [1− H (n)] G̃ [R (n)]. Similarly, one can show
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that the outflow from the mass is equal to λH (n)
(

1− G̃ [Rv (n)]
)

. Setting inflows

equal to outflows yields the expression for H (n) in (19).19 Given this, the expression for

aggregate employment, (20), follows directly.

The intuition for the final expression for aggregate flows in Proposition 5, (21), is as

follows. Recall that the mass of firms whose employment switches from above some

number n to below n is equal to λ [1− H (n)] G̃ [R (n)]. Equation (21) states that the

aggregate number of separations in the economy is equal to the cumulative sum of these

downward switches in employment over n. To get a sense for this, consider the follow-

ing simple discrete example. Imagine an economy with two separating firms: one that

switches from three employees to one, and another that switches from two employees to

one. It follows that two firms have switched from > 2 employees to ≤ 2 employees, and

one firm switched from > 1 to ≤ 1 employee. Thus, the cumulative sum of downward

employment switches is three, which is also equal to the total number of separations in

the economy.

B. Steady-State Equilibrium

Given (19), (20), and (21), the conditions for aggregate steady state equilibrium can be

obtained as follows. First note that each firm’s optimal policy function, summarized by

the functions R (n) and Rv (n) in Proposition 2, depends on two aggregate variables: The

(exogenous) state of aggregate productivity, p; and the (endogenous) ratio of aggregate

vacancies to aggregate unemployment, V/U ≡ θ , which uniquely determines the flow

probabilities q and f .

In the light of Proposition 5, we can characterize the aggregate steady state of the econ-

omy for a given p in terms of two relationships. The first, the Job Creation condition, is

simply equation (20), which we restate here in terms of unemployment, making explicit

its dependence on the aggregate vacancy-unemployment ratio, θ :

(22) U (θ)JC = L −

∫
nd H (n; θ) .

(22) simply specifies the level of aggregate employment that is consistent with the in-

flows to (hires) and outflows from (separations) aggregate employment being equal as

a function of θ . We refer to the latter as the Job Creation condition, because it is the

analogue of the eponymous condition in the standard Mortensen and Pissarides (1994)

model. In that case, however, the condition simply stipulates a level of labor market

tightness which is independent of the level of unemployment—it pins down the level of

θ that just induces firms to post vacancies. The reason stems from the linearity of the

standard model: A higher θ would mean no vacancies would be posted; a lower θ would

induce firms to post an infinite number of vacancies.

The second steady-state condition is the Beveridge Curve relation. This is derived

19This mirrors the mass-balance approach used in Burdett and Mortensen (1998) to derive the equilibrium wage

distribution in a search model with wage posting.
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from the difference equation that governs the evolution of unemployment over time:

(23) 1U ′ = S (θ)− f (θ)U.

(23) simply states that the change in the unemployment stock over time,1U ′, is equal to

the inflow into the unemployment pool—the number of separations, S—less the outflow

from the unemployment pool—the job-finding probability, f , times the stock of unem-

ployed workers, U . In steady state, aggregate unemployment will be stationary, so that

we obtain the steady-state unemployment relation:

(24) U (θ)BC =
S (θ)

f (θ)
.

The steady-state value of the vacancy-unemployment ratio, θ , is co-determined by (22)

and (24).

III. Introducing Aggregate Shocks

The previous section characterized the determination of steady-state equilibrium in

the model. However, in what follows, we are interested in the dynamic response of

unemployment, vacancies and worker flows to aggregate shocks. To address this, we

need to characterize the dynamics of the model out of steady state. The latter is not

a trivial exercise in the context of the present model. Out of steady state, firms in the

model need to forecast future wages and therefore, from equation (9), future labor market

tightness. Inspection of the steady-state equilibrium conditions (22) and (24) reveals that,

in order to forecast future labor market tightness, firms must predict the evolution of the

entire distribution of employment across firms, H (n), an infinite-order state variable.

Our approach to this problem mirrors the method proposed by Krusell and Smith

(1998). We consider shocks to aggregate labor productivity that arrive simultaneously

with idiosyncratic shocks, and which evolve according to the simple random walk:

(25) p′ =

{
p + σ p w.p. 1/2,
p − σ p w.p. 1/2.

Our motivation for using a simple random walk specification for aggregate shocks is

twofold. First, prior empirical literature has noted that aggregate TFP appears to follow

a random walk (see, for example, Basu, Fernald and Kimball 2006).20 Second, we will

see below in Proposition 6 that it also allows us to obtain an analytical approximation to

firms’ optimal employment policy functions out of steady state.

20The online appendix presents results from a version of the model in which p follows an AR(1) process. This model

must be solved by value iteration; the analytical solution made possible by Proposition 6 (see below) no longer holds.

Still, the quantitative results are quite similar to what is reported in Section 4. The only notable difference is that the

separation rate displays somewhat less volatility when p is stationary. Intuitively, firms initiate fewer separations after a

decline in productivity if they anticipate that p will recover.
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Following Krusell and Smith, we conjecture that a forecast of the mean of the distri-

bution of employment across firms, N =
∫

nd H (n), provides an accurate forecast of

future labor market tightness. We then exploit the fact that shocks to aggregate labor

productivity, denoted by σ p in equation (25), are small in U.S. data.21 This allows us to

approximate the evolutions of aggregate employment, N , and labor market tightness, θ ,

around their steady-state values N ∗ and θ∗ as follows:

N ′ ≈ N ∗ + νN

(
N − N ∗

)
+ ν p

(
p′ − p

)
,

θ ′ ≈ θ∗ + θ N

(
N ′ − N ∗

)
+ θ p

(
p′ − p

)
,(26)

for σ p ≈ 0. Note that, steady-state employment N ∗ and tightness θ∗ correspond to

the levels of N and θ that would be realized if aggregate productivity p remained at its

current level forever. Thus, in the presence of the random walk shocks in (25), N ∗ and

θ∗ will vary over time as aggregate productivity p evolves.

Under these conditions, we can approximate the optimal employment policy of an in-

dividual firm out of steady state. To see how this might be done, note from the first-order

conditions (13) and (14) that to derive optimal employment in the presence of aggregate

shocks, one must characterize the marginal effect of current employment decisions on

future profits, D (·), out of steady state.

PROPOSITION 6: If a) aggregate shocks evolve according to (25); b) a forecast of

N provides an accurate forecast of future θ ; c) aggregate shocks are small (σ p ≈ 0);
and d) idiosyncratic shocks evolve according to (17), then the marginal effect of current

employment on future profits is given by

(27) D
(
n, x; N , p, σ p

)
≈ D

(
n, x; N ∗, p, 0

)
+ D∗N

(
N − N ∗

)
,

where D∗N is a known function of the parameters of the forecast equation (26) and the

steady state employment policy defined in (13) and (14).

Proposition 6 shows that, in the presence of aggregate shocks, the forward-looking

component to the firm’s decision, D
(
n, x; N , p, σ p

)
, is approximately equal to its value

in the absence of aggregate shocks, D (n, x; N ∗, p, 0), plus a known function of the

deviation of aggregate employment from steady state, D∗N (N − N ∗). Practically, Propo-

sition 6 allows us to derive analytically an approximate solution for the optimal policy

function in the presence of aggregate shocks, for given values of the parameters of the

forecast equation (26).

Proposition 6 is useful for a number of reasons. First, it does not require an assumption

that firms do not respond to aggregate shocks. In contrast, in their solution of a menu-cost

model, Gertler and Leahy (2008) obtain a tractable out-of-steady-state approximation on

the assumption that firms react to aggregate shocks only if they simultaneously receive

21Examples of other studies that have exploited the fact that aggregate shocks are small include Mortensen and Nagypal

(2007) and Gertler and Leahy (2008).
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idiosyncratic shocks. Second, by providing an analytical approximation to firms’ em-

ployment policies out of steady state, it aids computation of the transition dynamics of

the model. In particular, it removes the necessity for time-consuming iterative methods,

such as value/policy function iteration, in order to solve for firms’ policy functions. This

saves a considerable amount of computing time.

To complete our description of the dynamics of the model, we need to aggregate the

microeconomic behavior summarized in the employment policies of individual firms.

A simple extension of the result of Proposition 5 implies that the aggregate number of

separations and hires in the economy at a point in time are respectively given by:

S (N , p) = λ

∫ [
1− H−1 (n−1)

]
G̃
[
R (n−1; N , p)

]
dn−1,

M (N , p) = λ

∫
H−1 (n−1)

(
1− G̃

[
Rv (n−1; N , p)

])
dn−1,(28)

where H−1 (n−1) is the distribution of lagged employment across firms. Notice that the

timing is emphasized in the out-of-steady-state case.

A number of observations arise from this. First, the aggregate flows depend on the

level of aggregate employment, N . Recalling the accumulation equation for N yields:

(29) N = N−1 + M (N , p)− S (N , p) .

It follows that, to compute aggregate employment, all one need do is find the fixed point

value of N that satisfies equation (29). This allows us to compute equilibrium labor

market tightness by noting that

(30) f (θ) = M/ (L − N ) .

A second observation from equation (28) is that, in order to compute the path of ag-

gregate unemployment flows, and hence employment, we need to describe the evolution

of the distribution of employment across firms, H (n). It turns out that the evolution of

H (n) can be inferred by a simple extension of the discussion following Proposition 5.

Recall that the change in the mass H (n) over time is simply equal to the inflows less

the outflows from that mass. Following the logic of Proposition 5 provides a difference

equation for the evolution of H (n):

(31) 1H (n) = λG̃
[
R (n; N , p)

] [
1− H−1 (n)

]
−λ

(
1− G̃

[
Rv (n; N , p)

])
H−1 (n) .

This allows us to update the aggregate flows S (N , p) and M (N , p) over time, and hence

derive the evolution of equilibrium employment.

The previous results allow us to compute the evolution of aggregate employment and

labor market tightness for a given configuration of the parameters of the forecast equa-

tions (26). This of course does not guarantee that those parameters are consistent with
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the behavior that they induce. To complete our characterization of equilibrium in the

presence of aggregate shocks, we follow Krusell and Smith and iterate numerically over

the parameters
{
νN , ν p, θ N , θ p

}
to find the fixed point. In the simulations of the model

that follow, the fixed point of the conjectured forecast equations in (26) provides a very

accurate forecast in the sense that the R2s of regressions based on (26) exceed 0.999.

IV. Quantitative Applications

The model of sections 2 and 3 yields a rich set of predictions for both the dynamics

and the cross-section of the aggregate labor market. In this section we draw out these

implications in a range of quantitative applications, including the cross sectional distri-

butions of establishment size and employment growth, the amplitude and propagation

of unemployment fluctuations, the relationship between vacancies and unemployment in

the form of the Beveridge curve, the dynamics of the distribution of establishment size,

and the employer size-wage effect.

A. Calibration

Our calibration strategy proceeds in two stages. The first part is very conventional,

and mirrors the approach taken in much of the literature. The time period is taken to be

equal to one week, which in practice acts as a good approximation to the continuous-

time nature of unemployment flows. The dispersion of the innovation to aggregate labor

productivity σ p is chosen to match the standard deviation of the cyclical component of

output per worker in the U.S. economy. Specifically, the log deviation from HP trend of

output per worker is 0.02 in the data. We compute the same statistic in data simulated

from the model, and find that a weekly step-size of σ p = 0.00333 matches this moment.

[TABLE 1 HERE]

We assume that the matching function is of the conventional Cobb-Douglas form, M =
µUφV 1−φ , with matching elasticity φ set equal to 0.6, based on the estimates reported

in Petrongolo and Pissarides (2001).22 A weekly job-finding rate of f = 0.1125 is

targeted to be consistent with a monthly rate of 0.45. As in Pissarides (2007), we target a

mean value of the vacancy-unemployment ratio of θ = 0.72. Noting from the matching

function that f = µθ1−φ , the latter implies that the matching efficiency parameter µ =
0.129 on a weekly basis.

Vacancy costs c are targeted to generate per-worker hiring costs c/q equal to 14 percent

of quarterly worker compensation. This is in accordance with the results of Silva and

Toledo (2009), who cite an estimate of the labor costs of posting vacancies published by

the human resources consulting firm, the Saratoga Institute. Hall and Milgrom (2008)

22An issue that can arise when using a Cobb-Douglas matching function in a discrete-time setting is that the flow

probabilities f and q are not necessarily bounded above by one. This issue does not arise here due to the short time

period of one week.
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also adopt this calibration target. In the context of the model, this implies a value of c

approximately equal to 29 percent of the average worker’s wage.23

Our calibration of worker bargaining power (η) is designed to hold constant the elas-

ticity of the real wage across the linear (Mortensen-Pissarides) and nonlinear (this paper)

models. Pissarides (2007) reports an elasticity of the wage with respect to output per

worker in the linear model of 0.985. Our calibration of η yields virtually the same result.

Our motivation for this calibration strategy is twofold. First, as we noted in section

1.2, our aim is to rule out differences in wage dynamics as a source of the differences

in the cyclical behavior between the model of this paper, and Mortensen and Pissarides

(1994). This strategy helps us to isolate the more fundamental properties of a model with

decreasing returns and how they generate different quantitative behavior relative to the

standard setting. Second, it is well known that the component of wages that is relevant for

the cyclicality of labor market flows is the cyclicality of the present discounted value of

wages over the duration of a potential match, which depends crucially on the cyclicality

of new hires’ wages (Shimer 2004; Hall 2005; Hall and Milgrom 2008; Haefke, Sonntag,

and van Rens 2012). Unfortunately, the available evidence on this important question is

in its infancy, and a consensus has not yet been reached. It seems sensible, then, to focus

on differences in the implications of the model, holding fixed the cyclicality of wages.24

The production function parameter α is determined by targeting an aggregate labor

share based on the estimates reported in Gomme and Rupert (2007). These suggest a

labor share for market production of 0.72. Alternatively, to calibrate α, one might consult

estimates of plant-level labor demand models. Cooper, Haltiwanger, and Willis (2004)

estimate a dynamic labor demand problem on plant-level employment data available

from the Longitudinal Research Database. They find that α = 0.64, which is similar to

the value implied by targeting labor share.25

To complete the first part of our calibration, we choose the size of the labor force L to

match a mean unemployment rate of 6.5 percent.26 Given the remainder of the calibration

that follows, this is equivalent to choosing the labor force to match a weekly job-finding

rate of 0.1125.

IDIOSYNCRATIC SHOCKS AND THE VALUE OF UNEMPLOYMENT. — A more distinctive

feature of our strategy is the calibration of the evolution of idiosyncratic firm productivity

and the flow payoff from unemployment to a worker. In brief, a volatile productivity

process induces, all else equal, a high rate of separations. To deter an excess amount of

23We want to equate the per-worker hiring cost c/q to 14 percent of quarterly wages, 0.14 · [13 · E (w)]. (There are

13 weeks per quarter.) Note that the implied weekly job-filling probability is given by q = µθ−φ = 0.129 · 0.72−0.6 =
0.16. Piecing this together yields c/E (w) = 0.16 · 0.14 · 13 = 0.29.

24An alternative strategy might be to calibrate η by targeting available estimates of the elasticity of new hires’ real

wages with respect to output per worker. Haefke, Sonntag and van Rens (2012) report an elasticity of 0.79 over the period

1984-2006 for new hires out of nonemployment. To the extent we overstate the flexibility of the real wage, we likely

understate the model’s potential to obtain amplification of labor market flows.
25In calibrating their search-and-matching model, Cooper, Haltiwanger, and Willis (2007) use a similar estimate,

setting α = 0.65.
26Strictly speaking, since we normalize the mass of production units to one, L should be interpreted as the number of

workers (in the labor force) per employer.
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turnover (relative to that observed in the data), the average surplus in the model from an

employment relationship must be sufficiently high. Thus, the choice of the variance of

firm productivity disciplines the calibration of the flow payoff from unemployment.

To calibrate the stochastic process of firm productivity, we note that the law of motion

of x leaves a clear imprint on the distribution of employment growth. Proposition 7

derives the steady-state distribution of weekly employment growth and helps make this

link more precise.

PROPOSITION 7: The steady-state density of employment growth, δ = 1 ln n, across

firms is given by:

(32) h1 (δ) =


λ
∫

eδnG̃ ′
[
R′
(
eδn
)]

d H (n) if δ < 0,

λ
∫ (

G̃ [Rv (n)]− G̃ [R (n)]
)

d H (n) if δ = 0,

λ
∫

eδnG̃ ′
[
R′v
(
eδn
)]

d H (n) if δ > 0,

where H (n) is the distribution of employment n derived in Proposition 5.

Proposition 7 provides us with a novel approach to calibrating the arrival rate and the

variance of firm-specific productivity shocks. There is abundant evidence on the prop-

erties of the cross-sectional distribution of employment growth h1 (δ) since the seminal

work of Davis and Haltiwanger (1992). Empirically, this distribution is characterized

by a dominant spike at zero employment growth, with relatively symmetric tails cor-

responding to job creation and job destruction (see, for example, Figure 1.A in Davis

and Haltiwanger, 1992). This is exactly the form of the employment growth distribution

implied by the model in Proposition 7.27

We select the arrival rate and the variance to match the share of mass around zero

growth and the dispersion of employment growth. Intuitively, the cross-sectional distri-

bution of employment is a manifestation of the idiosyncratic shocks x across firms. The

more often these shocks arrive (the higher is λ in the model), the more likely a firm is

to alter its employment, and the smaller is the implied spike at zero employment growth.

Likewise, the greater the dispersion of the innovations x , the larger the implied adjust-

ment that firms will make. Therefore, a higher variance raises the mass in the tails of the

distribution and reduces the mass just to the left and right of zero growth. More specifi-

cally, we target the following two moments: the share of establishments with growth less

than |5 percent|, which is 41.5 percent, and the standard deviation of annual employment

growth, which is 41.6 percent.28 These moments are computed using data on continuing

27The available data on the employment growth distribution reports the annual change in establishment-level employ-

ment. Thus, to relate the model to the empirical cross section, we must use the model-implied distribution of annual

employment growth. It is possible, but exceptionally cumbersome, to derive this analytically, as we did above for the

weekly distribution in Proposition 7. Yet the essential form—a large mass around zero growth, with relatively symmet-

ric tails—will remain in the annual distribution, though of course the magnitudes will differ. In what follows, then, we

recover the annual distribution by simulation.
28In the simulations, annual employment growth is not measured as log changes, as in Proposition 7, but in the same

way as in Davis and Haltiwanger (1992): If nt denotes employment in the current week and nt−1 employment in the
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establishments in the Longitudinal Business Database for the years 1992 to 2005.29

The calibration of the stochastic process of idiosyncratic productivity is crucial for our

calibration of workers’ flow payoff from unemployment b. Since the work of Hagedorn

and Manovskii (2008), it has been recognized that the value of b plays a central role

in determining the cyclical volatility of aggregate unemployment, and specifically the

job-finding rate. Intuitively, higher values of b lead to a smaller surplus to employment

relationships. As a consequence, small reductions in aggregate productivity can easily

exhaust that surplus, and lead firms to cut back substantially on hiring. Since one of

the quantitative applications we consider is the cyclical volatility of worker flows, the

parameterization of b is key.

Our model suggests a novel approach to calibrating the payoff from unemployment:

For a given level of dispersion in idiosyncratic shocks implied by our calibration of the

evolution x , a higher value of b reduces the surplus and implies that jobs will be destroyed

more frequently, raising the inflow rate into unemployment s. Thus, we choose b in such

a way as to yield employment rents that match the empirical unemployment inflow rate

of s = 0.0078 on a weekly basis, consistent with estimates reported in Shimer (2012).

To implement this strategy, of course, we must specify a distribution function for x .

We assume that the innovations to firm productivity are drawn from a Pareto distribution,

x ∼ Pareto (xm, kx) , where xm is the lower bound of the support and kx is the shape pa-

rameter.30 The lower bound is selected so as to normalize the mean level of productivity

to one. This implies that xm = 1 − k−1
x . The variance of the innovation is a monotonic

function of the shape parameter, so the latter is calibrated, per the discussion above, to

induce the empirically-observed dispersion in employment growth.

Our choice of a Pareto distribution is informed by the shape of the tails of the employ-

ment growth distribution. As illustrated in Figure 3, the tails of the empirical distribution

are convex to the origin. Formally, the distribution resembles the Laplace distribution.

To see why this informs our choice, note that the frictionless counterpart to the labor de-

mand policy in (12) is log-linear given our assumptions. Thus, conditional on receipt of a

new x , the frictionless change in log employment (that is, employment growth) is simply

the (scaled) difference in log productivity. If x is Pareto distributed, then the difference

in log productivity is Laplace distributed.31 Of course, this mapping is more complicated

in our frictional model. But the frictionless result suggests that the Pareto distribution is

same week last year, we calculate
nt−nt−1

0.5(nt+nt−1)
. We do this because the Census Bureau tabulations we use (see above)

are based on the Davis-Haltiwanger growth rate.
29Thanks to John Haltiwanger, Ron Jarmin, and Javier Miranda for providing us with the tabulations from the LBD

that allowed us to make these calculations.
30A Pareto distributed random variable z is parameterized by a minimum value zm and a “shape” parameter k, and has

a density function given by kzk
m/z

k+1.
31If xt is a draw from a Pareto distribution with minimum xm and shape parameter kx , then log xt = log xm+ξ t ,where

ξ t ∼Exponential(kx ) . If the production function is log-linear in employment, the change in the firm’s log employment

in steady state, conditional on receipt of a shock, is therefore proportional to ξ t − ξ t−1. This is the difference of two

exponentially-distributed random variables. A standard result in statistics then gives ξ t−ξ t−1 ∼Laplace
(

0, k
−1
x

)
. Thus,

the employment growth distribution in the frictionless model would exhibit a mass point at zero (since many firms will

not receive a new x) and will then fan out from zero according to the Laplace distribution. Note that the smaller is k
−1
x ,

the greater is the (absolute) rate of decline in the p.d.f. as ξ moves away from the origin.



22 AMERICAN ECONOMIC JOURNAL MONTH YEAR

a potential candidate for generating this shape in the employment growth distribution.

There is one further aspect of our specification of firm productivity that should be

noted. For the quantitative analysis in the subsequent section, we modify slightly the

production function in sections 2 and 3 to incorporate time-invariant firm-specific pro-

ductivity, denoted by ϕ, so that y = pϕx F (n). Firm-specific fixed effects ϕ are in-

troduced to reflect permanent heterogeneity in firm productivity that is unrelated to the

uncertainty that individual firms face over time in the form of the innovation x . Since ϕ
is fixed, its presence does not affect the derivation of the optimal labor demand policy;

the rules to hire and fire are simply conditioned on ϕ.32

The principle role of ϕ is that it provides a practical means to generate a firm size

distribution that is comparable to the data. The latter is a key ingredient in the analysis of

section 4.6, as it allows a comparison of the cyclical dynamics of the firm size distribution

implied by the model with their empirical counterparts. With this in mind, a useful

feature of the model of sections 2 and 3 is that it allows a flexible specification of the

distribution of shocks. This is helpful because conventional parameterizations, such as

log-normal shocks, fail to capture the well-known Pareto shape of the cross sectional

distribution of firm size.

In light of this, we set ϕ ∼ Pareto
(
ϕm, kϕ

)
. The minimum value of the fixed effect,

ϕm , is chosen to yield a minimum establishment employment level of one worker, and

its shape coefficient, kϕ , is chosen to match a mean establishment size of 17.38, in line

with data from the Small Business Administration.33 Our choice of the Pareto distrib-

ution means that, qualitatively, the generation of a Pareto firm size distribution is not a

surprising result. In contrast, important prior work has generated the Pareto shape of the

firm size distribution endogenously through firm entry and exit processes in the presence

of random walk processes for idiosyncratic productivity that satisfy Gibrat’s Law (see,

for example, Luttmer, 2007). Instead, in the next section, we stress the quantitative suc-

cess of the model in terms of its ability to replicate a salient moment of the firm size

distribution to which the parameters
(
ϕm, kϕ

)
were not calibrated.

The parameter values for kx , ϕm, and kϕ implied by our calibration are summarized in

Table 1. In what follows, we report the implications of the calibrated model for a range

of cross-sectional and aggregate outcomes.

32It is straightforward to adapt by all of the stated results simply by integrating over the distribution of fixed effects.

For example, the distribution of firm size and its evolution may be characterized conditional on ϕ, so that the mass of

firms with size n is given by h (n) =
∫

h (n|ϕ) d8(ϕ), where 8 is the distribution of ϕ. Absent these fixed effects, the

variance of the time-varying component of idiosyncratic productivity x would have to be scaled to replicate the substantial

dispersion in the firm-size distribution. This would likely imply a value for the variance of x that far exceeds the typical

estimate used in the literature.
33These data are from the Statistics of U.S. Businesses and can be obtained from

http://archive.sba.gov/advo/research/us92_07ss.txt. Complete data on the size of establishments is not available

for 1992 and 1993, so mean size is computed for years 1994-2006. We note that mean size is computed among estab-

lishments with strictly positive employment; so-called nonemployers, which have no paid employees, are excluded. The

Census reports that nonemployers are generally self-employed individuals who operate small unincorporated businesses.

See the Census’ Nonemployer Statistics program for more, http://www.census.gov/econ/nonemployer/index.html.
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B. Establishment Size and Employment Growth Distributions

An important component of our calibration strategy is to match key properties of the

cross-sectional distributions of employment and employment growth across firms. The

model’s implications for these two outcomes are summarized in Propositions 5 and 7

above. In this section, we compare the steady-state distributions implied by the model

with their empirical counterparts.

Figure 2 plots the distribution of establishment size in the calibrated model and recent

data. Both axes are on a log scale to emphasize the Pareto shape of the distributions.

The dots plot the empirical establishment size distribution using pooled data from the

Small Business Administration on employment by firm size class for the years 1992 to

2006. The dashed line indicates the analogue implied by the calibrated model. Figure

2 reveals that the model accounts well for the empirical establishment size distribution.

While this outcome is not surprising given the Pareto shocks fed through the model, it

does highlight the benefit of using a flexible form for the distribution of idiosyncratic

productivity in the model of sections 2 and 3.34

[FIGURE 2 HERE]

A more novel result is that the model also does a remarkable job of matching the

distribution of employment growth across establishments. The dotted line in Figure 3

illustrates the empirical employment growth distribution using data for continuing es-

tablishments from the Longitudinal Business Database.35 As noted above, this displays

the classic features of a mass point at zero employment growth, and relatively symmet-

ric tails. The dashed line overlays the employment growth distribution implied by the

calibrated model, computed by time aggregation of the weekly model to annual growth

rates. This bears a very close resemblance to the empirical distribution. Thus, the Pareto

distribution provides a remarkably good account of the employment growth distribution,

something that has not been emphasized in the literature on establishment dynamics.36

[FIGURE 3 HERE]

34The Small Business Administration (SBA) provides data on the distribution of firm size rather than establishment

size. The County Business Patterns (CBP) provides data on the latter, though the size bins are much coarser. For instance,

the CBP reports the number of establishments with 20−49 workers, whereas the SBA divides this interval into six smaller

bins, each with a width of 5 workers. For this reason, we prefer the SBA data. But we have reproduced the plot shown in

Figure 2 with CBP data and find virtually the same pattern.
35Specifically, Figure 3 plots the cross-sectional employment growth distribution, weighting establishments equally,

as opposed to weighting by employment. The latter differ in the data (see, for example, Davis and Haltiwanger, 1992),

because smaller establishments typically exhibit higher growth rate dispersion. Our simple framework does not have a

mechanism to account for this feature of the data, since adjustment costs and idiosyncratic shock dispersion are invariant

to firm size in the model.
36It should be noted that the model understates the literal spike at zero growth, and overstates slightly the mass just to

the left and right of zero in the interval |5 percent|. This can be traced to the fact that few establishments make very small

employment adjustments in the data. This feature is consistent with the existence of some fixed costs of adjustment,

which our model abstracts from. Getting the right allocation of the mass within this area around zero is an important

challenge for future work.
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C. The Cyclicality of Worker Flows

It is now well-known that standard search models of the aggregate labor market cannot

generate enough cyclical amplitude in unemployment, and in particular the job finding

rate, to match that observed in U.S. data (Shimer 2005). A natural question is whether

the generalized model analyzed here can alleviate this problem. To address this, we feed

through a series of shocks to aggregate labor productivity using equation (25), and simu-

late the implied dynamic response of the model using the results of section 3. Following

Mortensen and Nagypal (2007), we compute the model-implied elasticities of labor mar-

ket stocks and flows with respect to output per worker, and compare them with their

empirical counterparts.

MODEL OUTCOMES. — Panel A of Table 2 summarizes the results of this exercise. Out-

comes in brackets are moments that the model is calibrated to match: the mean levels of

the job-finding rate f , the unemployment inflow rate s, and the vacancy-unemployment

ratio θ . The aim of the exercise is to draw out the implications of the model for the

outcomes that the model is not calibrated to match, i.e. the cyclical elasticities of these

outcomes with respect to output per worker.

[TABLE 2 HERE]

The results in Table 2.A are remarkably encouraging: On all dimensions, the model-

implied elasticities lie in a neighborhood close to the cyclicality observed in the data.

Specifically, the model implies an elasticity of the job finding rate of 2.55, a little below

its empirical analogue of 2.65.37 In addition, the model-generated cyclical elasticity of

the unemployment inflow rate of −1.64 lies only a little below the magnitude observed

in the data.

COMPARISON WITH MORTENSEN AND PISSARIDES (1994). — These results make substan-

tial progress relative to the standard Mortensen and Pissarides (1994) model. To see this,

panels B and C of Table 2 provide two comparison exercises.38 First, taking as given the

process for idiosyncratic shocks implied by the distribution of employment growth de-

rived above, we calibrate the standard model to match the mean levels of the job finding

rate f and the unemployment inflow rate s, as well as the elasticity of s with respect to

output per worker implied by the generalized model in panel A.39 This allows the model

37The cyclical elasticities reported in Table 2 differ slightly from those implied by Shimer (2005) and Mortensen and

Nagypal (2007) as a result of revisions to U.S. GDP data.
38In practice, we have to slightly modify the Mortensen and Pissarides (1994) model since we use a distribution of

idiosyncratic shocks that has no upper bound. Rather than impose that matches form with initial productivity equal to

one, which is the upper bound on productivity in the original model, we endow matches with initial productivity equal to

the mean, i.e., E [x |x > R], where R is the reservation threshold.
39We use a process for x that induces the observed employment growth distribution in order to discipline the Mortensen

and Pissarides (1994) model to be consistent with a realistic amount of firm-specific risk. Alternatively, one may calibrate

the MP model to another, related indicator of firm-specific risk. For instance, although the standard model does not gener-
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to speak to the implied elasticity of the job finding rate, and thereby the elasticities of

vacancies and labor market tightness.40 The outcomes in panel B confirm what Shimer

(2005) demonstrated: that the standard model is unable to generate enough cyclicality in

job creation.41 The model-implied elasticity of the job-finding rate is 0.91, nearly one

third of the empirical elasticity. In contrast, the generalized model studied in the present

paper can account for all of the observed cyclical comovement between f and output per

worker.

THE ROLE OF THE PAYOFF FROM UNEMPLOYMENT. — Panel C of Table 2 provides a new

perspective on the standard model’s inability to match the cyclicality of unemployment

flows. In this case, we again take as given the process for idiosyncratic shocks implied

by the empirical distribution of employment growth. However, instead of targeting the

mean level of the inflow rate into unemployment s, we now allow the standard model

to match the elasticity of the job-finding rate f generated by the model of sections 2

and 3, and then draw out the implications for s.42 Panel C reveals that the model must

dramatically overstate the magnitude of unemployment inflows in order to match the

cyclical comovement of f : The implied weekly inflow rate of 0.027 is more than three

times that observed in the data.

This result sheds light on a recent debate in the literature. In order to match the

cyclical variation in the job-finding rate, the standard model requires a small surplus

to employment relationships, a point emphasized by Hagedorn and Manovskii (2008)

and Mortensen and Nagypal (2007).43 Mortensen and Nagypal further argue that the

required surplus is unrealistically small. The results of Table 2 formalize this intuition:

For realistic variation in idiosyncratic shocks to firms, a surplus small enough to match

the cyclicality of f implies an employment-to-unemployment transition rate that is more

than three times larger than what is observed empirically. Intuitively, a small surplus

implies that small idiosyncratic shocks to employment relationships are enough to ex-

haust the surplus and lead to destruction of a match. Consequently, realistic dispersion

in idiosyncratic shocks generates excessive worker turnover.

Thus, the Mortensen and Pissarides model faces a tension: To match plausible levels

of unemployment inflows, the model must generate a sufficiently large surplus at the

expense of matching the cyclicality of the job-finding rate. Conversely, to generate the

ate a cross section of employment growth, it does generate a cross section of sales growth. Unfortunately, comprehensive

micro data on sales is unavailable. However, data on publicly-traded firms does indicate as much volatility in sales as in

employment (see Davis, Haltiwanger, Jarmin, and Miranda 2006).
40Fixing the arrival rate, λ, of the idiosyncratic shock and its variance, there are three remaining parameters: b, c, and

η. The calibration consistent with the targeted moments is b = 0.53, c = 0.072, and η = 0.9.
41Shimer’s (2005) calibration of the standard model with exogenous job destruction yields an elasticity of f equal to

0.48. Mortensen and Nagypal (2007) favor a different calibration that yields an elasticity of f equal to 1.56 (see their

section 3.2). Pissarides’ (2007) calibration of the standard model with endogenous job destruction obtains an elasticity

of f equal to 1.54.
42The calibration consistent with the targeted moments is b = 0.855, c = 0.56, and η = 0.34.
43A common diagnostic for the size of the flow surplus is the ratio between worker’s payoff from unemployment, b,

and the average product of labor. For panel A of Table 2, this ratio equals 0.61; for panel C, it equals 0.71. Thus, the

Mortensen and Pissarides model demands a smaller surplus to match the volatility of the job-finding rate.
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cyclical variation in the job-finding rate, the surplus must be small, which in turn yields

excessive employment to unemployment transitions.

UNDERSTANDING AMPLIFICATION. — The results in Table 2 raise the question of why the

generalized model yields amplification of the response of job creation to cyclical shocks.

The Job Creation and Beveridge Curve conditions in (22) and (23), which depend implic-

itly on aggregate productivity p, trace out the steady-state response of unemployment U

and labor market tightness θ in response to a change in p. Figure 4 plots the effect of

a reduction in aggregate productivity p implied by the calibrations underlying Panels A

and B of Table 2. In both models, the Beveridge Curve shifts outward in (θ,U ) space

as firms shed more workers in response to the decline in p. Moreover, the latter outward

shift is identical across the two models, since the response of separations is held constant

across Panels A and B of Table 2. Thus, the key difference between the two models is

the shift in the Job Creation condition: The horizontal shift in the latter is amplified in

the model of sections 1 and 2.

[FIGURE 4 HERE]

The following result provides a sense for where this amplification comes from by approx-

imating the steady-state response of the Job Creation condition to a change in aggregate

labor productivity:

PROPOSITION 8: For small λ, the horizontal shift in the Job Creation condition (22)

induced by a change in aggregate productivity p is given approximately by

(33)
d ln θ

d ln p

∣∣∣∣
JC

≈
(1− η) p̃

ωφ
[
(1− η) ( p̃ − b)− ηβcθ

]
+ ηβcθ

,

whereω is the steady state employment share of hiring firms, and p̃ ≡ ρapl+(1− ρ)mpl

where apl and mpl are respectively the average and marginal product of labor of the

average-sized firm, and ρ ≡ αη
1−η(1−α) .

COROLLARY 1: The elasticity of the vacancy-unemployment ratio to aggregate pro-

ductivity in the α = 1 case (Mortensen and Pissarides 1994) is approximately equal

to

(34)
d ln θ

d ln p
≈

(1− η) p

φ
[
(1− η) (p − b)− ηβcθ

]
+ ηβcθ

.

Equation (34) echoes results presented in Mortensen and Nagypal (2007, 2008): The

cyclical response of the vacancy-unemployment ratio θ is amplified when the average

flow surplus to employment relationships, p− b, is small. Equation (33) generalizes this

result to the model studied here. Inspection of (33) and (34) reveals that there are two

channels through which the generalized model yields amplification of the cyclicality of
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labor market tightness. First, the effective surplus that matters for amplification is now

given by p̃− b, a weighted average of the average and marginal flow surpluses. This lies

below the average flow surplus as a result of the diminishing marginal product of labor

in the model.

This provides a sense for why the generalized model is able simultaneously to match

the rate at which workers flow into unemployment s, as well as the volatility of the job-

finding rate f over the cycle: The former requires a large average surplus; the latter

requires a small marginal surplus. The standard Mortensen and Pissarides model cannot

achieve this because of its inherent linearity.

Moreover, we find that the average surplus implied by the calibrated model is substan-

tial in comparison to prior literature (see, for example, Mortensen and Nagypal’s 2007

survey). A common metric for the size of the surplus is the ratio of the payoff from un-

employment to output per worker b/ (Y/N ). This ratio is equal to 0.61 in the calibrated

model, implying an average flow surplus of 1
0.61
− 1 ≈ 64 percent. Similarly, the frac-

tion of the average surplus that is allocated workers also is substantial: Workers obtain a

(E[w]− b) /b ≈ 20 percent flow surplus from employment over unemployment.

Equation (33) also suggests that there is an additional effect at work in the form of

the variable ω, the steady state employment share of hiring firms. To understand the

significance of this term, note that in the standard Mortensen and Pissarides model where

α = 1, ω is equal to one: With a linear technology, a firm that reduces its employment

will shed all of its workers since, if one worker is unprofitable at a firm, all workers are

unprofitable. As a result, all surviving firms at a point in time are hiring firms in the

standard model. In contrast, in the generalized model, shedding firms do not reduce their

employment to zero because reducing employment replenishes the marginal product of

labor. Hence ω will be less than unity, and inspection of (33) and (34) reveals that this

will lead to greater amplification relative to the standard model.44 Intuitively, it is as if the

economy has to rely on a smaller mass of firms to hire workers from the unemployment

pool, which in turn leads to a larger increase in unemployment in times of recession.

D. The Beveridge Curve

Until now, we have been concentrating on the cyclicality of worker flows implied by

the generalized model. Readers of Shimer (2005), however, will recall that the stan-

dard search and matching model also fails to match the observed cyclical volatility in

the vacancy rate in the U.S., and especially so if one allows job destruction to move

countercyclically.

Table 2 reiterates this message: While vacancies are markedly procyclical, with an

empirical elasticity with respect to output per worker of 2.91, the calibration of the

Mortensen and Pissarides model in Panel B yields a countercyclical vacancy elasticity.45

44The reader may worry whether (1− η) ( p̃ − b)− ηβcθ is positive or not. To see that it is, note that we can rewrite

it as (1− η)

(
pαxnα−1

1−η(1−α) − b

)
− ηβcθ , and observe from equations (13) and (14) that it is, in fact, the marginal flow

surplus of a firm, and therefore must be positive.
45This arises because countercyclical job destruction leads to an offsetting increase in hires in times of recession
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Shimer (2005) has emphasized that this feature of the standard search and matching

model in turn leads to a dramatic failure to account for a key stylized fact of the U.S.

labor market: the negative relation between vacancies and unemployment, known as the

Beveridge curve.

Figure 5 plots the Beveridge curve relation from model-generated data (the hollow

circles), and compares it with the empirical analogue using vacancy data from the Job

Openings and Labor Turnover Survey (the dots). While the model-generated Beveridge

curve has a slightly shallower slope, it nonetheless lies very close to the array of obser-

vations witnessed in the data. This can be traced to the results in Table 2: The cyclicality

of vacancies in the model lies very close to its empirical counterpart, with a cyclical

elasticity of 2.47 lying somewhat below the value of 2.91 in the data.46

[FIGURE 5 HERE]

What emerges from Table 2 and Figure 5 is a coherent and quantitatively accurate

picture of the joint cyclical properties of both flows of workers in and out of unemploy-

ment, as well as the behavior of unemployment and vacancies. In addition to providing

a plausible mechanism for the cyclical amplitude of the job-finding rate, the model also

presents an environment in which this can be reconciled with the cyclical behavior of job

destruction and vacancy creation.

E. Propagation

A less well-documented limitation of the standard search and matching model relates

to the propagation of the response of equilibrium labor market tightness to aggregate

shocks to labor productivity. In the Mortensen and Pissarides model, the vacancy-

unemployment ratio is a jump variable and therefore moves contemporaneously with

changes in labor productivity. Empirically, however, the vacancy-unemployment ratio

displays sluggish behavior, and is much more persistent than aggregate labor productiv-

ity, a point emphasized by Shimer (2005) and Fujita and Ramey (2007).

An appealing feature of the model presented in sections 2 and 3 is that it admits a

natural channel for the propagation of the response of the vacancy-unemployment ratio

to aggregate shocks. The determination of θ over time depends on the evolution of the

distribution of employment across establishments H (n). Inspection of equation (31), the

law of motion for the distribution of employment across firms, reveals that H (n) is not

a jump variable, but is instead a slow moving state variable in the model. In particular,

rewriting (31) yields

(35) 1H (n) = −ϑ (n)
[
H−1 (n)− H ∗ (n)

]
,

to maintain balance between unemployment inflows and outflows, and thereby stymies the procyclicality of vacancies

(Shimer 2005; Mortensen and Nagypal 2008).
46A linear regression of de-trended vacancies on de-trended unemployment yields a coefficient of −0.53. When the

same regression is run on model-generated data, the coefficient is −0.5.
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where ϑ (n) ≡ λ
(

1− G̃ [Rv (n)]+ G̃ [R (n)]
)

,47 and H ∗ (n) is the steady-state distrib-

ution that sets H (n)− H−1 (n) = 0.

Equation (35) provides an important source of intuition for what factors are likely to

drive propagation in the model. In particular, the rate of convergence to steady state

ϑ (n) is determined by two factors. First, less-frequent idiosyncratic shocks, as implied

by a lower value of λ, will cause fewer firms to adjust employment, and thereby slow the

reallocation of employment across firms. Second, the size of adjustment costs will deter-

mine the gap between Rv (n) and R (n) in a firm’s optimal employment policy function

in Figure 1. Larger adjustment costs will widen this gap, reducing ϑ (n) in equation (35),

and slowing the dynamics of H (n). This suggests that the magnitude of labor adjustment

costs has important implications for the propagation of the response of unemployment to

aggregate shocks.

Figure 6 plots the dynamic response of unemployment, labor market tightness, the

job-finding rate, and the unemployment inflow rate following a permanent one-percent

decline in aggregate labor productivity using simulated data from the model. This con-

firms that the generalized model yields some propagation of the response of unemploy-

ment and labor market tightness (and thereby the job-finding rate). It takes around 20

months for unemployment to adjust to the shock in the model, and 9 months for the re-

sponse of θ and f to dissipate. This is a substantial improvement over the instantaneous

response of θ and f implied by the standard search model: A clear message from the

empirical literature is that the responses of labor market tightness and the job finding

rate are not jump (see Fujita and Ramey 2007, and Michelacci and Lopez-Salido 2007).

However, the magnitude of the propagation implied by the model is not quite enough to

account fully for the persistence of the job-finding rate observed in the data.48

[FIGURE 6 HERE]

An additional message of Figure 6 concerns the dynamics of the unemployment in-

flow rate s. Panel D reveals that s spikes upward instantaneously following a reduction

in aggregate labor productivity, subsides in the immediate aftermath of the shock, and

then converges toward a new steady state value over the course of the next two years.

In the wake of a recessionary shock a discrete mass of jobs becomes unprofitable and

is destroyed immediately, mirroring the implications of the standard Mortensen and Pis-

sarides model (Mortensen 1994). Following the shock, the inflow rate begins rising again

as firms receive productivity shocks at rate λ.

47For notational simplicity, we suppress the dependence of R, Rv , and H on the aggregate state variables N and p.
48A direct comparison of the impulse responses in Figure 6 to their empirical counterparts is not straightforward

insofar as we analyze the effect of a permanent change in productivity, whereas the empirical literature has estimated

impulse responses to temporary shocks. In the online appendix, we compare these responses to those generated by a

version of our model that includes an AR(1) process for aggregate productivity. The model generates a hump shape in the

response of the job-finding rate to a temporary, but persistent, productivity shock. The job-finding rate begins its ascent

toward steady state between one and two quarters after an aggregate shock in the model. The degree of persistence found

in the data varies somewhat across studies. Michelacci and Lopez-Salido (2007) find that the job-finding rate begins its

return to steady state between two and three quarters after an aggregate shock. Fujita and Ramey (2007) find an even

more persistent response.
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Viewed together, the joint dynamics of the job-finding and inflow rate in the model

resemble the qualitative features of the response of f and s over the cycle: Recessions are

characterized by a wave of inflows which then recedes and is accompanied by persistent

declines in rates of job finding, just as observed in empirical worker flows in U.S. data

(see, for example, Elsby, Michaels and Solon 2009).

F. Extensions

The previous sections have shown that the model derived in sections 2 and 3 can ac-

count for many of the cross-sectional and cyclical features of the U.S. labor market. In

this section, we push the model harder. We consider two additional outcomes which the

model can speak to, but was not designed to account for: the cyclical dynamics of the

cross-sectional distribution of establishment size, and the employer size-wage effect.

CYCLICAL DYNAMICS OF THE EMPLOYER SIZE DISTRIBUTION. — Until now, we have

focused separately on the implications of the model for the cross section of employers

and for the aggregate dynamics of labor stocks and flows. Recent literature, however,

has sought to understand the joint dynamics of the cross section. Moscarini and Postel-

Vinay (2008) in particular emphasize empirical regularities in the cyclical behavior of

the cross-sectional distribution of establishment size: The share of small establishments

rises during recessions, while the shares of larger firms decline. Figure 7 reiterates this

finding. It uses annual data from County Business Patterns for the years 1986 to 2007

on the number of establishments by employer size, and plots the log deviations from

trend of the establishment size shares against the unemployment rate.49 The dots plot

the data, and the dot-dashed lines the corresponding least squares regression lines. The

share of establishments with 1 to 19 workers rises with unemployment, while the shares

of establishments with more than 20 employees decline as unemployment rises.

[FIGURE 7 HERE]

The blue dashed lines in Figure 7 plot the analogous relationships implied by simula-

tions of the model of sections 2 and 3. The results are encouraging: The model replicates

the observation that the share of establishments with fewer than 20 employees increases

in times of recession, while the shares of the larger size classes decline. In addition,

the model also provides a reasonable account of the magnitude of the cyclicality of the

establishment shares. It comes very close to replicating the cyclical sensitivities for the

20 to 99 employee and the 1000+ employee groups, and implies around one half of the

cyclical sensitivity of the 1 to 19 and 100 to 999 employer size classes.

The observation that the share of smaller establishments rises in a recession in both

the model and the data is not in itself a surprising fact, since aggregate employment, the

49Here, we use County Business Patterns data rather than data from the Small Business Administration (see Section

4.2) because the former affords us a longer consistent time series for the size classes that we are interested in for this

exercise.
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mean of the distribution of establishment size, falls during recessions. What is notewor-

thy about the model is that it replicates the position in the distribution—at around 20

employees—at which this effect takes hold, as well as the magnitude of the cyclicality in

some of the size classes. Given that these implications of the model are venturing even

farther afield from the moments it was calibrated to match, we view the results of Figure

7 as an important achievement.50

EMPLOYER SIZE-WAGE EFFECT. — Our final application relates to the observation that

workers employed in larger firms are often paid higher wages—the employer size-wage

effect noted in the influential study by Brown and Medoff (1989). An attractive feature of

the model is that, by incorporating a notion of employer size, and by modeling the wage

bargaining process between a firm and its many workers, it can speak to such issues.

Casual inspection of the wage equation (10) is not heartening in this respect, however:

Due to the diminishing marginal product of labor in the model, one might anticipate that

the model predicts a negative correlation between wages and employer size, in direct con-

trast to Brown and Medoff’s observation. Further consideration of equation (10), though,

reveals that such a conclusion would be premature: While the diminishing marginal prod-

uct of labor does set in for larger employers, it is also the case that larger employers will

be those with higher idiosyncratic productivity x . The implications of the model for the

employer size-wage effect depend on which of these forces dominates.51

Figure 8 illustrates the relationship between average log wages and log employment

implied by the model. It takes simulated data based on the calibration in Table 1, and

plots the results of a nonparametric locally-weighted (LOWESS) regression of log firm

wages on log firm employment. This reveals that the model does in fact predict a positive

employer-size wage effect, qualitatively in line with the results of Brown and Medoff.

As it turns out, the effect of higher idiosyncratic productivity outweighs the effect of

diminishing marginal product.

[FIGURE 8 HERE]

Figure 8 also provides a sense of the magnitude of the size-wage effect. Brown and

Medoff (1989) report that, controlling for observable and unobservable measures of labor

quality and for differences in workplace conditions, a worker moving from an establish-

ment with log employment one standard deviation below average to an establishment

50Moscarini and Postel-Vinay (forthcoming) have also emphasized a related, though distinct, fact: (initially) large

employers adjust employment by more over the cycle than (initially) smaller firms. To explain this fact, they suggest a

wage-posting model in which larger, more productive firms poach workers from smaller firms as the aggregate expansion

wears on. Our model of random matching (with ex post bargaining) does not include these kind of strategic considerations

in wage posting. Instead, conditional on adjusting, small and large firms will typically react similarly to aggregate shocks.
51Bertola and Garibaldi (2001) also include a discussion of this point. Their model is somewhat less general than that

presented in this paper, however. Like Bertola and Caballero (1994), the authors analyze a linear approximation to the

marginal product function. In addition, a more restrictive process for productivity shocks is used: It is assumed that, if

a firm receives a negative disturbance, its productivity reverts to the minimum of the distribution’s support. Since these

transitions are the only means by which the model generates inflows into unemployment, all firms that receive a negative

shock must shed workers; inaction is, by assumption, never an optimal response for these employers.
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with log employment one standard deviation above average would receive a wage in-

crease of around 10 percent. As shown in Figure 8, the counterpart implied by the model

is a wage premium closer to 2.3 percent.52

Thus, while the model yields a positive size-wage effect, it generates only around one

quarter of the magnitude of the effect observed in the data. We do not view this necessar-

ily as a problem, however. The mechanism that accounts for the size-wage effect in the

model—the interaction of surplus sharing with heterogeneity in employer productivity—

is only one of a large number of proposed channels. Oi and Idson (1999) present a sum-

mary of these, including efficiency wages, market power, specific human capital, among

others. In a model of wage posting, Burdett and Mortensen (1998) demonstrate that

on-the-job search in the presence of labor market frictions also can generate a positive

employer size-wage effect, as higher-paying firms recruit and retain more workers. The

results of Figure 8 suggest that the model presented in this paper leaves room for these

additional explanations.

V. Related Literature

Since this paper’s first writing, there have been a number of contributions to the search

and matching literature that study the cross section of employment growth and the cycli-

cal dynamics of labor market flows. The model in Fujita and Nakajima (2009) is clos-

est to our own. They introduce exogenous separations to drive a wedge between gross

worker flows and net job changes, which enables them to speak to facts on both of these

flows. They also draw out the aggregate implications of their model and obtain very

similar findings to those in section 4 above.

Other recent papers have found different aggregate implications, however. As we noted

in the preamble to our model setup in section 1, an important assumption that allows the

model to depart from the Mortensen and Pissarides benchmark is that we abstract from

the entry and exit of firms. An ongoing literature has begun to investigate the role of

firm entry in shaping aggregate outcomes. Hawkins (2011) studies an environment simi-

lar to ours, except that he incorporates a costly firm entry decision that takes a particular

constant returns form.53 He finds that this process of entry neutralizes much of the ampli-

fication and propagation that we observe in the context of the model of section 4. After

a positive aggregate shock, for instance, net job creation by entrants “crowds out” the

cyclical response of incumbent firms. As Hawkins notes, however, a challenge faced by

his model is that firm entry turns out to be too responsive to the cycle relative to the data.

Recent research by Coles and Moghaddasi (2011) has documented that the part of

aggregate net job creation accounted for by firm entry, while non-trivial, is relatively

52The impact of the parameters of the model on the magnitude of the size-wage effect can be subtle. In particular,

inspection of the wage equation (10) reveals that an important determinant of average wages in a firm of size n, and

thereby the size-wage effect, is the covariance of productivity x and firm size n. It is generally difficult to discern how the

structural parameters will influence this moment. However, one clear message from (10) is that the degree of decreasing

returns, parameterized by α, will matter. In particular, the closer α is to one, the larger will be the size-wage effect, as the

negative impact of firm size on the marginal productivity of labor is lessened.
53For other models that explore the impact of firm entry on job creation, see Garibaldi (2006), and Hobijn and Şahin

(forthcoming).
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cyclically insensitive. They develop a model in the Mortensen-Pissarides tradition, but

with a time-to-build aspect to the business start-up process that can capture the cyclical

inelasticity of firm entry. Interestingly, they find that this model can generate substantial

amplification and propagation of aggregate labor market outcomes. For simplicity, how-

ever, Coles and Moghaddasi abstract from firm size and preserve the worker-firm pair

assumption of Mortensen and Pissarides (1994). Thus, a model that simultaneously can

account for the dynamics of entrant and incumbent establishments remains an important

topic for future work.

A few other papers consider decreasing returns within search and matching frame-

works that depart more noticeably from that studied here. For instance, Kaas and Kircher

(2011) study a model of directed search under decreasing returns. The application of di-

rected search enables them to replicate the finding in Davis, Faberman, and Haltiwanger

(2010) that fast-growing firms fill a greater share of their posted vacancies. Firms ac-

complish this in their model by posting higher wages, a channel absent in our random

matching framework.

In addition, Schaal (2012) generalizes the on-the-job search model of Menzio and Shi

(2009) to include decreasing returns at the firm level, which enables him to engage with a

rich set of cross-sectional facts. For instance, Davis, Faberman, and Haltiwanger (2010)

document that the relationship between gross worker flows and net job flows changes

over the business cycle. Schaal demonstrates that models that include endogenous job

destruction and employer-to-employer flows (e.g., quits) can potentially shed light on

this result.

Interestingly, Kaas and Kircher (2011) and Schaal (2012) find that aggregate produc-

tivity shocks generate more limited aggregate volatility in their calibrated models. While

there are many differences between these approaches and that taken in this paper, a few

factors seem relevant. First, the models analyzed in both papers incorporate firm entry.

While firm entry is shown to substantially aid the tractability of the models, it is possible

that this unwinds the aggregate effects we emphasize in a manner similar to Hawkins

(2011). Second, in contrast to the linear vacancy costs we study, Kaas and Kircher study

an environment with convex vacancy costs. The latter are likely to dampen the response

of hiring to shocks. Finally, a distinctive feature of the directed search models studied

by Kaas and Kircher (2011) and Schaal (2012) is that allocations coincide with a plan-

ner’s solution. In a related environment, Veracierto (2007, 2009) finds that aggregate

outcomes implied by a social planner’s allocation display less aggregate volatility than

in a model with congestion externalities. Intuitively, congestion externalities arise when

firms do not take account of the effects of their hiring decisions on the hiring costs of

other firms. What Veracierto shows is that, when firms internalize the latter, it acts to

dampen the volatility of firms’ hiring decisions over the cycle. An important task for

future research, then, is to disentangle these different channels and their respective roles

in shaping aggregate dynamics.
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VI. Summary and Discussion

In this paper, we have introduced a notion of firm size into a search and matching

model with endogenous job destruction. This yields a rich, yet analytically tractable

framework. In a series of quantitative applications, we show that the model provides a

useful laboratory for analyzing the salient features of both the dynamics and the cross

section of the aggregate labor market. Specifically, a calibrated version of the model

provides a coherent account of the distributions of establishment size and employment

growth; the amplitude and propagation of the cyclical dynamics of worker flows; the

Beveridge curve relation between unemployment and vacancies; and the dynamics of

the distribution of firm size over the business cycle.

Going forward, there are a number of additional avenues for further related work.

First, since the model has a well-defined concept of a firm, it lends itself to estimation

using establishment-level data. As a result, the analytical framework developed here will

complement recent research efforts that have sought to solve and estimate search models

using numerical methods (Cooper, Haltiwanger and Willis 2007). For example, recent

research by Roys (2011) has estimated a structural model of establishment dynamics

very similar to ours.

Second, our interpretation of the standard search and matching model as a model of

kinked adjustment costs raises the question of the aggregate implications of other forms

of adjustment costs in the labor market. Recent research has emphasized the impor-

tance of fixed adjustment costs in explaining the empirical properties of labor demand at

the micro level (see for example Caballero, Engel, and Haltiwanger 1997, and Cooper,

Haltiwanger, and Willis 2004). Incorporating these adjustment costs into the model will

provide a unification of the joint insights of the two dominant approaches to the mod-

elling of aggregate labor markets—the search and matching framework, and models of

adjustment costs.

A final extension relates to the nature of wage setting. An attractive feature of incorpo-

rating firm size into models of the labor market is that an assessment of the multilateral

dimension to wage bargaining between a firm and its many workers becomes feasible.

This has been of particular interest in recent literature that has emphasized the impor-

tance of rigidities in the structure of wages within a firm, as well as of individual wages

over time, for determining the volatility of unemployment (Bewley 1999; Hall 2005).

While the wage bargaining solution derived in the present paper seeks to improve upon

approaches in previous work, it is in many ways an idealized environment in which the

wages of all workers can be renegotiated costlessly. This idealized setting, however, pro-

vides a fruitful benchmark for analyzing the implications of rigidities in renegotiation of

wages within a firm, as well as across time.
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MATHEMATICAL APPENDIX

The proofs of Propositions 2, 3, 4 and 7, and related Lemmas, are contained in the

online appendix.

The construction of the optimal policy (12) is conditioned on a particular class of wage

bargains. We show that the wage equation (9) and the labor demand policy (12) make up

the unique solution within this class of bargains.

Assumption 1 The wage bargain, w (n, x), is such that flow profit (gross of the adjust-

ment cost), px F (n) − w (n, x) n, is a (strictly) concave function of n and jointly

(strictly) supermodular in (n, x).

PROOF OF PROPOSITION 1:

Note first that, from Assumption 1 and Proposition 2, we can write the marginal surplus

to a firm recursively as:

(A1)

J (n, x) = px F ′ (n)− w (n, x)− wn (n, x) n + β

∫ ∞
Rv(n)

c

q
dG + β

∫ Rv(n)

R(n)

J
(
n, x ′

)
dG.

In addition, we can write the value to a worker of unemployment as:

(A2) ϒ = b + β

{
(1− f )ϒ ′ + f

∫ ∞
0

∫ ∞
Rv(n)

W
(
R−1
v

(
x ′
)
, x ′
)

1− G (Rv (n))
dGd H (n)

}
.

Upon finding a job, which occurs with probability f , the new job must be in a firm which

is posting vacancies. This implies that x ′ > Rv (n), and that n′ = R−1
v

(
x ′
)
. Moreover,

there is a distribution of employment levels, H (n), over which an unemployed worker

will take expectations when evaluating the expected future benefits of being hired. Note

that, due to Nash sharing, the worker’s surplus in an expanding firm, W
(
R−1
v

(
x ′
)
, x ′
)
−

ϒ ′ = η
1−η J

(
R−1
v

(
x ′
)
, x ′
)
, and moreover that, by the first-order condition for a hiring

firm (see (4)), J
(
R−1
v

(
x ′
)
, x ′
)
= c/q. Thus, we obtain the simple result:

(A3) ϒ = b + βϒ ′ + β f
η

1− η

c

q
.
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The value of employment to a worker can be written as:

W (n, x) = w (n, x)

+β

{∫ R(n)

0

[
s̃ϒ ′ + (1− s̃)W

(
R−1

(
x ′
)
, x ′
)]

dG

+

∫ Rv(n)

R(n)

W
(
n, x ′

)
dG +

∫ ∞
Rv(n)

W
(
R−1
v

(
x ′
)
, x ′
)

dG

}
.(A4)

If the firm sheds workers next period (x ′ < R (n)) then the worker will separate from

the firm with probability s̃. If the worker separates, she transitions into unemploy-

ment and receives a payoff ϒ ′. Otherwise she continues to be employed in a firm of

size n′ = R−1
(
x ′
)
. Note that Nash sharing implies that W

(
R−1

(
x ′
)
, x ′
)
− ϒ ′ =

η
1−η J

(
R−1

(
x ′
)
, x ′
)
, and that, by the first-order condition, J

(
R−1

(
x ′
)
, x ′
)
= 0. Thus,

W
(
R−1

(
x ′
)
, x ′
)
= ϒ ′. In the event that a firm freezes employment next period (x ′ ∈

[R (n) , Rv (n)]) then Nash sharing implies that W
(
n, x ′

)
− ϒ ′ = η

1−η J
(
n, x ′

)
. Finally,

in the event that the firm hires next period, W
(
R−1
v

(
x ′
)
, x ′
)
− ϒ ′ = η

1−η
c

q
. Thus, we

have that:

(A5) W (n, x) = w (n, x)+βϒ ′+β
η

1− η

∫ ∞
Rv(n)

c

q
dG+β

η

1− η

∫ Rv(n)

R(n)

J
(
n, x ′

)
dG.

Subtracting the value of unemployment to a worker from the latter, we obtain the follow-

ing description of the worker’s surplus:

W (n, x)− ϒ = w (n, x)− b + β
η

1− η

∫ ∞
Rv(n)

c

q
dG

+β
η

1− η

∫ Rv(n)

R(n)

J
(
n, x ′

)
dG − β f

η

1− η

c

q
.(A6)

Under Nash, this must be equal to
η

1−η J (n, x), where J (n, x) is as derived in (A1) so

that we have:

(A7) w (n, x) = η

[
px F ′ (n)− wn (n, x) n + β f

c

q

]
+ (1− η) b,

as required.

PROOF OF PROPOSITION 5:

Proof of (19) and (20): See main text.

Proof of (21): A necessary condition for a firm to shed workers is that it receives

an idiosyncratic shock, which occurs with probability λ. In this event, separating firms

set n = R−1 (x). Now imagine, counterfactually, that all firms shared the same lagged
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employment level, n−1. Then, aggregate separations would equal

(A8) 3(n−1) = λ

∫ R(n−1)

xmin

[
n−1 − R−1 (x)

]
dG̃ (x) ,

where xmin is the lower support of x . Using the change of variables, x = R (n), and

integrating by parts:

(A9) 3(n−1) = λ

∫ n−1

nmin

(n−1 − n)
dG̃ [R (n)]

dn
dn = λ

∫ n−1

nmin

G̃ [R (n)] dn.

The true aggregate number of separations, S =
∫
3(n−1) d H (n−1), where H (·) is the

c.d.f. of employment. Denoting nmax as the upper support of H (·), further integration

by parts reveals that:

(A10)

S = 3(nmax)− λ

∫
G̃
[
R (n−1)

]
H (n−1) dn−1 = λ

∫
[1− H (n)] G̃ [R (n)] dn,

as required. A similar method yields the expression for aggregate hires, M . It follows

from the steady-state condition, (19), that separations, S, are equal to hires, M .

PROOF OF PROPOSITION 6:

Given that aggregate shocks evolve according to (25), and denoting the forecast equa-

tions for N and θ in (26) as N ′ (N , p) and θ ′
(
N ′, p

)
respectively, we can write the

marginal effect of current employment on future profits as

D
(
n, x, N , p; σ p

)
=

1

2
d
(
n, x, N ′

(
N , p + σ p

)
, p + σ p

)
+

1

2
d
(
n, x, N ′

(
N , p − σ p

)
, p − σ p

)
,(A11)

where

d
(
n, x, N ′

(
N , p′

)
, p′
)
=

∫ Rv(n,N ′,p′)

R(n,N ′,p′)

χ
(
n, x ′, N ′, p′

)
dG

+

∫ ∞
Rv(n,N ′,p′)

c

µ

[
θ ′
(
N ′, p′

)]φ
dG

+β

∫ Rv(n,N ′,p′)

R(n,N ′,p′)

D
(
n, x ′, N ′

(
N , p′

)
, p′
)

dG,(A12)

and χ (n, x, N , p) = (1− η)
[

pxαnα−1

1−η(1−α) − b

]
−ηβcE

[
θ ′
(
N ′, p′

)
|p
]

is the firm’s within-

period profit. Note that we are assuming a Cobb-Douglas matching function, which is

used in the quantitative analysis described in Section 4. Thus q
(
θ ′
)
= µ

[
θ ′
(
N ′, p′

)]−φ
,
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where µ is a matching efficiency parameter and φ is the matching elasticity. Taking a

Taylor series approximation to D
(
n, x, N , p; σ p

)
around σ p = 0 we obtain

(A13)

D
(
n, x, N , p; σ p

)
≈ D

(
n, x, N ∗, p; 0

)
+ Dσ p

(
n, x, N ∗, p; 0

)
σ p + D∗N

(
N − N ∗

)
,

where D∗N ≡ DN (n, x, N ∗, p; 0). It is straightforward to show that Dσ p
(n, x, N ∗, p; 0) =

0, and that D∗N = dN ′ (n, x, N ∗, p) νN . Under the conjectured forecast equations in (26),

we can write54

dN ′

(
n, x, N ′

(
N , p′

)
, p′
)
= −ηβcθ NνN

∫ Rv(n,N ′,p′)

R(n,N ′,p′)

dG

+
c

µ
φθ N

[
θ ′
(
N ′, p′

)]φ−1

∫ ∞
Rv(n,N ′,p′)

dG

+β

∫ Rv(n,N ′,p′)

R(n,N ′,p′)

DN

(
n, x ′, N ′

(
N , p′

)
, p′
)

dG.(A14)

Noting from above that D∗N = dN ′ (n, x, N ∗, p) νN , and noting the form of idiosyncratic

shocks in (17) we obtain:

D∗N = θ Nν
2
Nχ2

(1− λ)+ λ
(

G̃
[
R∗v (n)

]
− G̃ [R∗ (n)]

)
1− βνN

[
(1− λ)+

(
G̃
[
R∗v (n)

]
− G̃ [R∗ (n)]

)]
+θ NνNλ

c

µ
φθ∗

φ−1 1− G̃
[
R∗v (n)

]
1− βνN

[
(1− λ)+

(
G̃
[
R∗v (n)

]
− G̃ [R∗ (n)]

)] ,(A15)

where Rv (n, N ∗, p) ≡ R∗v (n) and R (n, N ∗, p) ≡ R∗ (n) summarize the steady-state

employment policy function.

PROOF OF PROPOSITION 8:

Total differentiation of the Job Creation condition (22), U (θ, p) = L − N (θ, p),
yields dθ/dp|U = − (∂N/∂p) / (∂N/∂θ). Indexing firms by i , we can write aggregate

employment as N ≡ E (n) =
∫

n (n−1 (i) , x (i) ; ξ) di , where n (n−1, x; ξ) is the em-

ployment policy function that is common to all firms, which in turn depends on some

parameters ξ (which includes p and θ ). Differentiating yields:

(A16)
∂N

∂ξ
=

∫ [
∂n

∂ξ
+

∂n

∂n−1

∂n−1

∂ξ

]
di.

Note from the form of the employment policy function in (12) that ∂n/∂ξ = 0 if

1n (i) = 0, and ∂n/∂n−1 = 1 if and only if 1n (i) = 0. Substitution and separation of

54Note that the effects of N ′ on the limits of integration will cancel by virtue of the first-order conditions for optimal

hiring and firing.
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integrals yields

∂N

∂ξ
=

∫
i :1ni>0

∂n

∂ξ

∣∣∣∣
1ni>0

di +

∫
i :1ni=0

∂n−1

∂ξ
di +

∫
i :1ni<0

∂n

∂ξ

∣∣∣∣
1ni<0

di

= %+E
(
∂n

∂ξ

∣∣∣∣1n > 0

)
+ %0E

(
∂n−1

∂ξ

)
+ %−E

(
∂n

∂ξ

∣∣∣∣1n < 0

)
,(A17)

where %+, %0, and %− respectively denote the steady-state probabilities of raising, freez-

ing, and cutting employment. Note further that in steady stateE (∂n−1/∂ξ) = E (∂n/∂ξ) =
∂N/∂ξ , so that we obtain the result that:

(A18)
∂N

∂ξ
= πE

(
∂n

∂ξ

∣∣∣∣1n > 0

)
+ (1− π)E

(
∂n

∂ξ

∣∣∣∣1n < 0

)
,

where π ≡ %+/
(
1− %0

)
. Thus, we can rewrite the marginal effect of a change in p on

θ as:

(A19)
dθ

dp

∣∣∣∣
U

= −
πE

(
∂n

∂p

∣∣∣1n > 0
)
+ (1− π)E

(
∂n

∂p

∣∣∣1n < 0
)

πE
(
∂n

∂θ

∣∣1n > 0
)
+ (1− π)E

(
∂n

∂θ

∣∣1n < 0
) .

It is immediate from Lemma 2 in the online appendix that ∂n/∂p = −Jp/Jn =
1

1−α (n/p)
regardless of whether 1n > 0 or 1n < 0. It remains to derive ∂n/∂θ in each case. To

this end, note from the first-order conditions (4) for optimal labor demand that the mar-

ginal firm surplus J (n, x) is given by

(A20) J (n, x) =

{
c/q (θ) if 1n > 0,

0 if 1n < 0.

Totally differentiating, defining ε Jn and ε Jθ respectively as the elasticities of the marginal

surplus J with respect to n and θ , and noting that the Cobb-Douglas matching technology

implies q (θ) = µθ−φ , yields

(A21)
∂n

∂θ
=

{
φ−εJθ

εJn

n

θ
if 1n > 0,

− εJθ

εJn

n

θ
if 1n < 0.

Substituting into (A19), we obtain

(A22)
d ln θ

d ln p

∣∣∣∣
U

= −
1

1− α

ε Jn

ωφ − ε Jθ

,

where ω ≡ πE (n|1n > 0) /E (n) is the steady-state employment share of hiring firms.

We evaluate (A22) in the case where λ = 0, firm employment is equal to mean em-
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ployment n = N ≡ E (n), and idiosyncratic productivity is equal to mean productivity

conditional on mean employment, x = E (N ) ≡ E
(
x ′|x ′ ∈ [R (N ) , Rv (N )]

)
. Using the

results of Lemma 2 in the online appendix, it follows that we can write:

ε Jn = −
(1− α)ψ pE (N ) αNα−1

(1− β) J
, ε Jθ = −

ηβcθ

(1− β) J
,

and (1− β) J = ψ pE (N ) αNα−1 − (1− η) b − ηβcθ ,(A23)

where ψ ≡ (1− η) / [1− η (1− α)]. Noting that the marginal product of labor in the

average-sized firm is equal to pE (N ) αNα−1, and substituting into (A22) yields

(A24)
d ln θ

d ln p

∣∣∣∣
U,λ=0,n=N ,x=E(N )

=
(1− η) p̃

ωφ
[
(1− η) ( p̃ − b)− ηβcθ

]
+ ηβcθ

,

where p̃ ≡ ρ pE (N ) Nα−1 + (1− ρ) pE (N ) αNα−1 and ρ ≡ αη/ [1− η (1− α)], as

required.



Figure 1. Optimal Employment Policy of a Firm 
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Table 1.  Calibrated Model Parameters 

Parameter Meaning Value Reason 

𝜙 Matching elasticity 0.600 Petrongolo and Pissarides (2001) 

𝜇 Matching efficiency 0.129 Pissarides (2007) 

𝛼 𝐹(𝑛) = 𝑛𝛼 0.601 Labor share = 0.72 

𝛽 Discount factor 0.999 Quarterly interest rate = 0.012 

𝑏 Value of leisure 0.387 Mean inflow rate = 0.0078 

𝑐 Flow vacancy cost 0.133 Hiring cost = 14% quarterly wage 

𝜂 Worker bargaining power 0.443 Cyclicality of wage in baseline MP 

𝐿 Labor force 18.65 Mean job-finding rate = 0.1125 

𝜆 Arrival rate of 𝑥 0.043 LBD data: Pr(Δ ln𝑛 < |0.05|) = 0.415 

𝑥̅ Mean of 𝑥 1.000 Normalization 

𝜎𝑥 Std. dev. of 𝑥 0.250 LBD data: 𝜎(Δ ln𝑛) = 0.416 

𝜑� Mean of 𝜑 1.218 Mean employment = 17.38 

𝜎𝜑 Std. dev. of 𝜑 1.009 Minimum employment = 1 

𝜎𝑝 Step-size of 𝑝 0.00333 𝜎(quarterly log detrended Y/N) = 0.02 
 

Note: Consistent with the timing of the model, flow parameters are reported at a weekly 
frequency. First and second moments of fixed firm productivity 𝜑 and the innovation to firm 
productivity 𝑥 are reported (rather than the parameters of the respective Pareto distributions) for 
ease of interpretation. 



Figure 2. Employer Size Distribution: Model vs. Data 

 

Notes: The dots plot data on the shares of firms in successive employment categories for the 
years 2002 to 2006 based on data on employment by firm size class from the Small Business 
Administration. The dashed line plots the steady-state distribution of employment across firms 
implied by the model using the parameters reported in Table 1. 
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Figure 3. Employment Growth Distribution: Model vs. Data 

 

Notes: The dotted line plots the cross-sectional distribution of employment growth based on data 
for continuing establishments from the Longitudinal Business Database pooled over the years 
1992 to 2005. The dashed line plots the steady-state distribution of employment growth in the 
model using the parameters reported in Table 1.

0

0.1

0.2

0.3

0.4

0.5

-2 -1 0 1 2

Sh
ar

e 
of

 E
m

pl
oy

er
s

Employment Growth



Table 2. Cyclicality of Worker Flows: Model vs. Data 

Model / Outcome Mean Level  Elasticity w.r.t. output per worker 

 Data  Model  Data  Model 

A. Generalized     
Job Finding Rate, 𝑓  [0.1125]  [0.1125]  2.65  2.55 

Inflow Rate, 𝑠  [0.0078]  [0.0078]  -1.89  -1.64  

Vacancies, 𝑉  --  --  2.91 2.47 

Tightness, 𝜃 = 𝑉/𝑈 [0.72]  [0.72]  6.44 6.37  

     
B. MP (i)     
Job Finding Rate, 𝑓  [0.1125]  [0.1125]  2.65  0.91 

Inflow Rate, 𝑠  [0.0078]  [0.0078]  -1.89  [-1.64] 

Vacancies, 𝑉  --  --  2.91 -0.32 

Tightness, 𝜃 = 𝑉/𝑈  [0.72]  [0.72]  6.44 2.28 

     
C. MP (ii)     
Job Finding Rate, 𝑓  [0.1125]  [0.1125]  2.65  [2.55] 

Inflow Rate, 𝑠  [0.0078]  0.027 -1.89  [-1.64] 

Vacancies, 𝑉  --  --  2.91 3 

Tightness, 𝜃 = 𝑉/𝑈 [0.72]  [0.72]  6.44 6.37 

      

Notes: Outcomes reported in brackets are calibrated. Non-bracketed outcomes are implied by the 
respective model. Flow outcomes are reported on a weekly basis. Empirical elasticities for 𝑓 and 
𝑠 are computed using quarterly averages of the job-finding rate and the unemployment inflow 
rate from 1948Q1 to 2007Q1 derived in Shimer (2012). Following Shimer (2005), vacancies 𝑉 
are measured using quarterly averages of the Help-Wanted Index from the Conference Board 
from 1951Q1 to 2006Q2, and series are detrended using a Hodrick-Prescott filter with smoothing 
parameter 100,000. Following Mortensen and Nagypal (2007), elasticities with respect to output 
per worker are obtained by regressing the percent deviation from trend of the respective series on 
the percent deviation from trend of nonfarm business output per worker obtained from the 
Bureau of Labor Statistics. 



Figure 4. Job Creation and Beveridge Curve Conditions: MP Model vs. Generalized Model 

A. MP Model B. Generalized Model 

  
 

Notes: The figures illustrate the steady-state shifts in the Job Creation and Beveridge Curve conditions in the MP model (Panel A) and 
the Generalized Model (Panel B) detailed in sections 1 and 2. The calibrations respectively are taken from Panels B and A of Table 2. 
As a result, the initial steady states, and the shifts in the Beveridge curve are identical across models. 
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Figure 5. Beveridge Curve: Model vs. Data 

 

Notes: The filled dots plot job openings as a fraction of the labor force against the unemployment 
rate using quarterly-averaged data from the Job Openings and Labor Turnover Survey and the 
Bureau of Labor Statistics from 2001Q1 to 2007Q4. The hollow circles plot the analogous series 
using simulated data from the model. Series are plotted as deviations from their temporal means.
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Figure 6. Model Impulse Responses to a Permanent 1-percent Decline in Aggregate Labor Productivity, 𝑝 

A. Unemployment Rate B. Vacancy-Unemployment Ratio 

  
C. Job-finding Rate D. Inflow Rate 
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Figure 7. Cyclical Dynamics of the Employer Size Distribution: Model vs. Data 

A. 1 to 19 Employees B. 20 to 99 Employees 

  
C. 100 to 999 Employees D. 1000+ Employees 

  
Notes: The dots plot the log deviation from trend of each employer size class share against the log deviation from trend of the 
unemployment rate. The dot-dash lines are fitted least-squares regression lines based on the data. The bold dashed line is the 
analogous relationship implied by the calibrated model. Employer size data are taken from County Business Patterns for the years 
1986 to 2007. Annual unemployment rate data are taken from the Bureau of Labor Statistics. Given the short time series, simple linear 
time trends are used.
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Figure 8. Employer Size-Wage Effect implied by the Model 

 

Notes: The bold line plots the mean log wage conditional on employer size as a function of log 
employer size derived from simulations of the steady state of the model using the parameters 
reported in Table 1. Simulated data were generated for 250,000 plants over 572 weeks (11 
years); the plotted series is based on the cross section of log wages in the final year. The mean 
log wage conditional on employer size is computed nonparametrically from these simulated data 
using local weighted (LOWESS) regressions of log wages on log employment. 
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