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Abstract
Background—Genetic determinants of peripheral arterial disease (PAD) remain largely
unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a
noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study
data from 21 population-based cohorts.

Methods and Results—Continuous ABI and PAD (ABI≤0.9) phenotypes adjusted for age and
sex were examined. Each study conducted genotyping and imputed data to the ~2.5 million SNPs
in HapMap. Linear and logistic regression models were used to test each SNP for association with
ABI and PAD using additive genetic models. Study-specific data were combined using fixed-
effects inverse variance weighted meta-analyses. There were a total of 41,692 participants of
European ancestry (~60% women, mean ABI 1.02 to 1.19), including 3,409 participants with PAD
and with GWAS data available. In the discovery meta-analysis, rs10757269 on chromosome 9
near CDKN2B had the strongest association with ABI (β= −0.006, p=2.46x10−8). We sought
replication of the 6 strongest SNP associations in 5 population-based studies and 3 clinical
samples (n=16,717). The association for rs10757269 strengthened in the combined discovery and
replication analysis (p=2.65x10−9). No other SNP associations for ABI or PAD achieved genome-
wide significance. However, two previously reported candidate genes for PAD and one SNP
associated with coronary artery disease (CAD) were associated with ABI : DAB21P (rs13290547,
p=3.6x10−5); CYBA (rs3794624, p=6.3x10−5); and rs1122608 (LDLR, p=0.0026).

Conclusions—GWAS in more than 40,000 individuals identified one genome-wide significant
association on chromosome 9p21 with ABI. Two candidate genes for PAD and 1 SNP for CAD
are associated with ABI.
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Peripheral arterial disease (PAD) affects approximately 27 million people in Europe and
North America (1) and is associated with increased risk for myocardial infarction, stroke,
and mortality.(2–6) Measurement of ankle and arm blood pressures with a Doppler device
and calculation of the ankle-brachial index (ABI) is a simple and reliable method to detect
PAD. An ABI≤0.90 is indicative of definite PAD.(7) In previous work, the Ankle Brachial
Index Collaboration demonstrated a reverse J shaped relationship of ABI with mortality and
coronary events with a low risk ABI ranging from 1.11 to 1.40.(8)

Little is known about genetic susceptibility to PAD but familial aggregation and heritability
estimates suggest a significant genetic component.(9–13) A study of 112 biological
candidate genes identified only two single nucleotide polymorphisms (SNPs) in NOS3
significantly associated with ABI.(14) The candidate gene approach to identify novel
genetic variants for PAD has been limited by modest study sample size, relatively small
number of genes examined, and lack of replication in independent samples.(13)

Genome-wide association studies (GWAS) have successfully led to the discovery of novel
genetic variants for several common diseases including coronary artery disease (CAD).(15)
The association between genetic variants on chromosome 9p21 and CAD has demonstrated
replication (16;17), persistent association across race/ethnicity (18), and association with
other vascular diseases.(19–21) Notably, GWAS of subclinical atherosclerosis phenotypes
such as intima-medial thickness or ABI are sparse. Therefore, we conducted a meta-analysis
of GWAS findings for ABI within an international consortium of 21 population-based
cohort studies that included 41,692 participants of European ancestry among whom 3,409
participants had PAD (ABI ≤0.90). We conducted replication analyses of our strongest
findings in over 16,000 individuals from population-based cohort studies and clinically
based samples of PAD. We hypothesized that this approach would lead to the unbiased
identification of genetic variants associated with ABI. Further, we hypothesized that some
genetic variants for ABI would be identical to those reported to be associated with CAD
and/or its risk factors given shared underlying biologic pathways, while some genetic
variants would be uniquely associated with PAD.

Methods
Discovery Studies

Our analyses were conducted within the international Cohorts for Heart and Aging Research
in Genomic Epidemiology (CHARGE) Consortium (22) and included four of the five
original CHARGE cohorts: Atherosclerosis Risk in Communities Study (ARIC, n=7,630),
the Cardiovascular Health Study (CHS, n=3,193), the Framingham Heart Study (FHS,
n=3,572) and the Rotterdam Study (RS-I, n=5,169 and RS-II n=1,642). Ten additional
population-based cohorts joined the collaboration for analysis of ABI phenotypes: the
Family Heart Study (FamHS, n=1,736), Genetic Epidemiology Network of Arteriopathy
Study (GENOA, n=991), Gutenberg Heart Study (GHS, n=3,122), Health, Aging, and Body
Composition (Health ABC, n=1,564), the Invecchiare in Chianti Study (InCHIANTI,
n=1,130), Cooperative Health Research in the Region of Augsburg (KORA F3, n=1,581 and
KORA F4, n=1,407), Netherlands Study of Anxiety and Depression (NESDA, n=1,612),
Nijmegen Biomedical Study (NBS, n=544), Study of Health in Pomerania (SHIP, n=543). A
further 6 studies derived from population isolates were also available for the analyses:
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Amish Study (Amish, n=1,183), Croatia-Vis (n=897), Croatia-Korcula (n=851), Croatia-
Split (n=499), Erasmus Rucphen Family Study (ERF, n=2,133), and the Orkney Complex
Disease Study (ORCADES, n=693). For all studies participating in the meta-analyses, each
participant self-identified as European or European American and provided written informed
consent and the Institutional Review Board at the parent institution for each respective
cohort approved the study protocols. More detailed study-specific information is provided in
the Supplementary Methods.

Ankle-brachial index Phenotypes—Ankle and brachial blood pressure measurements
for each participating study were obtained from the baseline examination or the first
examination the measurement was obtained. Details on the ABI protocol used and the
calculation performed in each study are provided in Supplementary Method Table 1. To
calculate the ABI for each leg, the systolic blood pressure at each ankle was divided by the
systolic blood pressure in the arm. If the systolic blood pressure was measured in both arms,
the higher arm reading was used in the ABI calculation. If replicate readings were obtained,
the mean of the two measurements for each limb was used to calculate the ABI with the
exception of InCHIANTI which used the higher of the two readings of each measurement
set to calculate the ABI. The lower of the ABIs from the two legs was used for analysis. In
ARIC and FamHS, the ABI was measured in only one leg chosen at random. Participants
with an ABI >1.40 were excluded since this high ABI may represent medial sclerosis,
fibrocalcific disease secondary to diabetes mellitus, or other causes of non-compressible
vessels.

To maximize the sample size and the power to detect genetic variants with modest effects
and to examine the entire range of ABI values given the recent evidence of increased CVD
risk associated with ABI values up to 1.1(8), we examined the continuous range of ABI
<1.40. As a secondary analysis to provide a clinical phenotype, we defined PAD as ABI
≤0.90 and conducted a case (ABI≤0.9)/control (ABI >0.90 and < 1.40) comparison analysis.

Genotyping and Imputation
Different genotyping platforms were used by the 21 studies (Supplementary Methods Table
2). Each study imputed the genotype “dosage” (0–2) for the expected number of alleles for
~2.5 million Phase II HapMap CEU SNPs for each participant using currently available
imputation methods. (23) CHS used BIMBAM (available at
http://stephenslab.uchicago.edu/software.html) (24), GHS, InCHIANTI, NESDA and SHIP
used IMPUTE (25) and all other cohorts used MACH
(http://www.sph.umich.edu/csg/abecasis/MaCH/).

Statistical Analysis
We devised a GWAS analysis plan for the ABI and PAD phenotypes that each study
independently implemented. Sex-specific and age-adjusted residuals of ABI were created
from linear regression models and used as phenotypes in the analysis. No transformation of
the ABI measure was performed prior to analysis. In FHS, residuals were also obtained
separately in the original and offspring cohorts. Multi-site studies (ARIC, CHS, FamHS)
additionally adjusted for field study site. Each SNP was tested for association with ABI in
additive genetic models using linear regression. The Amish Study, FamHS, FHS, and
GENOA cohorts used linear mixed effects (LME) models to account for familial
correlations. CROATIA-Vis, CROATIA-Korcula, CROATIA-Split, ERF, and ORCADES
used the “mmscore” function of the GenABEL package for R statistical software for the
association test under an additive model. This score test for family-based association takes
into account pedigree structure and allows unbiased estimations of SNP allelic effect when
relatedness is present between examinees. Logistic regression adjusting for age and sex was
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used to test each SNP for association with the PAD phenotype. The FamHS, FHS, and
GENOA cohorts used generalized estimating equations (GEE) clustering on family to
account for family correlations.

A genome-wide meta-analysis using a fixed effects approach with inverse-variance
weighting, was then conducted in METAL(26) [www.sph.umich.edu/csg/abecasis/metal] for
2,669,158 SNPs in the meta-analysis excluding the population isolates (2,670,732 SNPs
including the population isolates) that met imputation and quality control criteria
(Supplementary Methods Table 2). Prior to meta-analysis genomic control was applied to
each study. The association of ABI per each additional risk allele was quantified by the
regression slope (β), its standard error [SE(β)], and the corresponding p-value. We
calculated a meta-analysis odds ratio (OR) for each of the most significant SNP associations
for PAD. The meta-analysis OR estimates the increase in odds of PAD for each additional
copy of the risk allele of the SNP. SNP associations were considered to be significant on a
genome-wide level at p<5 x108.(27;28) Standardized gene and SNP annotations were
created using a PERL script.(29) We also tested for heterogeneity of study-specific
regression parameters using Cochran’s Q statistic. Due to concerns about heterogeneity, we
conducted analyses of non-isolate studies and of the full group of studies. We selected SNPs
for replication using results from the meta-analysis excluding the population isolates
because the available replication samples did not include isolates. We excluded SNP
association results if the total meta-analysis sample was less than 20,000 and if the average
minor allele frequency of the SNP was <5%.

Replication
We sought to replicate independent SNP associations for ABI that attained genome-wide
significance (1 region) and SNPs with suggestive associations (5 regions, p<10−5) and
bioinformatics data supporting the signal. The bioinformatic analyses are described in detail
in the Supplementary Material. In addition, we sought to replicate one SNP associated with
both ABI and PAD at p<10−4. The replication studies included 5 population-based studies
and 3 clinically-based studies including a total of over 16,000 participants: the Bruneck
Study (n=786), the Copenhagen City Heart Study (CCHS, n=5,330), the Multi-Ethnic Study
of Atherosclerosis (MESA, n=2,611), the National Health and Nutrition Examination
Surveys (NHANES 1999–2002, n=2,335), Prevention of Renal and Vascular End-stage
disease (PREVEND, n=3,691) cohort, Cardiovascular Disease in Intermittent Claudication
(CAVASIC, n=443) Study, Genetic Determinants of Peripheral Arterial Disease (GenePAD,
n=850), and the Linz Peripheral Arterial Disease (LIPAD, n=671) Study. Each collaborating
study was provided with a SNP list and a detailed analysis plan. MESA and PREVEND
used in silico genotyping (Supplementary Methods Table 2) and the remaining studies
genotyped the SNPs using Taqman assays or Sequenom. Relative excess heterozygosity
(REH) analysis demonstrated that all genotyped SNPs were compatible with Hardy-
Weinberg equilibrium at the nominal 5% test-level (Supplementary Methods Table 3).(30)

Examination of candidate genes associated with peripheral artery disease and coronary
artery disease/myocardial infarction

We selected candidate genes for ABI and/or PAD from the published literature using
PubMed search terms “((ankle-brachial index) OR (peripheral arterial disease)) AND
polymorphism”. Association studies with at least 100 cases and 100 controls were included
regardless of whether the original study results were positive or negative. Using the
discovery meta-analysis results for ABI, we then identified the most strongly associated
SNP based on p-values within the gene region ±100 kb upstream or downstream of the
candidate gene. Due to the high correlation of imputed genotypes, the effective number of
loci were calculated for each gene region (31) using the genotype scores from the KORA F4
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Study (see Supplementary Methods). Bonferroni correction of p-values was then applied in
each region using the effective number of loci. Subsequently, false discovery rates (FDR)
were calculated using these corrected p-values, accounting for the number of gene regions
examined (see Supplementary Methods). Lastly, we examined the association with ABI of
30 SNPs strongly associated with CAD in recent GWAS.(32–34) Our ABI discovery meta-
analysis did not include 2 of the 30 SNPs (rs17465637 and rs3798220) and we were unable
to identify proxy SNPs available in our data. Using the p-values for the 28 SNPs in our
discovery meta-analysis, we then calculated the FDR for each CAD SNP accounting for the
28 regions examined.

Results
Study Sample

The study sample included 41,692 participants of European ancestry (56% women, 6,256
from population isolates) with ABI data and genome-wide genotyping. Participant
characteristics at the time of ABI measurement for each cohort are provided in
Supplementary Table 4. Across the studies the mean age ranged from 41.8 years to 73.8
years, the mean ABI ranged from 1.02 to 1.19, and 8.2% (n=3,409) had PAD (ABI<0.9).
Characteristics of the replication samples were similar to the discovery set (Supplementary
Table 5).

ABI-SNP associations
We conducted a meta-analysis with (n=41,692) and without (n=35,434) the population
isolates (Supplementary Figures 1 and 2, QQ-plots and Manhattan plots, study specific
lambdas ranged from 0.997 to 1.044). Our primary meta-analysis excluded studies from
population isolates because of concern for study heterogeneity and the lack of availability of
replication samples from isolates. The strongest SNP association for ABI was rs10757269
on chromosome 9 near CDKN2B (β= −0.006, p=2.46 x 10−8, p for heterogeneity=0.23,
Table 1; meta-analysis results including the population isolates, Supplementary Table 7).
Among the 96 SNP associations for ABI with p<10−5, 79 were located in the chromosome
9p21 region (Supplementary Table 6). The ABI SNP rs10757269 is in strong LD with
several SNPs in the region previously reported to be associated with CAD or myocardial
infarction (r2>0.8) but this ABI SNP is not in LD with SNPs previously associated with the
type 2 diabetes mellitus (Figure 1). We repeated the meta-analysis to examine the
association between ABI and rs10757269 first adjusting for CAD and then excluding
individuals with CAD among the non-isolate studies. The association remained but was no
longer genome-wide significant (adjusting for CAD: p=5.56 x 10−6; excluding CAD: p=3.79
x 10−5). Next, we sought to replicate the association between rs10757269 and ABI in both
population-based and clinically-based samples (n=16,717). The magnitude and direction of
the association in the replication studies was similar to the discovery set (β= −0.0035,
p=0.0176) providing evidence of replication. In the combined stage 2 discovery plus
replication meta-analysis the ABI-rs10757269 association became stronger (p= 2.65 x 10−9).
The study-specific estimates of effect for the discovery studies, population isolates,
replication studies and overall discovery plus replication meta-analyses are presented in
Figure 2. Two studies among the population isolates (the Amish Study and Croatia-Split)
had effect estimates in the opposite direction to the other studies. None of the other SNP
associations for ABI achieved genome-wide significance. The significance of the
associations for the additional SNPs chosen for replication diminished in the discovery plus
replication meta-analysis (Table 1, Supplementary Table 7).
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PAD-SNP Associations
None of the SNP associations for the PAD phenotype (defined by an ABI≤0.9) achieved
genome-wide significance (Table 2, for meta-analysis results including population isolates
Supplementary Table 8). The strongest association was found for rs6584389 on
chromosome 10 near the PAX2 gene (odds ratio 1.17, 95% confidence interval 1.10, 1.25,
p=2.34 x 10−6). Of note, the chromosome 9 SNP rs10757269 association with PAD was in a
direction consistent with the ABI association but did not achieve statistical significance
(Table 1, β=0.0849, p=0.004, increasing the odds of PAD).

Overlap in SNP Associations for ABI and PAD
While the directions of effect for the ABI SNPs in Table 1 were consistent with the PAD
association result (lower ABI, increased odds of PAD), there was little overlap in the top
associations for the two phenotypes. Only three regions marked by SNPs in/near IDE
(10q23-q25 ), DAB21P (9q33.2), and GRAMD1C (3q13.31) in addition to the chromosome
9p21 region showed association with both ABI and PAD at the p<10−4 level
(Supplementary Table 9). SNP rs7100623 in IDE demonstrated the strongest novel
association with both ABI (β= −0.005, p=1.89 x 10−5) and PAD (β= 0.139, p=8.39 x 10−5)
at p<10−4; however the association p-value was not significant in the replication stage and
diminished in the combined discovery plus replication meta-analysis.

Examination of PAD Candidate Genes
Among the 55 candidate genes or regions previously tested for association with ABI and/or
PAD, eight regions showed nominally significant p-values (p<0.05) after correction for the
number of effective loci for each gene region. After accounting for the number of regions
examined using a false discovery rate (FDR<0.10), we found evidence of association
between ABI and CYBA (rs3794624, uncorrected p=6.3 x 10−5, corrected p=0.0036,
FDR=0.0665) and DAB21P (rs13290547, uncorrected p=3.6 x 10−5, corrected p=0.0035,
FDR=0.0665) in addition to the chromosome 9p21 locus (rs1333049) reported to be
associated with ABI (Table 3) (35). We found no evidence of association between ABI and
any of the other candidate genes previously tested for association with ABI or PAD
(Supplementary Table 10).

Examination of Coronary Artery Disease/Myocardial Infarction Candidate Genes
Among the 30 SNPs previously reported by GWAS to be associated with CAD or
myocardial infarction, 28 SNPs were available in our discovery meta-analysis of ABI and 2
of these SNPs demonstrated an association (FDR <0.10) with ABI including rs4977574 near
CDKN2B (p=2.33 x 10−6) and rs1122608 in LDLR (p=0.0026) (Table 3, Supplementary
Table 11).

Discussion
Our GWAS meta-analysis for ABI conducted in more than 40,000 adults of European
ancestry has several notable findings. First, we identified and replicated one genome-wide
significant association between a SNP in the chromosome 9p21 region and ABI. No other
ABI-SNP associations achieved genome-wide significance. Second, in our discovery sample
over 3000 adults had PAD (ABI≤0.9); however, none of the SNP associations were
significant. Third, the directions of effect were consistent across the two phenotypes for the
most significant ABI SNPs (lower ABI, increased odds of PAD): however, we observed
minimal overlap in the top SNP associations for ABI and PAD. Finally the effect size for the
9p21 SNP was modest. The association itself is, however, intriguing and may provide
insights into the biologic mechanisms contributing to generalized atherosclerosis.
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Chromosome 9p21 locus and atherosclerosis susceptibility
Common genetic variants in the 9p21 locus are strongly associated with myocardial
infarction and CAD (17;33;36) and confer risk for other atherosclerotic diseases including
stroke (19), cerebral and abdominal aortic aneurysm (20;21), and clinically diagnosed PAD;
however, the relation with PAD was diminished when coronary artery disease cases were
excluded.(20) SNP associations at the 9p21 locus with subclinical measures of
atherosclerosis have been conflicting. Initially no association was observed with carotid
intima-medial thickness or flow mediated dilation in young or older adults (37;38); however
more recent reports demonstrate an association with the development and progression of
carotid atherosclerosis (39) and with the suggestion of a stronger effect in men.(40) To
further investigate the ABI-9p21 SNP association noted in this study, we conducted the
meta-analysis after adjusting for CAD and after exclusion of individuals with CAD. Not
surprisingly, the association persisted but was no longer genome-wide significant. Both
CAD and PAD are manifestations of underlying atherosclerosis and nearly two-thirds of
individuals with PAD have coexisting coronary or cerebrovascular disease.(41) One
previous report conducted in three studies of older adults identified an association between a
variant at 9p21 and lower ABI as well as an increased risk for PAD.(35) The primary affect
of the chromosome 9p21 region may be on the atherosclerotic process itself, and there are
likely to be many other factors both genetic and environmental that determine whether it
manifests as CAD, PAD, or another clinical atherosclerotic phenotype. The primary biologic
mechanism underlying the association with ABI is unknown but appears to be independent
of two major PAD risk factors, diabetes and smoking, as the ABI SNP in the 9p21 region we
identified is not in linkage disequilibrium with the SNPs in the region associated with
diabetes risk (42;43) or smoking related behaviors.(44) The mechanism may be related to
modulation of platelet reactivity (45), atheroma formation, plaque instability, thrombosis, or
biologic processes not yet identified.(46) The SNP associated with ABI is nearest to
CDKN2B, a well recognized tumor-suppressor gene that encodes a cyclin-dependent kinase
inhibitor and is involved in regulation of the cell cycle. CDKN2B is abundantly expressed in
human atherosclerotic lesions (47) and animal models suggest that altered CDKN2A/B
expression results in abnormal regulation of vascular cell proliferation.(48) Functional
studies reveal a long non-coding RNA at this locus named ANRIL, and a mouse model has
confirmed the essential role of ANRIL in regulation of CDKN2B expression through a cis-
acting mechanism.(49;50) ANRIL is implicated in proliferation and senescence.

PAD Candidate Genes
We performed a literature search to identify all candidate gene regions previously
investigated for association with PAD and/or ABI, irrespective of whether the association
was reported to be positive or negative. This approach revealed two further associated gene
regions: DAB2IP and CYBA. DAB2IP rs13290547 was not only associated with ABI but
also with PAD (p=3.62 x 10−5 and 2.2 x 10−5, respectively) (Supplementary Table 10). The
DAB2IP gene encodes an inhibitor that is involved in the regulation of cell survival and
proliferation. One variant in the DAB2IP gene (rs70254486) has recently been detected in a
GWAS of abdominal aortic aneurysm.(51) That study also detected an association with PAD
as a secondary endpoint in 3,690 cases versus 12,271 controls (p=3.9x10−5). The same SNP
showed an association with CVD within a meta-analysis of case-control studies.(52) The
CYBA gene is involved in NADPH oxidase regulation, which contributes to oxidative stress
and plays a key role in the pathophysiology of coronary disease. Only one report
investigated a SNP (rs4673) in this gene for association with PAD among 324 cases and 295
controls, but did not find an association.(53) Our study found an association of rs3794624
(r2=0.5 with rs4673), with continuous ABI, which may indicate that the earlier study likely
lacked power to find this association. None of the other gene regions had sufficient evidence
for association with continuous ABI in our meta-analysis. Another very wide-reaching
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approach designed to systematically examine a large number of genes related to
intermediate phenotypes of atherosclerosis such as blood pressure regulation, lipoprotein
metabolism, inflammation, oxidative stress, vascular wall biology, obesity and diabetes
found only eNOS to be significantly associated with ABI.(14) This gene could not be
confirmed by our candidate gene examination.

Coronary candidate genes
Besides the chromosome 9 locus, one other SNP reported to be associated with coronary
disease in recent GWAS, also showed an association with ABI in our study; rs1122608 in
LDLR. The LDLR gene plays an important role in cholesterol homeostasis and mutations at
this gene have been shown to influence LDL cholesterol levels and the subsequent risk for
coronary disease.(54) The association of LDLR gene with ABI in our study is a confirmation
of the shared biologic pathways underlying both subclinical and clinically apparent disease.

Strengths/limitations
Our meta-analysis represents the largest collaborative effort to date to identify genome-wide
SNP associations for variation in ABI and PAD (ABI ≤0.90) and our findings suggest the
absence of common variants with large effects on ABI. Use of ABI as our primary
phenotype has major advantages of detecting asymptomatic PAD as the ABI is an objective
measurement whereas clinical PAD requires subjective symptoms of exertional leg
discomfort and mobility of the individual. However, several limitations of our meta-analysis
merit comment. The blood pressure measurement protocol and ABI calculation was
heterogeneous across participating studies. While protocols were standardized within each
study, the studies were not designed to be fully standardized and comparable across studies
(Supplementary Methods Table 1). This phenotype heterogeneity may have impacted our
ability to detect associations. Furthermore, for many studies information about a previous
revascularization intervention was not available. This lack of data may have resulted in the
misclassification of some of the most affected persons by placing them into an ABI range of
unaffected individuals and consequently reducing our power to detect true associations. Our
sample was restricted to individuals of European ancestry and thus our findings cannot yet
be generalized to individuals of other race/ethnic groups. Furthermore, some PAD
susceptibility variants may be race/ethnic specific and can only be uncovered through the
study of non-Europeans. For example, African Americans have a higher prevalence of PAD
that cannot be attributed to traditional or novel risk factors.(55) This observation raises the
hypothesis that polymorphisms unique to African Americans may partially be responsible
for the higher prevalence of PAD.(55) We did not evaluate gene by environment interactions
which may be especially relevant for cigarette smoking, a strong risk factor for PAD (56)
and a factor known to interact with other genes to modulate atherosclerosis. (57)

Conclusions
In conclusion, a common variant near the CDKN2B gene in the chromosome 9p21 locus is
associated with a lower ABI. PAD represents a diffuse form of atherosclerosis associated
with increased risk for death and incident CVD events. Thus, the identification of genetic
variants associated with ABI may provide an important opportunity not only to unravel the
biologic basis of PAD but also to improve our understanding of the causes of the variation in
degree of atherosclerosis from one arterial bed to another. Additional studies are warranted
to identify the causal variants in the 9p21 locus and to characterize their functional
significance. The search for genes influencing predilection to PAD remains elusive and
alternative approaches are warranted.
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Figure 1.
Genomic context of the genome-wide significant signal at chromosome 9p21 plotted against
the −log10 p values. r2 between the top signal (rs10757269) and each SNP shown in red.
SNPs previously reported from GWAS to be associated with coronary artery disease (CAD,
green arrows) and type 2 diabetes (T2DM, orange arrows) and p-value for association with
ankle-brachial index shown. Chromosome positions are based on build hg18.
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Figure 2.
Ankle-brachial index-chromosome 9p21 (rs10757269) association: study-specific estimates
of effect for the discovery studies, population isolates, replication studies and overall
discovery and replication meta-analyses.
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