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ABSTRACT 

Many clinical cases of chronic pain exhibit both neuropathic and inflammatory 

components. In contrast, most animal models of chronic pain focus on one 

type of injury alone. Here we present a novel combined model of both 

neuropathic and inflammatory pain and characterise its distinctive properties. 

This combined model of chronic constriction injury (CCI) and intraplantar 

Complete Freund’s Adjuvant (CFA) injection results in enhanced mechanical 

allodynia, thermal hyperalgesia, a static weight bearing deficit, and notably 

pronounced spontaneous foot lifting (SFL) behaviour (which under our 

conditions was not seen in either individual model and may reflect 

ongoing/spontaneous pain). Dorsal root ganglion (DRG) expression of 

Activating Transcription Factor-3 (ATF-3), a marker of axonal injury, was no 

greater in the combined model than CCI alone.  Initial pharmacological 

characterisation of the new model showed that the SFL was reversed by 

gabapentin or diclofenac, typical analgesics for neuropathic or inflammatory 

pain respectively, but not by mexiletine, a Na+ channel blocker effective in 

both neuropathic and inflammatory pain models. Static weight bearing deficit 

was moderately reduced by gabapentin, whereas only diclofenac reversed 

mechanical allodynia. This novel animal model of chronic pain may prove a 

useful test-bed for further analysing the pharmacological susceptibility of 

complicated clinical pain states.  
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1. Introduction  

Neuropathic pain is inadequately controlled by current analgesics and 

progress in strategy for its treatment represents an unmet clinical need. There 

are a number of rodent models of neuropathic pain, including chronic 

constriction injury (CCI), a loose ligation of the sciatic nerve that induces 

intraneural oedema and physical axonal damage (Bennett and Xie, 1988), 

spinal nerve ligation (Kim and Chung, 1992), partial sciatic nerve ligation 

(Seltzer et al., 1990) and more recently the spared nerve injury, in which the 

tibial and common peroneal nerves are cut and ligated and the sural branch of 

the sciatic nerve is left intact (Decosterd and Woolf, 2000). In addition, 

specific models of disease-induced neuropathies, such as diabetic neuropathy 

(Malcangio and Tomlinson, 1998) and post-herpetic neuralgia (Fleetwood-

Walker et al., 1999) have been produced. Although some of these models 

display a modest degree of spontaneous pain-like behaviour (Choi et al., 

1994), which is more prominent when there is a concurrence of injured and 

uninjured afferents (Djouhri et al., 2006; Lee et al., 2003), spontaneous pain 

remains relatively under-investigated. In addition to the allodynia and 

hyperalgesia arising from nerve injury, a particularly troublesome feature is 

spontaneous/paroxysmal pain (Attal and Bouhassira, 2004; Backonja and 

Stacey, 2004). Chronic inflammatory pain is also problematic clinically. A 

number of animal models of inflammatory pain have been developed, for 

example the intraplantar injection of Complete Freund’s Adjuvant (CFA; 

inactivated Mycobacterium tuberculosis emulsified in mineral oil) which 

activates the innate immune system and causes the local release of pro-
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inflammatory cytokines (Hargreaves et al., 1988; Iadarola et al., 1988a; 

Iadarola et al., 1988b; Meller et al., 1994). 

Many clinical situations however, do not represent neuropathic or 

inflammatory pain states in isolation. Such situations may result from severe 

trauma such as road traffic accident or sporting injury and clinically co-incident 

nerve damage and inflammation following surgery.  Although both clinical 

neuropathies and laboratory models may involve an immune/inflammatory 

component at the local site of injury (Said and Hontebeyrie-Joskowicz, 1992), 

an explicit combined model of peripheral neuropathic pain together with 

peripheral inflammatory pain could provide new insights into clinically relevant 

chronic pain states. We hypothesised that such a model might display distinct 

behavioural or pharmacological properties because inflammatory and 

neuropathic injuries individually induce different phenotypic changes in 

afferent neurons (Woolf and Ma, 2007), so the combination may result in a 

distinct mechanistic profile. Therefore in the present study we introduce a new 

combined CCI+CFA model, which we hypothesised would bring about an 

accentuated hypersensitive state, perhaps with distinctive properties. To 

characterise this combined model we assessed the duration and extent of 

both evoked and non-evoked pain behaviours, compared to either nerve injury 

or inflammation alone. In addition we measured the expression of ATF-3, a 

marker of neuronal injury (Tsujino et al., 2000), in DRG ipsilateral to injury to 

assess whether nerve damage is exacerbated in the model. We further 

evaluated the efficacy of the clinically used analgesics, gabapentin, diclofenac 

and mexiletine (Dworkin et al., 2007; Kingery, 1997) on the behavioural 
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outcomes to characterise the pharmacology of the model, with the possibility 

of finding new insights into the treatment of spontaneous pain.  

 

2. Materials and methods 

2.1. Animals 

All experiments were carried out on male Sprague-Dawley rats 

(Harlan) in accordance with the UK Animals (Scientific Procedures) Act 1986 

(and associated guidelines) and had received approval from the University of 

Edinburgh ethical committee. Animals were given access to food and water 

ad libitum and housed in accordance with Home Office guidelines. Ambient 

temperature and humidity were 21°C and 50% respectively; lighting was on a 

schedule of 12 h on: 12 h off, with lights on from 07.00 h to 19.00 h. Rats 

were normally housed in groups of up to 6 per cage.  

 

2.2. Procedures 

Rats (150-200 g) were anaesthetised by inhalation of an isoflurane/O2 

mixture (Zeneca, Cheshire, UK), 4% for induction and 1.5-3% for 

maintenance. Surgery to produce a chronic constriction injury (CCI) of the 

sciatic nerve was performed as described previously (Bennett and Xie, 1988). 

Following hair removal and sterilisation of the skin area (Hibitane 0.05%, 

Zeneca, UK), a small incision was made on the right hind leg below the pelvis 

and then the biceps femoris and the gluteus superficialis were carefully 

separated to expose the sciatic nerve. Upon isolation of the nerve, four loose 

ligatures were tied around it proximal to the trifurcation using 4-0 chromic 

catgut (SMI AG, Hunningen, Belgium) with a 1 mm separation between 
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ligatures. The nerve was then carefully placed back into position and the 

wound closed with Vicryl sutures (Ethicon UK). For the chronic inflammatory 

pain model, intraplantar injection of CFA was used (Taurog et al., 1988). 

Following sterilisation of the plantar surface of the right hindpaw with 0.05% 

Hibitane, 150 µl of 50% CFA (Sigma; 1 mg Mycobacterium tuberculosis in 

0.85 ml mineral oil and 0.15 ml mannide mono-oleate) in 0.9% saline was 

injected between the toes and towards the middle of the paw, avoiding the 

ankle; the needle was withdrawn slowly to minimise leakage. For the 

combined CCI+CFA pain model, CFA was injected into the right hindpaw 

directly after completion of CCI surgery while the animal was still 

anaesthetised. None of the animals in the present study displayed 

ventroflexion of the toes or paw eversion in the affected limb, which are 

reported side-effects of CCI surgery in some laboratories (Nakazato-Imasato 

and Kurebayashi, 2009). 

 

2.3. Sensory behaviour tests 

Animals were habituated to the testing environments and tester twice 

on separate days for at least 15 min prior to undergoing surgery. 

Measurements of reflex responses to graded mechanical or thermal stimuli 

were recorded in conscious animals prior to injury and regularly post-injury to 

establish a time course of sensitivity. Differences in static weight bearing were 

also measured, together with spontaneous paw lifting as indicators of non-

evoked behaviours that further reflect the experience of pain.  

To determine evoked reflex responses to mechanical stimuli, animals 

were placed on a raised mesh grid and covered with a clear plastic box for 
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containment. Calibrated von Frey filaments (Stoelting Co, USA) were used to 

determine the threshold force for withdrawal of the ipsilateral paw compared 

to the contralateral paw. Filaments were applied to the middle of the plantar 

surface of each paw from below until the filament bent; this was carried out 8 

times per filament, in order of increasing force. The filament at which 50% of 

the applications resulted in paw withdrawal was recorded as the paw 

withdrawal threshold (PWT) in grams (g). A withdrawal response was 

considered valid if the animal’s paw was withdrawn from both the testing 

platform and also away from the filament itself, so as to distinguish from the 

animal allowing its paw to be simply lifted by the filament. A cut off point was 

set at a filament bending force of 28 g to prevent tissue damage and this also 

reduced the possibility of the filament being able to lift the animal’s paw. 

Thermal hyperalgesia was measured using Hargreaves’ plantar test 

analgesymeter (Hargreaves et al., 1988) (Ugo Basile, Comerio, Italy). Rats 

were placed in individual plastic boxes on a glass platform and allowed to 

settle for 5-10 min. An infra-red radiant heat source was positioned under the 

platform and focused on the middle of the plantar surface of each hindpaw. 

Following activation, the time in seconds (s) at which the animal withdrew its 

paw was recorded as paw withdrawal latency (PWL). A cut-off time of 20 s 

was imposed to avoid possible tissue damage. The test was repeated 3 times 

for each hindpaw with a 5 min gap between tests to avoid sensitisation.  

Reduction in static weight bearing (a test that further reflects aspects of 

mechanical allodynia) was measured using an incapacitance tester, (Linton 

Instruments UK); a device that measures the weight distributed to each hind 

paw individually. Rats were placed in the Perspex container positioned over 
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force plates with one hind paw on each plate and the weight-bearing force 

exerted was averaged over 4 s. For each rat, 3 tests were carried out for each 

paw consecutively at each time point. Results were expressed as the 

difference between the contralateral and ipsilateral paw reading in grams (g). 

We also measured spontaneous foot lifting (SFL), which is thought to 

be an indicator of ongoing/spontaneous pain, as the only apparent relevant 

sensory input is mechanical load bearing, which is invariant in these 

conditions (Bennett and Xie, 1988; Choi et al., 1994; Djouhri et al., 2006). At 

approximately the same time each day (late morning to early afternoon) rats 

were placed in individual plastic observation boxes in which their movement 

was unrestricted. No evoked behaviour tests were carried out before the SFL 

assessment to avoid the possibility of any element of hypersensitivity 

developing due to testing. The cumulative duration of lifting of the ipsilateral 

hindpaw was recorded over a single period of 3 min. Foot lifting associated 

with locomotion, grooming or body repositioning was excluded. Deliberate 

spontaneous lifting of the affected paw, sometimes associated with overt pain-

like behaviour such as flicking or paw licking was scored for all of the time that 

the paw was raised from the surface. The occurrence of the SFL behaviour 

was confirmed by an independent observer. No discernible SFL behaviour 

was noted for the contralateral hindlimb throughout the study. 

 

 

2.4. Immunohistochemistry 

Ten days after surgery, three rats from each group (CCI, CFA and 

combined CCI + CFA) were deeply anaesthetised with sodium pentabarbitone 
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(Euthatal, Merial Animal Health Ltd) and transcardially perfused with 0.9% 

sodium chloride followed by 4% paraformaldehyde in 0.1 M phosphate-

buffered saline. The L4 and L5 DRG were removed, post-fixed overnight and 

then transferred to 5% sucrose for 1 h, 10% sucrose for 3 h and 30% sucrose 

overnight. DRGs were then embedded in OCT compound (Cellpath Ltd), 

frozen in isopentane on dry ice and 10 µm sections cut on a Leica CM1950 

cryostat. Sections were mounted on ten polylysine-coated glass slides (VWR) 

with each serial section mounted on a consecutive slide from its neighbouring 

section, so that each section on a particular slide was >100 µm from the next 

one. This prevented the same neuron from being counted twice on one slide. 

Following washing in PBS and blocking with 10% normal goat serum and 4% 

fish skin gelatin in PBS containing 0.2% Tween-20, the sections were labelled 

overnight with rabbit anti-ATF-3 (1:250, Santa Cruz) in the same medium but 

with the goat serum concentration at 4%. ATF-3 antibody binding was 

visualised using pre-absorbed goat anti-rabbit Alexa-568 (Invitrogen) 

secondary antibody. Sections were counterstained with mouse anti-NF-200, 

(1:1000, Sigma), a marker of myelinated neurons and visualised with goat 

anti-mouse Alexa-488 secondary antibody. Images were taken at 20x 

magnification using a Leica DM2500 fluorescence microscope equipped with 

a Leica DFC310 camera and analysed using ImageJ software. Three animals 

were used for each condition and a minimum of 4 images from each animal 

were analysed.  

 

2.5. Drugs and treatments 
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We examined the effects of gabapentin (Ascent Scientific), diclofenac 

(Sigma) and mexiletine (Sigma) on the combined model of nerve injury and 

inflammation. All drugs were dissolved in 0.9% sterile saline (Sigma) and 

administered by a single intraperitoneal injection using the following doses: 

gabapentin 50 mg/kg, diclofenac 100 mg/kg and mexiletine 30 mg/kg. The 

doses we administered were chosen on the basis of effective analgesic doses 

used in common models of neuropathic or inflammatory pain (Erichsen and 

Blackburn-Munro, 2002; Laird et al., 2001; Nagakura et al., 2003; Nakazato-

Imasato et al., 2009; Pedersen and Blackburn-Munro, 2006; Wallace et al., 

2007). Drugs were administered 8 days following CCI surgery/CFA injection 

and behavioural testing was carried out 90, 180 and 300 min after injection 

(n=8 per group). Animals were randomly placed into drug or vehicle groups 

following baseline testing and testing was carried out blinded. 

 

2.6. Statistical Analyses 

For behavioural measures, all values were calculated as group mean ± 

SEM at each time point. Thermal hyperalgesia (PWL) was analysed by 

comparing ipsilateral to contralateral values over time and also to pre-surgery 

baseline, using two-way repeated measures ANOVA with Bonferroni’s post 

hoc test. As the von Frey filaments used to measure mechanical allodynia 

have constant logarithmic intervals between their bending forces, logarithmic-

transformed (y=ln(y)) values were used to normalise data for analysis, 

enabling two-way repeated measures ANOVA (with Bonferroni’s post hoc 

test) as for thermal data. Injury-induced alteration of ipsilateral static weight 

bearing, as compared to pre-surgery baseline was analysed using repeated 
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measures ANOVA with Dunnett’s post hoc test, and each model was 

compared to the others using a two-way repeated measures ANOVA with 

Bonferroni’s post hoc test.  Mean duration of spontaneous ipsilateral foot 

lifting (SFL) was analysed using two-way repeated measures ANOVA with 

Bonferroni’s post hoc test. ATF-3 immunostaining was analysed using a one-

way ANOVA followed by Newman-Keuls multiple comparison post hoc test. 

The effects of pharmacological agents on ipsilateral mechanical allodynia 

compared to pre-drug values were assessed by repeated measures ANOVA 

(Friedman test) followed by Dunn’s post hoc test. Effects on SFL duration and 

static weight bearing difference were analysed by one-way repeated 

measures ANOVA followed by Dunnett’s post hoc test to compare pre-drug 

values with post-drug values. The percentage of rats exhibiting an SFL 

duration of >10 s was analysed using Fisher’s exact test. All data evaluations 

were carried out using Graphpad Prism software and in each case a value of 

p<0.05 was taken to indicate statistical significance. 

 

3. Results 

 

3.1. Thermal hyperalgesia and mechanical allodynia in a combined model of 

neuropathic and inflammatory pain compared to nerve injury or inflammation 

alone. 

In the Hargreaves’ thermal test, the combined CCI+CFA model induced 

sensitisation compared to baseline and to the contralateral limb, that was 

longer in duration than in either of the single models (Fig. 1 a-c, n=6). Paw 

withdrawal latency (PWL) in response to thermal stimuli was significantly 
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decreased in the injured hindpaw compared to pre-surgery baseline and also 

relative to the contralateral paw as determined by two-way repeated 

measures ANOVA, comparing the effect of treatment over time (Treatment 

effect; CFA; F=16.62 p=0.0022, CCI; F=17.74, p=0.0019 CCI+CFA; F=29.85, 

p=0.0003). PWL in the ipsilateral paw of the combined CCI+CFA model 

remained significantly different from baseline for up to 28 days post injury and 

for up to 14 days compared to the contralateral paw, outlasting any 

differences in the single injury models, and reflecting a longer lasting thermal 

hyperalgesia.  

The combined CCI + CFA injury also resulted in long-lasting 

mechanical allodynia (Fig. 1 d-f) which outlasted the effect of nerve injury 

alone. Although the duration of mechanical allodynia was not discernibly 

different between CFA and the combined CCI + CFA model, the data show 

that the ipsilateral sensitisation following the combined model was of a greater 

magnitude than in either of the single models (Fig. 1 d-f). To compare directly 

the degree of allodynia we analysed the difference in PWT (contralateral-

ipsilateral) following injury and revealed a significant difference in the 

interaction between treatment and time through the different injury groups 

(two-way repeated measures ANOVA, F=2.34, p=0.002, following successful 

tests for normality), with individual group differences identified by Bonferroni 

post hoc tests occurring between CCI and the combined CCI + CFA model at 

days 6 (p<0.001) and 7 (p<0.05), and between CFA and the combined CCI + 

CFA model at days 6 (p<0.001) and 7 (p<0.01, n=6 rats per group). There 

were no time points where significant differences were identified between the 

CCI and CFA groups. Mechanical allodynia in the combined model remained 
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statistically significant for 56 days compared to baseline and 49 days 

compared to the contralateral paw, with corresponding values for CCI alone 

being 49 and 21 days respectively. Taken together, these data indicate that 

the combined CCI+CFA model displays a prolonged time course and/or 

greater magnitude of hypersensitivity in evoked responses than either of the 

single component injuries.  

 

3.2. Static weight bearing difference in a combined model of neuropathic and 

inflammatory pain compared to nerve injury or inflammation alone. 

Static weight bearing measurements showed a difference between the 

ipsilateral and contralateral hind paw from day 1 post-surgery in all three 

models, as evaluated by repeated measures ANOVA with Dunnett’s post hoc 

test (Fig. 2 a). In both the combined CCI + CFA model and the CCI model the 

static weight bearing difference was significantly different from baseline levels 

at all time points following injury (combined model: p<0.01 at days 1, 13, 15 

and 17 and p<0.001 at days 2, 3, 6, and 9; CCI: p<0.05 at day 17, p<0.01 at 

day 15 and p<0.001 at days 1, 2, 3, 6, 9 and 13). After CFA injection, static 

weight bearing difference was shorter lasting, being significantly different from 

baseline only at days 1, 2 and 6 (p<0.05 at day 1, p<0.01 at days 2 and 6). 

There was no significant difference between the combined CCI + CFA model 

and CCI alone. Both CCI and the combined CCA + CFA model resulted in a 

consistently greater ipsilateral-contralateral weight bearing difference than 

CFA alone. They both showed significantly greater static weight bearing 

difference compared to CFA alone, which was statistically significant at days 

3, 9, 13 and 15 post injury for the combined CCI + CFA model (all p<0.01) 
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and at days 3, 9 and 13 for CCI (p<0.01 at days 3 and 9 and p<0.001 at day 

13) (two-way repeated measures ANOVA with Bonferroni’s post hoc test).  

 

3.3. Spontaneous foot lifting in a combined model of neuropathic and 

inflammatory injury compared to nerve injury or inflammation alone. 

Rats with combined CCI + CFA injury displayed significantly more 

spontaneous pain-like behaviour (spontaneous ipsilateral paw lifting; SFL), 

compared to those with nerve injury or inflammation alone. This was 

quantified as the cumulative time over which each rat raised its injured paw 

throughout a 3 min period (Fig. 2 b) and was analysed by two-way repeated 

measures ANOVA with Bonferroni’s post hoc test. SFL was significantly 

greater in the combined CCI + CFA model compared to CCI alone at days 8 

and 9 post-surgery (p<0.001) and also significantly greater compared to CFA 

alone at days 7, 8 and 9 post-surgery (p<0.05 at day 7 and p<0.001 at days 8 

and 9). No SFL of the contralateral paw was observed. In our experiments, 

only very low levels of SFL were observed ipsilateral to CCI or CFA injury 

alone, which did not reach statistical significance. In our view it seems likely 

that SFL may only be observed when hypersensitivity is at its greatest 

magnitude, so this may well be detectable only over a shorter period than the 

statistically significant enhancement of von Frey responses. 

 

3.4. ATF-3 expression in DRG in a combined model of neuropathic and 

inflammatory pain compared to nerve injury or inflammation alone. 

As ATF-3 expression in DRG neurons is considered to reflect explicit 

injury to their axons, as opposed to inflammation (Tsujino et al., 2000), we 
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used immunofluorescence histochemistry to assess its expression in each of 

the three different pain models (Fig. 3). ATF-3-positive cells from at least 4 

non-adjacent transverse sections (10 µm) of L4 and L5 DRG per animal (n=3 

per group) were counted, and expressed as a % of the total number of cells 

counted in these sections. DRG neurons showed significant ATF-3 expression 

following nerve injury or nerve injury plus inflammation, but not following 

inflammation alone. One-way ANOVA (with Student-Newman-Keuls post hoc 

test for all pair-wise comparisons) indicated that ATF-3 expression was 

significantly higher after CCI (p<0.001) or combined CCI + CFA model 

(p<0.001) compared to CFA. ATF-3 expression in DRG cells was not 

significantly different (p=0.091) between CCI alone and the combined CCI + 

CFA model.  

    

3.5. Effects of gabapentin, diclofenac and mexiletine on behavioural 

measures of sensitisation in a combined model of neuropathic and 

inflammatory pain 

Three analgesic agents with different modes of action and preferential 

influences were assessed. Gabapentin (effective in neuropathic pain), 

diclofenac (effective in inflammatory pain) and mexiletine (a broad specificity 

Na+ channel blocker) were examined for their effects on mechanical allodynia, 

static weight bearing difference and SFL in the combined CCI + CFA model of 

neuropathic and inflammatory pain at eight days post-surgery (Fig. 4 and 5). 

After a single (IP) dose, all three agents showed some attenuation of the 

ipsilateral mechanical allodynia, although only diclofenac showed a significant 

reversal compared to its pre-drug value (p<0.05 at 300 min post-
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administration, repeated measures ANOVA (Friedman test) followed by 

Dunn’s post hoc test) (Fig. 4 a).  

The CCI + CFA-induced weight bearing difference between the 

ipsilateral and contralateral paws was significantly reduced only by 

gabapentin at 90 min post-dosing compared to pre-drug values, p<0.05, as 

shown by one-way repeated measures ANOVA followed by Dunnett’s post 

hoc test (Fig. 4 b).  

The ipsilateral SFL that was specifically induced by the combined CCI 

+ CFA model was significantly attenuated by gabapentin and diclofenac, while 

mexiletine or vehicle had no discernible effect (Fig. 5 a-d). Both gabapentin 

and diclofenac significantly reduced the percentage of rats exhibiting >10 s of 

SFL at 90 and 180 min post-drug dose (Fig. 5 b and c) (p<0.001, Fisher’s 

exact test). When the data were analysed as mean cumulative SFL, 

gabapentin showed a significant reduction at 180 min post-dose compared to 

pre-drug values (one-way repeated measures ANOVA followed by Dunnett’s 

multiple comparison test).  

 

4. Discussion 

 

The newly introduced CCI + CFA rodent model of chronic pain, which was 

designed to reflect the consequences of traumatic injuries encountered 

clinically, results in greater or more prolonged mechanical allodynia and 

thermal hyperalgesia compared to the component models alone. It also elicits 

spontaneous foot lifting (SFL), a non-evoked behaviour that we did not 

observe in either of the CCI or CFA individual models and may reflect ongoing 
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or spontaneous pain. The additional effects seen in the mechanical and 

thermal sensitivity do not however translate to further changes in static weight 

bearing, where we observed no significant difference between CCI + CFA and 

CCI alone. The expression levels of ATF-3 in DRG, reflecting frank neuronal 

injury, were no different between the combined CCI + CFA model and CCI 

alone suggesting that the enhanced sensitivity observed in some tests with 

the CCI + CFA model is not due to a greater degree of nerve damage. We 

carried out a preliminary investigation of the effects of some established 

analgesic agents on various behaviours in the combined CCI + CFA model. In 

these experiments we focused on tests that relate to mechanical sensation: 

von Frey (evoked mechanical response), static weight-bearing difference 

(non-evoked mechanical response) and SFL but did not assess thermal 

responses. This was because in the newly observed SFL behaviour there will 

be some potentially relevant input through mechanosensitive afferents prior to 

the foot lift even though it is not being altered by external events. Acute, single 

dose, administration of all three analgesics tested showed a trend towards 

reversal of mechanical allodynia in the von Frey filament test, although only 

the effect of diclofenac reached statistical significance. Only gabapentin 

showed a significant effect on static weight bearing difference. Although the 

static weight-bearing test reflects in part aspects of mechanical allodynia like 

the von Frey filament test, it differed by not showing a statistically significant 

effect of diclofenac. This may be because the ongoing weight-bearing test 

reflects in part different mechanosensitive afferents from those activated in 

the transient von Frey test and is also affected to some extent by 

proprioceptive and motivational factors, resulting in a tendency to show 
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greater variability. Although not statistically significant with the current data 

set, diclofenac did cause a mean 25% attenuation of weight-bearing 

difference at 300 min. It is possible that in further experiments with a larger 

number of replicates that this would reach statistical significance, thereby 

resolving any apparent disparity in the pharmacological sensitivity of the von 

Frey and weight-bearing tests. Both gabapentin and diclofenac but not 

mexiletine significantly reduced SFL behaviour. Thus, particular facets of the 

CCI + CFA-induced pain state appear to show differential sensitivity to 

analgesics of different types. 

Animal models of clinical pain seek to improve understanding of the 

aetiology of persisting pain states and also to identify potential targets for the 

development of analgesics. There is a continuing need for animal models that 

best represent clinical conditions, both in terms of duration and the spectrum 

of spontaneous and evoked responses observed. Our novel CCI + CFA model 

was designed to encompass both neuropathic and inflammatory injuries, 

which often occur together following severe trauma. In this model, both 

evoked and non-evoked measures of pain behaviour were enhanced in the 

ipsilateral hindpaw. Clear differences in weight bearing between ipsilateral 

and contralateral hindlimbs were seen in all models but this was greater and 

longer lasting in the CCI and combined CCI + CFA models compared to the 

CFA alone. The CCI + CFA model provides a robust and long-lasting pain 

state which displays not only symptoms such as hypersensitivity to 

mechanical and thermal stimuli, but also non-evoked raising of the injured 

paw, which is considered to be an indicator of spontaneous pain (Bennett and 

Xie, 1988; Choi et al., 1994; Djouhri et al., 2006). Spontaneous pain is a major 
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clinical problem, which is not sufficiently represented in current basic science 

studies, where many of the sensory behavioural tests are focused on evoked 

withdrawal responses, when in fact 96% of clinical neuropathies display 

ongoing, spontaneous pain. Although still representing important clinical 

problems, only 64% and 38% of neuropathic pain cases have a mechanical or 

thermal hypersensitivity component, respectively) (Backonja and Stacey, 

2004).  

The molecular mechanisms that could underlie the increased 

sensitivities to mechanical and thermal stimuli, and also the spontaneous pain 

component observed in this model remain to be clarified. However, previous 

work has suggested that spontaneous pain is associated with unprovoked 

firing in both unmyelinated and myelinated fibres (Djouhri et al., 2006). Djouhri 

and colleagues described how an L5 spinal-nerve axotomy, either alone or in 

combination with loose ligation of the L4 spinal nerve, both produce 

spontaneous activity in intact nociceptive C-fibres but only the latter is 

associated with SFL behaviour; thus emphasising the importance of co-

existing injured and uninjured afferents in producing hypersensitivity. Djouhri 

et al. also reported a correlation between the rate of spontaneous firing of 

intact C-fibres and the extent of SFL. These findings may mirror the greater 

degree of spontaneous pain behaviour observed in our CCI + CFA model. 

Unlike some other reports (Attal et al., 1990; Bennett and Xie, 1988; Dowdall 

et al., 2005) we observed no significant SFL following CCI alone. The 

difference may be due to the relative intensity of the ligation injury applied in 

different laboratories. Inflammatory mediators, such as interleukins and TNF-α 

are released during Wallerian degeneration of damaged nerves (Shamash et 
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al., 2002) and following inflammation (Safieh-Garabedian et al., 1995) and 

have been linked with the appearance of spontaneous activity in DRG 

neurons (Schafers et al., 2003). Furthermore, the up-regulation of NGF, 

induced in response to TNF-α following peripheral inflammation (Woolf et al., 

1997), has also been shown to lead to spontaneous activity in DRG neurons.  

Although the site of peripheral inflammation in the CCI + CFA model is not at 

the nerve trunk, the combination of the peri-neural inflammation associated 

with CCI, and peripheral inflammation following CFA may exert a cumulative 

effect, which might cause an increase in the spontaneous activity of 

nociceptive C-fibres to the levels necessary to generate greater spontaneous 

pain-like behaviour, such as SFL. 

An important consideration in evaluating such a mixed 

neuropathic/inflammatory pain model is that either of these injuries 

independently induces a characteristic and quite distinct set of phenotypic 

changes in DRG cells (Woolf and Ma, 2007). The combined model is 

therefore likely to represent the integrated outcome; not only from processes 

changing the releasable neuropeptide content of particular afferents but also 

from processes elevating expression of the original neuropeptides and trophic 

factors. The resulting balance of influence on central processing that appears 

to engender SFL clearly represents a complex matrix that will need to be 

further elucidated in order to fully understand the basis of such spontaneous 

pain-like behaviours. 

To determine the extent of neuronal damage following the CCI + CFA 

model, expression of the nerve injury marker ATF-3 (Tsujino et al., 2000) in 

DRG neurons was compared to the single injury pain models. We found that 
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the increased nociceptive sensitisation associated with the CCI + CFA model 

was not due to a greater degree of nerve injury, as the expression of ATF-3 

was similar in DRG of CCI + CFA and CCI alone.  There was little or no ATF-3 

expression in response to CFA, in agreement with other studies (Palm et al., 

2008; Segond von Banchet et al., 2009). These findings indicate that the level 

of ATF-3 expression in DRG is not a critical determinant of the SFL behaviour 

that was essentially observed only in the CCI + CFA model. In further studies 

it would be of interest to carry out an immunohistochemical assessment of 

neuropeptide expression in dorsal root ganglia of CCI + CFA animals 

compared to the individual models because neuropathic and inflammatory 

injuries induce distinct phenotypic changes (Woolf and Ma, 2007). Such an 

extensive survey was however beyond the scope of the present work. 

Both gabapentin and diclofenac significantly reduced CCI + CFA-

induced SFL behaviour. Gabapentin is thought to act by binding to α2δ-1 or 

α2δ-2 subunits of voltage-gated Ca2+ channels (Marais et al., 2001), which 

associate with the α1 subunit to regulate current amplitude. Although 

gabapentin is generally considered as an analgesic for neuropathic pain 

states (Dworkin et al., 2007), it dose-dependently reduces C-fibre-evoked 

responses of neurons recorded following carrageenan-induced inflammation 

(Stanfa et al., 1997). Diclofenac is a well-used non-steroidal anti-inflammatory 

(NSAID) drug, being a broad-spectrum cyclo-oxygenase (COX) inhibitor with 

modest selectivity for COX-2 over COX-1 (Giuliano and Warner, 1999). 

Eicosanoid inflammatory mediators, eg prostaglandins, could therefore play a 

role in bringing about SFL behaviour. It has been reported that prostaglandin-

regulated descending control from the PAG preferentially targets C-nociceptor 
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evoked activity (Leith et al., 2007), raising the possibility that a component of 

the antinociceptive effect of diclofenac here could be centrally mediated.  Pain 

state-induced hypersensitivity of dorsal horn neurons is reversed by Na+ 

channel blockers (Blackburn-Munro and Fleetwood-Walker, 1997), so it was 

unexpected that mexiletine, a sodium channel blocker, efficacious in both 

neuropathic and inflammatory pain (Akada et al., 2006; Dworkin et al., 2007; 

Erichsen et al., 2003; Laird et al., 2001; Nakazato-Imasato et al., 2009) did 

not reduce SFL here, despite a typically effective dose being used. We cannot 

exclude of course the possibility that different doses and chronic treatment 

may be effective. It has been reported however that in patients with peripheral 

nerve injury, mexiletine is less effective at reversing spontaneous pain than 

mechanically evoked pain (Wallace et al., 2000). It is possible that this is 

because spontaneous pain reflects a greater degree of underlying 

hypersensitivity but we were not able to investigate this further in the present 

study. Mexiletine, which is orally active, and its congener lidocaine are both 

effective analgesics when systemically administered, although their 

therapeutic margins are narrow (Attal et al., 2004; Jarvis and Coukell, 1998). 

Both act primarily as Na+ channel blockers that are not selective for channel 

subtypes, with mexiletine displaying slightly higher potency at both 

tetrodotoxin-sensitive and –insensitive channels (Weiser, 2006). We did not 

therefore examine the effects of systemically administered lidocaine. Neither 

did we assess the effects of regional administration of lidocaine at high 

concentrations to produce local anaesthesia because the main (sciatic) nerve 

from the distal hindlimb contains both afferent and efferent fibres, so any 
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directed attempt at local anaesthesia would be likely to compromise the 

animal’s ability to deliver an effective reflex withdrawal. 

All three analgesics tested showed a trend towards reduction in 

mechanical allodynia in the CCI + CFA model, although it was only statistically 

significant with diclofenac, which could be a result of it attenuating both peri-

neural and peripheral inflammation.  

The static weight bearing difference in the CCI + CFA model here was 

significantly reduced by gabapentin, contrasting with observations in CCI 

alone and other nerve injury models where the close analogue, (1S, 3R)-3-

methylgabapentin failed to affect static weight-bearing at doses causing 

robust reversal of mechanical allodynia (Nakazato-Imasato and Kurebayashi, 

2009; Urban et al., 2005). Gabapentin has also been shown to reduce static 

weight bearing difference in a rat model of osteoarthritis, whereas a COX-2 

inhibitor did not (Ivanavicius et al., 2007). However, in another study following 

CFA injection, diclofenac was reported to successfully reverse static weight 

bearing differences (Huntjens et al., 2009). It is clear from the present study, 

which represents a new model of spontaneous pain, that different facets of 

ongoing pain states, assessed in different behavioural tests, are differentially 

susceptible to putative analgesic agents. This emphasises the need for a 

wide-ranging behavioural assessment in any studies evaluating the likely 

clinical efficacy of new analgesic agents.  

 

In summary, we have introduced a novel, clinically relevant model of chronic 

pain, which combines both neuropathic and inflammatory injury. This model 

could prove useful as a new tool for investigating the mechanisms of 
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spontaneous pain, a common clinical complaint. The SFL that is characteristic 

of this model is sensitive to two clinically used analgesics that are thought to 

preferentially target neuropathic and inflammatory pain, suggesting that 

combinations of such agents may be useful in the treatment of clinically 

relevant human pain states. However, it remains to be ascertained whether 

combined use of such agents leads to greater analgesic efficacy in a clinical 

context. The CCI + CFA model could well contribute to identifying new 

therapeutic targets for analgesia in chronic pain and to improving 

understanding of the complex matrix of molecular changes occurring in DRG 

and spinal cord that may help to define new strategies for the relief of chronic 

pain. 
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Figure Legends 

Fig. 1. Time-courses of thermal hyperalgesia (a-c) and mechanical allodynia 

(d-f) following CFA inflammation (a and d), CCI nerve injury (b and e) or 

combined CCI + CFA (c and f). Responses are shown for ipsilateral (£) and 

contralateral (¢) hindpaws. Day of surgery is day 0 and pre-surgery baseline 

values are indicated as B/L. Data are expressed as mean ± SEM for 

ipsilateral and contralateral paw withdrawal latency (PWL) measured in s, and 

as transformed (y=ln(y)) data for paw withdrawal threshold (PWT) measured 

in g. Two-way repeated measures ANOVA with Bonferroni’s post hoc test was 

used to compare post-surgery values for ipsilateral and contralateral 

hindpaws to pre-surgery baselines  (*p<0.05, **p<0.01, ***p<0.001), or to 

compare ipsilateral to contralateral values over time (#p<0.05, ##p<0.01, 

###p<0.001), n=6.  
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Fig. 2. Time course of: a) static weight bearing difference and b) spontaneous 

foot lifting (SFL) following CFA (white columns), CCI (grey columns), or 

combined CCI + CFA (black columns). Surgery was performed at Day 0, and 

data are shown as mean ± SEM (n=8) for the difference between the 

ipsilateral and contralateral hindpaws or the cumulative foot lifting duration (in 

s) over a three min period. In a) two-way repeated measures ANOVA with 

Bonferroni’s post hoc test revealed **p<0.01 for combined CCI + CFA 

compared to CCI, ## and ### p<0.01 and p<0.001 respectively for combined 

model compared to CFA. In b) two-way repeated measures ANOVA with 

Bonferroni post hoc test revealed ***p<0.001 for combined model compared 

to CCI, as well as # and ### p<0.05 and p<0.001 respectively for combined 

CCI + CFA compared to CFA. 

 

Fig. 3. Typical immunofluorescence images of ATF-3 expression in the DRG 

following, a) CFA, b) CCI and c) combined CCI + CFA. ATF-3 staining is 

clearly punctate and confined to the nucleus (shown as intense compact 

staining, or in red). The marker of myelinated neurons, NF-200 is shown as 

diffuse cytosolic staining or in green. d) The percentage of ATF-3-positive 

neurons in L4 and L5 DRGs ten days after surgery is shown. Statistical 

analysis by one-way ANOVA with Newman-Keuls multiple comparison test 

revealed ***p<0.001 for CCI compared to CFA and for combined CCI + CFA 

compared to CFA. 

 



33 
 

Fig. 4. The effect of analgesics on: a) mechanical allodynia and b) differences 

in static weight bearing in the combined CCI + CFA model, 8 days post-

surgery. The drugs administered systemically (IP) were gabapentin 50 mg/kg 

(�), diclofenac 100 mg/kg (p), mexiletine 30 mg/kg (q) or vehicle 0.9% 

saline (¢). Data are expressed as the mean PWT ± SEM in g from the 

ipsilateral, sensitised side. Repeated measures ANOVA (Friedman’s test) 

followed by Dunn’s post hoc test revealed * p<0.05 for diclofenac at 300 min 

compared to pre-drug values. In b) data are expressed as the mean 

percentage of the pre-drug static weight bearing difference ± SEM (static 

weight bearing difference = contralateral minus ipsilateral in g). One-way 

repeated measures ANOVA followed by Dunnett’s multiple comparison test 

revealed *p<0.05 for gabapentin at 90 min compared to pre-drug values. 

 

Fig. 5. The effects of analgesics (administered IP) on spontaneous foot lifting 

(SFL) behaviour in the combined CCI + CFA model at 8 days post-surgery: a) 

Vehicle (0.9% saline), b) Gabapentin (50 mg/kg), c) Diclofenac (100 mg/kg), 

d) Mexiletine (30 mg/kg). Bar charts show percentage of rats displaying an 

SFL duration of >10 s per 3 min. (Fisher’s exact test revealed ***p<0.001 for 

gabapentin and diclofenac at 90 and 180 min compared to pre-drug values). 

Scatter plots show individual SFL scores (one-way repeated measures 

ANOVA followed by Dunnett’s multiple comparison test revealed *p<0.05 for 

gabapentin at 180 min compared with pre-drug values, n=8 for all 

experiments).  
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 

 

 

 


