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Abstract. We have developed an ensemble Kalman Filter
(EnKF) to estimate 8-day regional surface fluxes of CO2
from space-borne CO2 dry-air mole fraction observations
(XCO2) and evaluate the approach using a series of synthetic
experiments, in preparation for data from the NASA Orbiting
Carbon Observatory (OCO). The 32-day duty cycle of OCO
alternates every 16 days between nadir and glint measure-
ments of backscattered solar radiation at short-wave infrared
wavelengths. The EnKF uses an ensemble of states to rep-
resent the error covariances to estimate 8-day CO2 surface
fluxes over 144 geographical regions. We use a 12×8-day lag
window, recognising that XCO2 measurements include sur-
face flux information from prior time windows. The obser-
vation operator that relates surface CO2 fluxes to atmospheric
distributions of XCO2 includes: a) the GEOS-Chem transport
model that relates surface fluxes to global 3-D distributions
of CO2 concentrations, which are sampled at the time and
location of OCO measurements that are cloud-free and have
aerosol optical depths<0.3; and b) scene-dependent aver-
aging kernels that relate the CO2 profiles to XCO2, account-
ing for differences between nadir and glint measurements,
and the associated scene-dependent observation errors. We
show that OCO XCO2 measurements significantly reduce the
uncertainties of surface CO2 flux estimates. Glint measure-
ments are generally better at constraining ocean CO2 flux es-
timates. Nadir XCO2 measurements over the terrestrial trop-
ics are sparse throughout the year because of either clouds or
smoke. Glint measurements provide the most effective con-
straint for estimating tropical terrestrial CO2 fluxes by accu-
rately sampling fresh continental outflow over neighbouring
oceans. We also present results from sensitivity experiments
that investigate how flux estimates change with 1) bias and
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unbiased errors, 2) alternative duty cycles, 3) measurement
density and correlations, 4) the spatial resolution of estimated
flux estimates, and 5) reducing the length of the lag window
and the size of the ensemble. At the revision stage of this
manuscript, the OCO instrument failed to reach its orbit after
it was launched on 24 February 2009. The EnKF formulation
presented here is also applicable to GOSAT measurements of
CO2 and CH4.

1 Introduction

CO2 surface fluxes inferred from atmospheric CO2 con-
centrations by inverting models of atmospheric transport
have led to substantial improvements in our understanding
of the contemporary carbon cycle (e.g.,Bousquet et al.,
2000). Previous studies that employ these methods to es-
timate surface fluxes of CO2 have tended to use accurate,
but spatially sparse and heterogeneous, ground-based mea-
surements, which were not designed for the flux estimation
problem, consequently limiting the extent of spatial disag-
gregation of fluxes that can be achieved (e.g.,Houweling
et al., 1999; Rödenbeck et al., 2003). Satellite measurements
of CO2 offer new constraints for estimating surface fluxes.
The SCanning Imaging Absorption spectroMeter for Atmo-
spheric ChartograpHY (SCIAMACHY) satellite instrument
(Bovensmann et al., 1999) has measured short-wave infra-
red wavelengths (SWIR), with greatest sensitivity to CO2 in
the lower troposphere, since its launch in 2002. Current CO2
column volume mixing ratio products from SCIAMACHY
have an estimated measurement accuracy of between 1 and
5% (Schneising et al., 2008; Barkley et al., 2006, 2007). Un-
characterized systematic and random errors (e.g.,Houweling
et al., 2005), while the subject of ongoing research (Schneis-
ing et al., 2008), limit the application of these data for surface
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flux estimation. Top-down studies that use satellite mea-
surements of CO2 retrieved at thermal infra-red wavelengths,
with greatest vertical sensitivity in the free troposphere, have
concluded that uncharacterized observation and model bi-
ases compromise resulting surface flux estimates (Chevallier
et al., 2005; Tiwari et al., 2006).

The NASA Orbiting Carbon Observatory (OCO)1 (Crisp
et al., 2004), and Japanese Greenhouse Observing SATellite
(GOSAT) (Maksyutov et al., 2008), launched in early 2009,
measure SWIR wavelengths, that are sensitive to CO2 in the
free and lower troposphere. OCO and GOSAT will operate
two modes of observation: (1) nadir, and (2) glint, where
the instrument boresight is directed off-nadir to the angle of
specular reflection. The glint mode increases the signal to
noise of measurements over the ocean. Dry-air CO2 mole
fractions (XCO2) will be retrieved from the observed spec-
tra to a precision of 1–2 ppmv (parts per million by volume)
(Crisp et al., 2004), a level of precision necessary to im-
prove upon constraints from existing in situ measurements
(Rayner et al., 2002; Patra et al., 2003; Miller et al., 2007).
We focus on OCO measurements of CO2, but the general
assimilation approach described here can easily be applied
to GOSAT measurements of CO2 or CH4. Recent studies
have used variational data assimilation methods with syn-
thetic OCO observations to show that these data have the
potential to estimate weekly and daily surface CO2 fluxes at
model grid scales of order 3.75◦ in longitude and 2.5◦ in lat-
itude (Baker et al., 2006; Chevallier et al., 2007a; Chevallier,
2007b). These studies (1) assumed a constant measurement
error (1–2 ppmv), and (2) used a flat weighting function to
convert the model vertical CO2 profiles into XCO2.

We have developed an Ensemble Kalman Filter (EnKF)
(Evensen, 1994, 2003; Ehrendorfer, 2007) to estimate sur-
face CO2 fluxes from space-borne measurements of XCO2

(Sect.2). The EnKF, an independent and complementary ap-
proach to variational assimilation, has been developed in the
physical oceanography and meteorology communities (e.g.,
Evensen, 1994; Houtekamer and Mitchell, 1998; Lorenc,
2003), and recently applied to carbon cycle research (Peters
et al., 2005; Bruhwiler et al., 2005). The EnKF methodol-
ogy we use is outlined in Sect.3. We use the GEOS-Chem
chemistry transport model to describe the relationship be-
tween surface CO2 fluxes and 3-D atmospheric CO2 concen-
trations, which are then sampled along the proposed OCO or-
bits and convolved with scene-dependent instrument averag-
ing kernels as a function of observation modes, surface types,
solar zenith angles, and optical depths (Sect.2). This new,
improved description of OCO measurements and their errors
(Bösch et al., 2009, Sect.2) is expected to provide more re-
alistic descriptions of XCO2 distributions, with which to infer
more realistic flux estimates. We use the EnKF to explore

1At the time of revision, the NASA OCO satellite failed to reach
its orbit after it was launched from Vandenberg Air Force Base,
California, USA on 24 February 2009.

the sensitivity of the surface flux inverse problem to changes
in instrument configurations and the size of geographical re-
gions over which fluxes are to be estimated (Sect.4). We
conclude the paper in Sect.5.

2 Simulated OCO XCO2 observations and uncertainties

The OCO instrument was planned to be launched into the
NASA EOS Afternoon Constellation (A-train), which is in
a sun-synchronous polar orbit at an approximate altitude of
705 km. This orbit has 14.6 equator crossings per day, sepa-
rated by 24.7◦ in longitude, resulting in a 16-day repeat cycle.
OCO will have a local equatorial crossing time of 13:18. The
OCO platform includes three, high-resolution grating spec-
trometers that measure absorptions of the reflected sunlight
by using two CO2 bands (1.61 and 2.06µm) and the O2 A-
Band (0.765µm) using nadir view geometry or glint view
geometry in which the instrument will be pointed to the spot
where solar radiation is specularly reflected from the surface
(Crisp et al., 2004). The 32-day duty cycle of OCO will al-
ternate between 16-day cycles of nadir and glint modes.

We model OCO XCO2 measurements in a four-step pro-
cess, which constitutes the observation operatorH that re-
lates surface CO2 fluxes to global distributions of XCO2.
First, we use the GEOS-Chem chemistry transport model
(v7-03-06) to relate surface fluxes to global 3-D CO2 con-
centrations. For the purpose of these calculations we use the
same flux inventory as described inPalmer et al.(2008) for
2003. For the sake of brevity, here we describe the model
briefly and refer the reader to AppendixA andPalmer et al.
(2008) for further details. We use a horizontal resolution of
2◦ in latitude and 2.5◦ in longitude for the experiments de-
scribed here, with meteorological analyses from version 4 of
the GEOS model from the NASA Goddard Global Modelling
and Assimilation Office.

We include CO2 estimates for daily biospheric fluxes (Pot-
ter et al., 1993), monthly oceanic fluxes (Takahashi et al.,
2002), monthly biomass burning fluxes from the second ver-
sion of the Global Fire Emission Database (GFEDv2) for
2003, a climatological distribution of annual fossil fuel emis-
sions that have been scaled to 2003 (Palmer et al., 2008), and
climatological biofuel fluxes (Yevich and Logan, 2003).

Second, we sample the 3-D field of CO2 concentrations at
the time and the location of each nadir and glint measure-
ment using the orbits of the Aqua satellite in 2006, which
leads the A-train constellation with a local equatorial cross-
ing time of 13:30. In this study, we use a distribution of mea-
surements based on the availability of full-physics retrievals
(Bösch et al., 2009), assumed to be made at every 20 s so that
two consecutive observations in one orbit are separated by
1.2◦ in latitude.

Third, we use seasonal probability density functions
(PDFs) of cloud and aerosol optical depths (AODs), derived
from the MODIS and MISR instruments (Bösch et al., 2009),
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to remove cloudy scenes and scenes with AOD>0.3 that
will not be retrieved, at least, initially from OCO. These re-
strictions remove about 50–60% of the daily available nadir
measurements, and 60–70% of the daily glint measurements.
Hereinafter, we refer to the resulting measurements as clear.

Finally, we apply scene-dependent averaging kernels,
which account for the vertical sensitivity of OCO, to map
from the 1-D CO2 concentration profiles to XCO2 (Connor
et al., 2008):

XCO2 = XCO2,a + a
(
(1 − w)−1 (M(xt ) − fa

))
. (1)

Bold lower case variables denote vectors and bold up-
per case variables denote matrices. The subscripta de-
notes a priori;M(xt ) is the GEOS-Chem chemistry transport
model driven by “true” surface fluxes of CO2 (xt ); w denotes
GEOS-4 water mole fractions that are used to map from CO2
concentrations to dry mole fraction; andfa is climatologi-
cal dry CO2 mole fractions that will be used to retrieve CO2
profile information from OCO, and XCO2,a is the associated
column amount. We use an annual zonal mean forfa . The
column averaging kernela is given bytTA, whereA is the
averaging kernel,t is the column integration operator that
integrates a vertical profile to a column and superscript T de-
notes the matrix transpose operation.

We use averaging kernels as a function of two view
modes (nadir and glint), five surface types (snow, ocean, soil,
conifer, and desert), ten solar zenith angles (SZA) (from 10◦

to 85◦ for nadir measurements, and from 10◦ to 72◦ for glint
measurements), and seven AODs from 0 to 0.3 (Bösch et al.,
2009).

Figure1a and b shows averaging kernels for five different
surface types at a SZA of 10◦ under a clear-sky with an AOD
of 0.1. In general, OCO averaging kernels peak in the mid
and lower troposphere. The instrument sensitivity to changes
in CO2 near the surface is particularly important for flux esti-
mation. Using nadir view geometry, the oceans are relatively
dark at the SWIR wavelengths measured by OCO, and the re-
sulting averaging kernels below 400 hPa are lower than over
other surface types. In contrast, glint view measurements
over the oceans take advantage of specular reflection, result-
ing in a large signal to noise and an averaging kernel close to
unity below 400 hPa.

The uncertainty associated with the simulated XCO2 also
depends on the scene characterization. Figure1c and d shows
observation errors over 5 different surface types as a func-
tion of SZA. The error over land is usually<0.5 ppmv for a
single nadir measurement at SZAs<40◦, but increases with
SZA, eventually reaching 1.2 ppmv at a SZA of 85◦. Ob-
servation errors for nadir measurements over ocean are typ-
ically >3.0 ppmv for all SZAs. In contrast, the error for a
single glint measurement over ocean is typically<0.4 ppmv,
smaller than nadir errors over land. These errors for mea-
surements over lands are smaller than the assumed model
transport and representation errors (2.5 ppmv), which, as we

Fig. 1. Orbiting Carbon Observatory (OCO) instrument averag-
ing kernels (dimensionless) associated with(a) nadir and(b) glint
SWIR XCO2 measurements as a function of pressure (hPa) for dif-
ferent land types, at a solar zenith angle (SZA) of 10◦ and an aerosol
optical depth (AOD) of 0.1. Observation errors (ppmv) associated
with (c) nadir and(d) glint XCO2 measurements as function of SZA
for different land types and an AOD of 0.1.

show later, has important implications for flux estimation us-
ing these data.

Figure 2 summarises the resulting 2◦
×2.5◦ distribution

and uncertainties of nadir and glint XCO2 measurements over
16 days between 17 January and 1 February 2003. Conti-
nental regions at mid and low latitudes typically have uncer-
tainties of<0.2 ppmv (Fig.2b), well within the target preci-
sion of OCO (Crisp et al., 2004), while oceans have an ob-
servation error>3 ppmv. Over tropical regions, scenes are
frequently obscured by clouds during the wet seasons, and
frequently obscured by smoke aerosol from biomass burn-
ing during the dry seasons. Glint measurements are gener-
ally restricted to a smaller latitude range (85◦ S to 55◦ N for
the months shown) than nadir measurements because they
are used over a small range of SZAs (<72◦ for glint ver-
sus<85◦ for nadir). There are typically less glint observa-
tions than nadir over the tropics due to their larger view spot
('25 km2 at the extreme view angles versus'3 km2 for the
nadir view). The larger view spot increases the probability

www.atmos-chem-phys.net/9/2619/2009/ Atmos. Chem. Phys., 9, 2619–2633, 2009
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Fig. 2. Number of clear observations (aerosol optical depth<0.3 and cloud-free) for(a) nadir and(b) glint XCO2 measurements averaged
over 16 days from 17 January to 1 February 2003, on a horizontal grid of 2◦

×2.5◦. Associated aggregated errors (ppmv) for the(c) nadir
and(d) glint XCO2 measurements.

of cloud obscuration. A similar method is used to define
“model” XCO2 distributions for the observation system sim-
ulation experiment (OSSE) in Sect.4.

3 The Ensemble Kalman Filter

3.1 Basic formulation

We have developed an ensemble data assimilation system
based on the Ensemble Transform Kalman Filter (ETKF)
technique (Bishop et al., 2001) to simultaneously assimilate
consecutive XCO2 observations. At each assimilation cycle,
we assimilate 8-day OCO observationsyobs to improve the
prior estimation of regional surface CO2 fluxes via:

xa
= xf

+ K [yobs− H(xf )] (2)

K = Pf HT
[HPf HT

+ R]
−1, (3)

wherexf is the a priori state vector;xa is the a posteriori;
H is the observation operator that describes the relationship
between the state vector and the observations (Sect.2); and
K is the Kalman gain matrix that determines the adjustment
to the a priori based on the difference between model and

observations and their uncertainties.R is the observation er-
ror covariance matrix, andPf is the a priori error covari-
ance matrix.H, the Jacobian of the observation operatorH

(Sect.2), mapsPf into observation space. As mentioned
above in Sect.2, the observation operatorH includes the
GEOS-Chem model to describe the atmospheric transport of
CO2, which uses prescribed meteorological analysis; conse-
quently, there is no model feedback between CO2 and atmo-
spheric dynamics and the transport of CO2 can be considered
as a linear process.

The observation error covarianceR includes measurement
(instrument + retrieval) error, model (transport) error and rep-
resentation error (Peylin et al., 2002). Quantifying model
error is non-trivial, and for simplicity we have assumed uni-
form model and representation errors: 2.5 ppmv over land
regions and 1.5 ppmv over oceans (Rödenbeck et al., 2003),
both of which are uncorrelated with the measurement errors.
Also, we assume thatR is either diagonal (i.e., no observa-
tion correlation, Sect.4.1), or has a simple block structure
for correlations between successive observations (Sect.4.4).

Below we show that our model XCO2 fields are able to in-
dependently estimate 8-day mean surface fluxes at a spatial
resolution of 1000×1000 km2; estimating at much finer spa-
tial resolution introduces strong negative error correlations

Atmos. Chem. Phys., 9, 2619–2633, 2009 www.atmos-chem-phys.net/9/2619/2009/
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Fig. 3. The continental and ocean regions used to estimate CO2 source and sinks, based on a coarser distribution from the TransCom-3
experiment (see Table 1 in the text and Gurney et al., 2002).

between neighbouring flux estimates (Sect.4.5). Figure3
shows our geographical regions that span the globe, which
are based on previous work by TransCom-3 (T3) (Law et al.,
2003; Gurney et al., 2002). We divide each T3 land region
into 9 near-equal areas (resulting in 9×11 land regions), and
divide each T3 ocean region into 4 near-equal areas (result-
ing in 4×11 ocean regions). We have included one region
(region 1) to represent all other low-emission regions, typi-
cally covered by snow. Recognising that observed CO2 con-
centration variations contain a history of source/sink signa-
tures, we use a lag window of 12×8 days in the control run
so that the state vectorx consists of these regional fluxes at
the current assimilation timestep and those from the previ-
ous 11 timesteps of 8 days. This corresponds to solving the
regional fluxes over a 3×32-day OCO duty cycles, resulting
in 12×144 control variables. For simplicity, we do not ac-
count for uncertainties in the initial CO2 concentration dis-
tribution at the beginning of the whole experiment, which
progressively become less important than the uncertainties
in the recent surface emissions as more OCO observations
are digested (Chevallier et al., 2007a).

For the control variables corresponding to emissions
within 11×8 days prior to the current 8-day observations,
both the prior estimates and the associated uncertainties are
the results from the previous assimilation cycles. We use cli-
matological flux estimates as the current 8-day regional flux
forecasts (after being enlarged by 80% with respect to the
model run used to generate the observations, Fig.4), with
the associated errorεi for an individual geographical region
i estimated by rescaling the annual-mean T3 regional a priori
errorεT 3 (e.g.,Patra et al., 2003) to an 8-day mean flux error

over an area of 1/9 (for lands) or 1/4 (for oceans) size of the
parent T3 region:

εi = εT 3

(√
365

8

)(√
Al

AT 3

)
, (4)

where the first bracketed term represents the scaling from the
TransCom annual mean error to the 8-day period, and the
second bracketed term represents the scaling from T3 area
AT 3 to the regional areaAl . Table1 summarises the fore-
cast errors for the regions 2 to 144. We assume that the
snow region (region 1) has zero emissions with an uncer-
tainty of 0.1 GtC yr−1. We assume that the a priori errors,
given by Eq. (4), have no temporal or spatial correlation,
so that their (sub) error covariance matrix is diagonal. The
other 11×144 variables (from previous 8-day periods), hav-
ing passed through a number of assimilation cycles, include
spatial and temporal correlations.

Using the ensemble approach, we approximate the a priori
error covariance by introducing an ensemble of perturbation
states1Xf

= [1x1, 1x2, ...,1xNe ] (Evensen, 1994), so
that

Pf
= 1Xf (1Xf )T , (5)

where we have absorbed the normalization factor 1/(Ne−1)

into 1Xf (Zupanski, 2005). As a result,K can now be ap-
proximated by the ensemble gain matrixK e:

K e = 1Xf (1Y)T [1Y(1Y)T + R]
−1, (6)

1Y = H(xf
+ 1Xf )−H(xf ). (7)

www.atmos-chem-phys.net/9/2619/2009/ Atmos. Chem. Phys., 9, 2619–2633, 2009
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Table 1. Uncertainty (GtC yr−1) associated with original
TransCom-3 (T3) continental and ocean regions that have been sub-
divided for our EnKF inversion. We assume the uncertainty of re-
gion 1 (the snow region) to be 0.1 GtC yr−1.

T3 Region Err EnKF Region Err

North American Boreal 0.73 Reg (002–010) 1.64
North American Temperate 1.50 Reg (011–019) 3.38

South American Tropical 1.41 Reg (020–028) 3.18
South American Temperate 1.23 Reg (029–037) 2.76

North Africa 1.33 Reg (038–046) 3.00
South Africa 1.41 Reg (047–055) 3.18

Eurasia Boreal 1.51 Reg (056–064) 3.41
Eurasia Temperate 1.73 Reg (065–073) 3.89

Tropical Asia 0.87 Reg(074–082) 1.95
Australia 0.59 Reg (083–091) 1.34

Europe 1.42 Reg (092–100) 3.20
North Pacific Temperate 0.27 Reg (101–104) 0.61

West Pacific Tropics 0.39 Reg (105–108) 0.88
East Pacific Tropics 0.37 Reg (109–112) 0.83

South Pacific Temperate 0.63 Reg (113–116) 1.42
Northern Ocean 0.35 Reg (117–120) 0.79

Northen Atlantic Temperate 0.27 Reg (121–124) 0.61
Atlantic Tropics 0.41 Reg (125–128) 0.92

South Atlantic Temperate 0.55 Reg (129–132) 1.24
South Ocean 0.72 Reg (133–136) 1.62

Indian Tropical 0.48 Reg (137–140) 1.08
South Indian Temperate 0.41 Reg (141–144) 0.92

Using the EnKF approach we do not need the Jacobian ma-
trix H explicitly to calculate the gain matrixK e.

The EnKF is able to provide a direct estimation of the anal-
ysis error covariance. We use the revised, unbiased Ensem-
ble Transform Kalman Filter (ETKF) algorithm (Wang et al.,
2004; Livings et al., 2008) to determine the analysis ensem-
ble1Xa and the a posteriori error covariance,Pa :

1Xa
= 1Xf T, (8)

and

Pa
= 1Xf T(1Xf T)T . (9)

The transform matrixT is given by

T(T)T = I − (1Y)T [1Y(1Y)T + R]
−11Y. (10)

We simplify the calculation of T, K e, and
[1Y(1Y)T +R], which is large due to the dense OCO
observations, by using singular value decomposition (SVD)
of the scaled model observation ensemble1YT R−1/2

(Livings, 2005).

y, ∆Y

8-day model XCO2

and ensemble

ETKF
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8-day mean flux 
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GEOS-Chem

x
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 ∆
X
a

Fig. 4. Schematic diagram of the OCO XCO2 Observing System
Simulation Experiment (OSSE). The left column describes the sim-
ulation of OCO XCO2 measurements:xt denotes the “true” fluxes;
and H is the observation operator for mapping surface fluxes to
XCO2 observationsyobs. It includes the GEOS-Chem global 3-D
transport model that relates surface fluxes to global 3-D CO2 dis-
tributions, which are then sampled along OCO orbits. Scenes with
cloud or aerosol optical depths>0.3 are removed. The resulting
profiles are mapped to XCO2 using scene-specific averaging kernels,
with associated scene-specific errorR. The right column describes
the simulation of model XCO2 measurements using prior fluxesxf

(80% larger thanxt ) and the associated error covariancePf , which
is approximated by the perturbation state vector ensemble1Xf .
Mappingxf and1Xf to the observation space by observation op-
eratorH results in the model observationy, and the associated vari-
ations1Y. The middle column shows that the Ensemble Transform
Kalman Filter (ETKF) algorithm generates the optimal estimatexa ,
and the a posteriori error covariancePa by comparing the model
forecasts with observations.
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3.2 A priori error and its representation

We construct an ensemble of perturbation states to reflect the
a priori error covariance matrix, using eigenvalue decompo-
sition:

Pf
= Vxp1/2

(
Vxp1/2

)T

, (11)

whereVx andp are the eigenvector matrix and the eigenvalue
diagonal matrix of the error covariance, respectively.

At the limit of using the full-rank matrix, as we do here,
the ensemble of perturbation states is defined as:

1Xf
= Vxp1/2, (12)

where the matrix1Xf has a size ofNx×Ne, with
Nx=12×144, and the ensemble sizeNe being equal toNx .
When a full-rank representation is used, the Kalman gain ma-
trix and the a posteriori error covariance determined from
Eq. (6) and Eq. (9) are fully consistent with the ordinary
Kalman filter approach (Zupanski, 2005). The most time-
consuming part of our EnKF is the projection of the flux
perturbations to the observation space, using the observa-
tion operator that includes running a global transport model
(Sect.2).

In our sensitivity study, we do not need to re-run the trans-
port model for inversions using different observation config-
urations. Instead, we define one diagonal matrix1Xf

0 of
the same size as1Xf , with each column only specifying an
emission occurring in one of the twelve 8-day periods over
one of the 144 regions. We then calculate the variations in
the observed XCO2 caused by these emissions through the
observation operatorH

1Y0 = H(1Xf

0 ) = H(xf
+ 1Xf

0 )−H(xf ). (13)

We can calculate1Y for any given a priori ensemble1Xf

by:

1Y = H(1Xf ) = 1Y0

(
[1Xf

0 ]
−11Xf

)
. (14)

In practice, we retain only a subset of the column vectors
given by Eq. (12), ignoring those associated with small am-
plitudes, sufficient to provide a good approximation of the
error covariances (AppendixB). In such a reduced-rank rep-
resentation, Eq. (14) becomes invalid.

4 Results

We evaluate our EnKF approach using an observing system
simulation experiment (OSSE) framework, which is illus-
trated in Fig.4. OSSEs have been used extensively to study
the impacts of new observations on data assimilation sys-
tems (see for example,Lahoz et al., 2005), but it is widely
recognised that they can lead to over-optimistic results (At-
las, 1997). In our case, we use the same GEOS-Chem trans-
port model to generate and assimilate XCO2 measurements.

Such an OSSE framework is not suitable to study the effects
of systematic model errors on inversions. Instead, we focus
our OSSE on quantifying the science capabilities of realistic
distributions of XCO2 measurements from space-borne sen-
sors.

Observed XCO2 distributions are described in Sect.2,
which we regard as the “truth”. Model XCO2 distributions
are defined similarly but we assume the prior flux estimates
to be 80% higher than the “true” values.

First, we present results from a control experiment for a 7-
month period from 1 January to 31 July 2003, during which
the OCO instrument is assumed to operate at the nominal 32-
day duty cycle with alternating 16-day nadir and glint mea-
surements. We then assess the sensitivity of the a posteriori
flux estimates to 1) systematic (bias) and random (unbiased)
errors; 2) observation error, density and correlations; 3) al-
ternative duty cycles; 4) the spatial resolution of the state
vectors; and 5) the length of the lag window and the size of
the ensemble.

We evaluate the performance of the EnKF by using an er-
ror reductionγ

γ = 1 − σ a/σ f , (15)

whereσ f andσ a denote the a priori and a posteriori variance
uncertainties, respectively. For each 8-day mean regional
flux, we calculate itsσ f from the a priori error covariance
at the time when it first enters the lag window, and calculate
σ a from the a posteriori error covariance at the time when it
leaves the lag window.

The error reductionγ is insensitive to our assumptions
about the “true” surface fluxes, as well as the values of
the simulated XCO2 observations. However, approxima-
tions in the EnKF approach may lead to underestimation of
the a posteriori uncertainties (Livings et al., 2008) when a
reduced-rank representation of the error covariance is used
(see Sect.4.6).

4.1 Control experiment

Figure5 presents the error reduction in the estimates for 8-
day mean fluxes over 144 regions. The results have been
averaged over a 32-day period from 17 January to 17 Febru-
ary 2003.

During the northern winter, nadir measurements cover the
latitudes between 90◦ S and 60◦ N, while glint measurements
only reach 55◦ N. As a result, over most land regions be-
tween 30◦ S and 50◦ N, OCO measurements reduce uncer-
tainties in the flux estimates by more than 70% (Fig.5a),
while errors over the boreal latitudes decrease by 20–65%.
The widespread error reduction reflects the coverage and the
precision of nadir and glint measurements. These significant
reductions are also related to the large uncertainties in the
prior estimates.

We find that most of the error reduction occurs when the
continental signal is younger than 3 weeks and still distinct
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Fig. 5. (a) A posteriori error reduction,γ=1−σ a/σf , associated
with CO2 flux estimation using OCO XCO2 observations over one
duty cycle, including alternate 16-day period of nadir and glint
measurements.(a) Over 17 January–17 February 2003;(b) over
17 January–17 February 2003 without glint measurements over the
ocean; and(c) over 1 May–1 June 2003. Warm colours (high values
of γ ) denote large error reductions and cold colours (low values of
γ ) denote small error reductions.

from the slowly varying background. Over regions with a
dense distribution of observations, the error reduction can
reach saturation well within three (8-day) assimilation cy-
cles. Conversely, at the northern high latitudes during winter,
when there is a low observation density, saturation of error
reduction requires more time but is still within 5–6 assim-
ilation cycles (<2 months). These results suggest that our
3-month lag window is more than sufficient (Sect.4.6).

We find that OCO measurements reduce the uncertainties
in oceanic CO2 flux estimates by 10–60%, despite their a pri-
ori errors being much smaller than the typical values of the
land regions. Most of these reductions are attributed to the
accurate glint measurements over the oceans (Fig.1). To
highlight this point, Fig.5b shows the error reduction when
the glint measurements over the oceans are excluded from
the assimilation. Without these measurements, the error re-

duction over ocean reaches 10–30%. We also find that omit-
ting glint measurements over ocean also leads to lower error
reduction over tropical continents. For example, the error
reduction for region 27 over tropical South America is 50%,
compared to 70% with all clear glint measurements (Fig.5a).
The results reflect the additional constraints on continental
surface CO2 flux from accurate glint measurements of conti-
nental outflow over the surrounding oceans.

The results for the time period from 1 May to 1 June 2003
(Fig. 5c) show similar significant error reductions over land.
In particular, the northern high latitudes are now fully cov-
ered by OCO measurements, and the corresponding error re-
duction reaches 40–90%.

4.2 Sensitivity to bias and unbiased error

We generate a random observation error for each OCO mea-
surement by sampling a Gaussian probability distribution
function with the variance equal to the measurement un-
certainty. Figure6 shows that including random errors to
the “true” OCO observations (see Fig.4) leads to depar-
tures from the control flux estimates. These departures are
well within the a posteriori errors, and usually become even
smaller when averaged over a longer period (not shown).

The impacts from small-scale or scene-dependent mea-
surement biases on the source/sink estimation are of interest.
Previous work has implemented spatially coherent bias by
relating it to sub-micron aerosols (Chevallier et al., 2007a).
We use a similar approach to include an observation bias (in
ppmv) twice that of the obscuring AODs. This results in a
maximum bias for clear observations of about 0.6 ppmv, a
magnitude similar to the typical observation error. Using this
approach, we find significant positive biases over Eurasia,
and over Europe, accompanied by negative and positive bi-
ases over Pacific, similar toChevallier et al.(2007a). How-
ever, these systematic differences in the estimated fluxes are
usually smaller than the a posteriori errors.

4.3 Sensitivity to measurement duty cycle

The OCO satellite repeats its sun-synchronous orbit every
16 days and the current instrument configuration is to switch
between nadir and glint mode at the same frequency (Crisp
et al., 2004), which can be reprogrammed within orbit, if nec-
essary. Consequently, there are a number of nadir-glint mea-
surement combinations that could form a 32-day duty cycle
over the nominal two-year OCO mission. Here we assess the
impact of two alternative duty cycles on estimating surface
CO2 fluxes: the nadir-only cycle and the glint-only cycle.

Figure7a compares the results for the nadir-only and glint-
only duty cycles with the control experiment. We have av-
eraged the results over a 32-day cycle from 17 January to
17 February 2003. For all the three duty cycles, the ge-
ographical pattern of the resulting error reduction is simi-
lar, showing significant reductions (40–85%) over land, and
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Fig. 6. The deviations (GtC yr−1) of the estimated CO2 fluxes from
the “truth” for one duty cycle from 17 January to 17 February 2003.
The results have been aggregated from 144 regions (Fig.3) to the
22 TransCom-3 regions (see Table 1 in the text and Gurney et al.,
2002). Grey line denotes the difference between the a priori and the
“truth”, and the black line is the results for the a posteriori in the
control run. Red and green lines denote the departures of the a pri-
ori from the “truth” in the experiments with systematic or random
observation errors, respectively. For clarity, the a posteriori errors
in the control run are given as the vertical solid lines. The vertical
dashed line demarcates land ocean flux estimates.

moderate reductions (10–65%) over oceans. Because of the
wider observation coverage, the nadir-only cycle has better
performance over northern high latitudes than the other duty
cycles. However, glint-only measurements lead to slightly
larger error reductions over the terrestrial tropics, although
nadir measurements theoretically represent better constraints
for terrestrial sources and sinks by sampling overhead. As
mentioned previously, we generally find that tropical land
masses are typically characterized by extensive and persis-
tent cloud cover during the wet season and by smoke aerosol
during the dry season so the observation density of nadir
measurements is low. High-precision glint measurements,
sampling continental outflow over the oceans, provide im-
portant constraints for estimating land flux estimates.

Nadir measurements provide little constraint on ocean
CO2 flux estimates, as expected. Glint measurements lead to
significant reductions of flux errors over the oceans, reach-
ing 40–60% over the tropics. The 16-day nadir/glint switch
leads to a moderate performance between the glint-only and
nadir-only duty cycles.

Fig. 7. Regional a posteriori error reduction,γ=1−σ a/σf , associ-
ated with CO2 flux estimation using OCO XCO2 observations over
one 32-day duty cycle (17 January–17 February 2003). Results have
been aggregated from 144 regions (Fig.3) to the 22 TransCom-3 re-
gions (see Table 1 in the text and Gurney et al., 2002). The vertical
solid line demarcates land and ocean flux estimates. Significant er-
ror reduction (γ>0.5) is marked by the horizontal solid line.(a)
Squares denote results from the control run, circles denote results
from using only nadir measurements, and triangles denote results
from using only glint measurements;(b) circles denote results from
using 80% of available measurements, and triangles denote results
from including spatial correlations in the measurement error covari-
anceR with an e-folding length scale of 300 km.

4.4 Sensitivity to observation density and correlation

Figure7b shows that because of the high observation density,
reducing the clear observation number by 20% only slightly
increases the uncertainties of the estimated fluxes over 144
regions.

OCO observations are made during daylight, and two con-
secutive orbits are separated by about 24◦ in longitude. To
investigate the impact of measurement correlations, we as-
sume a distance-dependent spatial correlation between obser-
vations from the same satellite orbits so that the off-diagonal
term R(m1, m2) for two measurementsm1 and m2 in one
orbit is given as

R(m1, m2)=
√

R(m1, m1) R(m2, m2) exp(−l(m1, m2)/ lcor),

(16)
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Fig. 8. The sensitivity of error reduction,γ=1−σ a/σf , associated
with CO2 flux estimation using OCO XCO2 observations over one
32-day duty cycle (17 January–17 February 2003), to changes in
the spatial resolution of the state vector. T3 denotes TransCom-3
regions that are approximately 9 500 000 km2.

where lcor=300 km is the characteristic spatial correlation
length scale, andl(m1, m2) is the distance between the two
measurementsm1 andm2. Here we assume that these corre-
lations between successive XCO2 arise from both the model
and observation errors. Figure7b shows that imposing a
spatial correlation weakens the measurement constraint on
flux estimations, as expected. We find the largest impacts
from including observation correlations are over the oceans
where there is a greater density of cloud and aerosol-free
measurements, in agreement withChevallier(2007b). Suc-
cessive clear measurements over most land regions are sparse
and consequently strong correlations are rare. The associ-
ated smaller reduction in error reflects a weaker but possibly
more realistic measurement constraint than used in the con-
trol run, but does not suggest that it is a beneficial practice to
ignore the existing observation correlations in data assimila-
tion (Stewart et al., 2008).

4.5 Sensitivity of state vector resolution

To investigate the sensitivity of our results to the spatial res-
olution of the state vector, we estimate 8-day surface fluxes
over the South American tropical region (Table1) during
17 January to 17 February 2003 at 4 different spatial resolu-
tions: 1) the standard T3 region (Table1) (c. 9 500 000 km2);
2) the 1/4 T3 region (c. 2 300 000 km2); 3) the 1/9 T3 re-
gion (c. 1 100 000 km2); and 4) the 4◦×5◦ grid box resolution
(c. 220 000 km2). To reduce the computational costs, we rep-
resent the rest of world using the other standard T3 regions
(plus one low emission region, see Sect.3).

Figure8 shows that the mean error reduction (i.e., the aver-
aged error reduction over tropical South America) decreases
rapidly as the the spatial resolution increases. We also find
strong negative error correlations for neighbouring grid box
in the inversions at the 4◦×5◦ resolution (not shown). We
obtain similar results over other T3 land regions. Over most
land regions, there are only 1–2 clear observations within

each 2◦×2.5◦ grid box for a 16-day period (Fig.2). Af-
ter we account for model transport and representation er-
rors (assumed to be 2.5 ppmv over lands for the OCO in-
strument with a field of view<25 km2), our simulated XCO2

measurements alone will be insufficient to determine the 8-
day mean fluxes on spatial scales 4◦

×5◦. We acknowledge
that by using a relatively coarse resolution model to simu-
late OCO data, we may over or under-estimate the number
of scenes obscured by clouds or aerosols. The distribution of
measurements also assumes that only a certain percentage of
the available measurements are processed using the computa-
tionally expensive full-physics retrievals (Bösch et al., 2009);
in practice, OCO data will also be processed using a highly-
parameterised retrieval scheme, resulting in a larger num-
ber of XCO2 measurements. We anticipate that using more
dense observations (once their spatial correlations are quan-
tified), we should be able to independently estimate fluxes on
smaller scales.

4.6 Sensitivity to lag window and ensemble size

Figure 9a compares the estimated fluxes in the control ex-
periment with the results for the inversions with a shorter
lag window (8×8 days vs. 12×8), or with a smaller en-
semble size (6×144 vs. 12×144, see AppendixB). The dif-
ferences in the resulting fluxes are typically smaller than
0.05 GtC yr−1. The good agreement is partially because our
approach uses a full-rank representation for the error covari-
ance of the current forecasts, while approximating the error
covariances of the surface flux estimates for the past 8-day
time periods, which have been constrained by observations
in the previous one assimilation cycles.

Figure 9b shows that the error reductions associated with a
shorter lag window (8×8 days) are close to those of the con-
trol run, indicating our results are insensitive to significantly
reducing the original length of the lag time window.

When the size of the a priori ensemble is halved from
12×144 to 6×144, the error reduction is generally overes-
timated (i.e., the posterior errors are underestimated), due to
the loss of the posterior variations by progressively removing
perturbation states associated with small flux uncertainties.
Covariance localisation and inflation are commonly used to
deal with under-sampling and underestimation of error vari-
ances (e.g.,Hamill et al., 2001; Ehrendorfer, 2007). Here,
we have developed a new simple approach to compensate for
this underestimation by accumulating the uncertainties rep-
resented by those removed perturbation states back into the
final calculation of the a posteriori error covariance (see Ap-
pendix B). It requires almost no extra computational cost,
but improves the agreement of the a posteriori errors with
the full-rank approach (Fig.9b).
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Fig. 9. (a) CO2 flux errors (GtC yr−1) over one duty cycle from
17 January to 17 February 2003. The results have been aggregated
from 144 regions (Fig.3) to the 22 TransCom-3 regions (see Ta-
ble 1 in the text and Gurney et al., 2002). The squares denote the
results for the control experiment, the circles denote the experiment
using a shorter (8×8 days vs. 12×8 days) lag window, and the tri-
angles denote the experiment using half the ensemble size (6×144
vs. 12×144). (b) A posteriori error reduction,γ=1−σ a/σf , asso-
ciated with regional fluxes shown in (a). Crosses denote the error
reductions when we have compensated for the underestimated pos-
terior uncertainties due to the reduced-rank representation of the
EnKF.

5 Conclusions

We developed an ensemble Kalman Filter (EnKF) to esti-
mate 8-day regional surface fluxes of CO2 from space-borne
CO2 dry-air mole fraction observations (XCO2) and evalu-
ated the approach using a series of synthetic experiments, in
preparation for data from the NASA Orbiting Carbon Ob-
servatory (OCO). The 32-day duty cycle of OCO alternates
between nadir and glint (specular reflection) measurements
of backscattered solar radiation at short-wave infrared wave-
lengths. Our EnKF represents a complementary approach to
the variational techniques that have already been developed
for interpreting the space-borne XCO2 data (e.g.,Chevallier
et al., 2007a). The main advantages of the EnKF is that
it does not require an adjoint model for the forecast and
observation operators, and provides a direct estimation of
the uncertainty of a posteriori fluxes. We use the ensemble

transform Kalman Filter algorithm to determine the ensem-
ble analysis and its error covariance.

For this work, we estimate 8-day CO2 surface fluxes over
144 geographical regions (corresponding to 1 100 000 km2

over land), based on the TransCom-3 experiments (Gurney
et al., 2002). We use a 12×8-day lag window, taking into
account that XCO2 measurements include surface flux infor-
mation from prior time windows. The observation opera-
tor relates surface CO2 fluxes to the global distributions of
the “observed” XCO2. First, we use the GEOS-Chem trans-
port model to relate surface fluxes to global 3-D distributions
of CO2 concentrations. Second, these distributions are sam-
pled at the time and location of OCO measurements to re-
move cloudy scenes and scenes with aerosol optical depth
(AOD)>0.3. Finally, we use scene-dependent averaging ker-
nels to relate the CO2 profiles to XCO2. We use the scene-
dependent measurement errors that correspond to the aver-
aging kernels. These scene-dependent calculations provide
us with the most realistic simulation of XCO2 distributions to
date, with which to understand potential of OCO to estimate
surface CO2 fluxes. We use the same observation operator to
model atmospheric distributions of XCO2, but with an 80%
bias in the prior surface emissions.

We show that OCO XCO2 measurements significantly re-
duce the uncertainties of surface CO2 flux estimates, con-
sistent with previous studies (Baker et al., 2006; Cheval-
lier et al., 2007a; Chevallier, 2007b). We find that nadir
measurements are better at estimating land-based fluxes and
glint measurements are generally better at constraining ocean
fluxes. Nadir XCO2 measurements over the terrestrial trop-
ics are typically sparse throughout the year because of either
widespread and persistent cloud cover during the wet season
or smoke aerosol associated with extensive biomass burning
during the dry season. We find that glint measurements over
the oceans provide the most effective constraint for estimat-
ing terrestrial CO2 fluxes by accurately sampling fresh con-
tinental outflow over neighbouring oceans.

We also presented the results from sensitivity experiments
to investigate how flux estimates change with 1) bias and un-
biased errors, 2) alternative duty cycles, 3) measurement den-
sity and correlations, 4) the spatial resolution of estimated
flux estimates, and 5) reducing the length of the lag window
and the size of the ensemble. We find that biases in the obser-
vations, which we introduce by scaling the error using AOD
(by a factor of two), cause large perturbations to some of the
posterior fluxes but they are still within the posterior uncer-
tainties of the control experiment. In real observations, there
may be larger systematic errors than we discuss here, and
their effects will require further investigation. We find that
either the current 32-day duty cycle (alternating 16-day cy-
cle between glint and nadir measurements) or one that uses
only glint view measurements will address the primary sci-
ence objectives of the OCO mission, a reflection of the im-
portance of glint measurements in constraining tropical ter-
restrial fluxes. A modest 20% reduction in the number of
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available clear observations does not affect a posteriori re-
gional flux estimates, reflecting the high measurement den-
sity. Introducing a spatial correlation between successive
measurements effectively reduces the number of independent
observations. We find that spatial correlations mainly affect
glint measurements over the oceans where there is a greater
number of neighbouring scenes that are cloud-free and have
AODs<0.3. We find that reducing the size of the geographi-
cal regions over which to estimate surface fluxes much below
1 million km2 introduces large correlations between neigh-
bouring regional estimates. In the control experiment, we
simultaneously estimate surface fluxes at the time of the as-
similation and at times up to 3 months prior. We find that
surface flux estimates for a particular 8-day period typically
converge after ingesting 4–6 weeks of data. To improve the
speed of the EnKF we halved the number of ensemble states
used to determine the a priori error covariance and showed
that the flux estimates were close to the control experiment
but using a reduced number of ensemble states, we generally
underestimated the associated error. Constructing efficient
reduced-rank representations of the EnKF, and the methods
to compensate for associated underestimation of the poste-
rior uncertainties, necessary to reduce computational costs
related to estimating fluxes on finer spatial resolutions, is the
subject of ongoing work.

In light of the failed OCO launch (Palmer and Rayner,
2009), we will focus our developed EnKF on GOSAT mea-
surements of CO2 and CH4. This will require information
about the GOSAT orbit, sampling strategy, and retrieval er-
ror diagnostics that will soon become available. We antici-
pate that application of the EnKF to GOSAT data will differ
only slightly to the application to OCO data shown in this
paper, e.g., length of the assimilation window, which will be
the subject of further work.

Appendix A

Description of the GEOS-Chem Model
of Atmospheric CO2

We use the GEOS-Chem global 3-D chemistry transport
model (v7-03-06) to calculate XCO2 concentrations from pre-
scribed surface CO2 fluxes described below. We used the
model with a horizontal resolution of 2◦

×2.5◦, and 30 verti-
cal levels (derived from the native 48 levels) ranging from the
surface to the mesosphere, 20 of which are below 12 km. The
model is driven by GEOS-4 assimilated meteorology data
from the Global Modeling and Assimilation Office Global
Circulation Model based at NASA Goddard. The 3-D me-
teorological data is updated every six hours, and the mixing
depths and surface fields are updated every three hours. The
CO2 simulation is based onSuntharalingam et al.(2005) and
Palmer et al.(2006, 2008).

We use gridded fossil fuel emission distributions, repre-
sentative of 1995 (Suntharalingam et al., 2005), which we
have scaled to 2003 values using regional budget estimates
for the top 20 emitting countries in 2003 from the Carbon
Dioxide Information Analysis Center (Marland et al., 2007).
Biofuel emission estimates are taken fromYevich and Logan
(2003) and represent climatological values. Monthly mean
biomass burning emission estimates are taken from the sec-
ond version of the Global Fire Emission Database (GFEDv2)
for 2003 (van der Werf et al., 2006), which are derived from
ground-based and satellite observations. Daily mean land
biosphere fluxes are taken from the CASA model for 2001
(Randerson et al., 1997), in the absence of corresponding
fluxes for 2003. We do not explicitly account for the con-
tribution of fuel combustion CO2 from the oxidation of re-
duced carbon species (Suntharalingam et al., 2005) as they
make only a small contribution to the CO2 column. Monthly
mean air-sea fluxes of CO2 are taken from (Takahashi et al.,
1999).

CO2 concentrations for January 2002 were initialized from
a previously evaluated model run (Palmer et al., 2006), which
we integrate forward to January 2003. We include an ad-
ditional initialization to correction for the model bias intro-
duced by not accounting for the net uptake of CO2 from
the terrestrial biosphere. We make this downward correct
by comparing the difference between GLOBALVIEW CO2
data (GLOBALVIEW-CO2) and model concentrations over
the Pacific during January 2003. Differences range from 1 to
4 ppmv with a median of 3.5 ppmv, and we subtract this value
globally, followingSuntharalingam et al.(2005). From Jan-
uary 2003 the total CO2 tracer becomes the “background”
CO2 concentration and is only subject to atmospheric trans-
port. At that time, we also introduce additional model trac-
ers, initialized with a uniform value (for numerical reasons
and which is subtracted in subsequent analyses), that ac-
count for the monthly production and loss of CO2 originat-
ing from specific geographical regions and surface processes
(“tagged” tracers). The linear sum of these monthly tagged
tracers (and the “background”) is equivalent to the total CO2.

Appendix B

Description of the reduced representation
of a priori error covariance

To reduce the computational costs of our EnKF approach, we
use a reduced-rank representation to approximate the a priori
error covariances, so that fewer ensemble states need to be
projected to the observation space using the observation op-
eratorH that includes a global 3-D transport model of CO2.

As mentioned in Sect.3, during thej -th cycle of assimi-
lating XCO2 observations from dayd to d+8, our state vector
consists of 1) the current forecast of the regional surface CO2
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fluxes from dayd to d+8, and 2) the 8-day mean regional
flux estimates from time periods prior to dayd.

We assume no error correlation between the current fore-
cast and the previous analysisxa

j−1, and hence the prior error
covariance at the assimilation cyclej consists of two blocks:
1) the error covariance of the current forecast; and 2) the er-
ror covariance ofxa

j−1.
The error covariance of the current forecast is a diagonal

matrix of sizeNr×Nr (Sect.3), whereNr is the number
of the global regions (Nr=144 in the control run). In the
reduced-rank approach discussed here, we still useNr new
perturbation states1Xp1

j to represent this diagonal error co-
variance matrix.

But we only choose a subset of the a posteriori ensemble
of the previous cycle to approximate the error covariance of
the estimates over the past time periods in the steps described
below.

For clarity, we start by calculating the a posteriori ensem-
ble at the end of the previous assimilation cyclej−1 via
Eq. (8), where the subscript denotes the assimilation cycle
number:

1Xa
j−1 = 1Xf

j−1Tj−1. (B1)

Matrix 1Xa
j−1 is the same size of matrix1Xf

j−1, which
consists ofNe columns, each withNx elements representing
perturbations in the regional 8-day mean surface CO2 fluxes
prior to the current dayd.

We then use SVD to decompose1Xa
j−1:

1Xa
j−1 = Ua

j−16
a
j−1(V

a
j−1)

T , (B2)

whereUa
j−1, andVa

j−1 are two orthogonal matrices of size
Nx×Nx andNe×Ne, respectively, and6a

j−1 is a diagonal
matrix of sizeNx×Ne, with its non-zero diagonal elements
presenting the singular values of matrix1Xa

j−1 in descend-
ing order of magnitude.

By applyingVa
j−1 to Eq. (B2), we obtain

1Xc
j = 1Xa

j−1Vj−1 = Ua
j−16

a
j−1. (B3)

Matrix 1Xc
j has the same size as1Xa

j−1, and satisfies

Pa
j−1=1Xa

j−1(1Xa
j−1)

T
=1Xc

j−1(1Xc
j−1)

T (B4)

We divide the ensemble1Xc
j=[1xc

1, 1xc
2, ...,1xc

Ne
] into

two subsets: 1) the major subset1Xp2
j that consists of its

first Nb columns; and 2) the minor subset1Xs
j for its last

Ne−Nb columns. The two subsets together satisfy

Pa
j−1 = 1Xp2

j (1Xp2
j )T + 1Xs

j (1Xs
j )

T . (B5)

The major subset1Xb
j contains the columns with the largest

amplitudes, and in principle, a suitable choice ofNb ensures
that Pp2

j = 1Xp2
j (1Xp2

j )T provides a good approximation
of the error covariancePa

j−1, while the uncertainties repre-

sented byPs
j=1Xs

j (1Xs
j )

T are small enough to be ignored.

In this study, we chooseNb to be equal toNe−Nr (in the
spin-up period where the lag window is shorter than 12×8
days,Nb is chosen to increase with the size of the state vector
till it reaches the pre-defined ensemble sizeNe). Combining
the resulting ensemble1Xp2

j and1Xp1
j provides a reduced-

rank representation of the prior uncertainties of the current
assimilation cyclej .

During the previous assimilation cycle, the GEOS-Chem
model run, forced by its prior surface flux estimates, also
generates an estimate of the 3-D CO2 concentrationscf

j−1 at
the beginning of dayd. Similar simulations for the a priori
ensemble1Xf

j−1 provide an ensemble of 3-D CO2 concen-

trations1Cf

j−1 for the variations caused by the perturbations
in the surface CO2 fluxes. We calculate the “analysis” of
the 3-D CO2 concentrations fromcf

j−1 and1Cf

j−1 using an
equation similar to Eq. (2), and generate the variations corre-
sponding to1Xp2

j by selecting the firstNb fields from matrix

1Cc
j = 1Cf

j−1Tj−1Vj−1.
In the current assimilation cycle over dayd to dayd+8,

we use the GEOS-Chem transport model to propagate these
resulting CO2 fields to the current observation space to ac-
count the contributions from the surface CO2 fluxes prior to
dayd.

The reduced-rank representation tends to underestimate
the a posteriori error covariance. To compensate for this un-
derestimation, we accumulate the previously ignored small
uncertaintiesPs

j into the calculation of the final a posteri-
ori error covariance at the time the regional fluxes estimates
over dayd to dayd+8 leave the lag window of 12×8 days,
after having been constrained by observations in 12 consec-
utive assimilation cycles. This compensation is consistent
with the assumption that these previously ignored uncertain-
ties are too small to be significantly reduced by ingesting ob-
servations.
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