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Power spectrum generated during inflation
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Recently there have been differing viewpoints on how to evaluate the curvature power spectrum
generated during inflation. Since the primordial curvature power spectrum is the seed for structure
formation and provides a link between observations and inflationary parameters, it is important to
resolve any disagreements over the expression for the power spectrum. In this article we discuss
these differing viewpoints and indicate issues that are relevant to both approaches. We then argue
why the standard expression is valid.

PACS numbers: 98.80.Cq

INTRODUCTION

In the standard inflationary Universe quantum fluctu-
ations of the inflaton field give rise to a curvature per-
turbation that is constant for modes outside the horizon.
This curvature perturbation is then the seed for structure
formation in the Universe. For the inflaton field ϕ given
by

ϕ(~x, t) =
1

(2π)3/2

∫

d3k [ak ϕk(t)e
i~k.~x + a†k ϕ

∗
k(t)e

−i~k.~x]

(1)
the curvature perturbation generated during inflation on
superhorizon scales is given by

ζk =
1

3

δρ(k)

ρ+ p
(2)

=
1

3

V ′(ϕ0) δφ(k)

ϕ̇2
0

(3)

where δϕ(k)2 = [k3/(2π2)] |ϕk|
2 and ϕ0 represents the

classical homogeneous background. For a very flat infla-
ton potential the inflaton can be taken to be massless and
δϕ(k) = H/(2π) where H is the Hubble parameter dur-
ing inflation. The curvature power spectrum is defined
as |ζk|

2.
In a series of papers [1–8], it has been argued that

the regularisation and renormalisation scheme adopted
to make 〈ϕ2(x)〉 = 1/(2π)3

∫

d3k |ϕk|
2 finite should also

be applied when considering δϕ(k)2. Then in adiabatic
regularisation the subtraction scheme applied to the inte-
grand in 〈ϕ2〉 should be retained while obtaining δϕ(k)2,
and so δϕ(k)2 = k3/(2π2) [|ϕk|

2−|ϕK |2], where ϕK is the
adiabatic solution to the second order. This then mod-
ifies the power spectrum since the subtraction scheme
which cancels the contribution of high momentum modes

in 〈ϕ2(x)〉 also modifies the contribution of the superhori-
zon low momentum modes. As argued in Ref. [2–4], this
reduces the amplitude of the power spectrum for a mas-
sive inflaton, retains the scale free nature of the spec-
trum, modifies the tensor-scalar ratio r, and allows for
the compatibility of quartic chaotic inflation with data.

However, it was argued in Ref. [9] that while the fluc-
tuation mode functions are constant outside the horizon
the adiabatic solution is not and so the power spectrum
then depends on the time after horizon crossing at which
the power spectrum is evaluated. It was also argued
that different adiabatic subtraction schemes gave differ-
ent results. It was therefore concluded that one should
carry out adiabatic subtraction only for high momentum
modes.

The above result was countered in Ref. [5] by argu-
ing that adiabatic regularisation required subtracting the
adiabatic solution for all modes, not just high momentum
modes. The authors further argued that their adiabatic
subtraction scheme differed from that in Ref. [9], and
that their scheme agreed with de Witt-Schwinger renor-
malisation (in momentum space in the massless limit)
which identifies counterterms without invoking any adi-
abatic condition.

Ref. [10] then argued that the de Witt-Schwinger ex-
pansion is relevant for large momentum modes but is
not valid for superhorizon modes that leave the hori-
zon. This was further countered by Ref. [8] wherein
it was re-emphasised that adiabatic subtraction must be
applied to all modes, that the energy momentum tensor
and 〈ϕ2〉 require mode subtractions at the 4th and 2nd
order respectively, and that the adiabatic solution at the
appropriate order need not approximate the solution for
all momenta.

Since the curvature power spectrum is an essential in-
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gredient in the process of extracting early Universe pa-
rameters from current observations, it is important that
the above issues be resolved and that there is clarity on
what is the appropriate expression for the power spec-
trum. Below we comment on some issues related to both
viewpoints on obtaining the power spectrum and then
present arguments as to why the standard expression in
the literature is appropriate.

THE POWER SPECTRUM

The argument in Refs. [9, 10] on applying the subtrac-
tion scheme only to high momentum modes is equivalent
to introducing a time dependent cutoff such as Θ(k−aH)
to subtract only high momentum modes while calculating
〈ϕ2(x)〉. (Refs. [9, 10] actually calculate 〈Q2(x)〉, where
Q is the Mukhanov-Sasaki variable.) Now for a rigid
spacetime ignoring metric perturbations the equation of
motion for ϕk implies

ρ̇k = −3H(ρk + pk) . (4)

Integrating over all k modes then gives

ρ̇ϕ = −3H(ρϕ + pϕ) . (5)

But if we replace ρϕ and pϕ by renormalised quantities
ρren and pren with the contribution of high momentum
modes cut off at k = a(t)H , then this time dependent
cutoff spoils the equality above because the time deriva-
tive on the left hand side of Eq. (5) acts on the cutoff
too.

ρ̇ren =
d

dt

∫

d3k

(2π)3/2
[ρk −Θ(k − aH)ρK ]ei

~k.~x (6)

and

−3H(ρren + pren) = −3H

∫

d3k

(2π)3/2
[ρk −Θ(k − aH)ρK

+ pk −Θ(k − aH)pK ]ei
~k.~x

(7)

where the subscript K refers to the adiabatic solution.
With the adiabatic solution cancelling (to the relevant
adiabatic order) the high momentum contribution we
then get

ρ̇ren =
d

dt

∫ a(t)H

0

d3k

(2π)3/2
ρke

i~k.~x

6= −3H(ρren + pren)

= −3H

∫ a(t)H

0

d3k

(2π)3/2
[ρk + pk]e

i~k.~x (8)

because of the contribution of the time derivative acting
on the upper limit of the first integral. This suggests

that a regularisation prescription, as proposed by Refs.
[9, 10], that only subtracts the high momentum modes is
not appropriate.
But one may now question whether regularisation and

renormalisation itself are relevant for the power spec-
trum, as insisted on by Refs. [1–8]. After all, the curva-
ture power spectrum depends on δϕ(k) and not 〈ϕ2(x)〉,
and it is the latter that involves the divergent integral
over k. This issue can be resolved by identifying the
quantity that enters in physical observables or in expres-
sions derived from physical observables. Let us consider
the cosmic microwaved background (CMB) temperature
anisotropy variable

Cl =
1

4π

∫

d2n̂ d2n̂′ Pl(n̂.n̂
′) 〈∆T (n̂)∆T (n̂′)〉 (9)

where ∆T (n̂) = T (n̂) − T0 represents the difference in
temperature of the CMB in a direction n̂ from the mean
temperature T0. 〈∆T (n̂)∆T (n̂′)〉 above is obtained from
observations. 1 Then using

(

∆T (n̂)

T0

)

SW

=
1

3
δφ(n̂rL) , (10)

where rL is the distance to the surface of last scattering,
δφ is the perturbation in the gravitational potential and
SW refers to the Sachs-Wolfe effect, we get

Cl ∼ ... 〈δφ(n̂rL) δφ(n̂
′rL)〉

∼ ...

∫

d3q d3q′ei~q.n̂rL ei~q
′.n̂′rL〈δφ~q δφ~q′ 〉

∼ ...

∫

d3q d3q′ei~q.n̂rL ei~q
′.n̂′rLPφ(q) δ(~q + ~q′)

∼ ...

∫

d3qei~q.n̂rL e−i~q.n̂′rLPφ(q) , (11)

where 〈δφ~q δφ~q′ 〉 = Pφ(q) δ(~q+~q′) and Pφ(q) is the power
spectrum associated with δφ. Thus we see that it is
the coordinate space correlation function of the gravita-
tional potential perturbation that is primary. Since the
gravitational potential perturbation is related to quan-
tum fluctuations of the inflaton we would argue that the
relevant quantity for physical observables is the inflaton
correlation function in coordinate space, and this must
be renormalised and finite. Then, as argued in Refs. [1–
8], the power spectrum should reflect the renormalisation
prescription for the coordinate space correlation function
for the inflaton field.
For a massless scalar field

ϕk(t) =
iH

(2k3)
1

2

[1 + ikτ ] exp(−ikτ) (12)

1 More precisely, we measure ∆T (n̂)∆T (n̂′). The difference gives
rise to cosmic variance [11], which we ignore here.
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where τ = −1/[a(t)H ]. Then

〈ϕ2〉 =
1

(2π)3

∫

d3k

[

1

2ka2
+

H2

2k3

]

(13)

Refs. [1–8] define the power spectrum using the adiabat-
ically regularised |ϕk|

2 needed for regularising 〈ϕ2(x)〉.
Such a prescription would eliminate both the terms in
the integrand of Eq. (13). For a scalar field of mass m
the final power spectrum would be driven by the scale m
rather than H [2].
But Eq. (11) indicates that Cl actually depends on the

correlation function of the inflaton at two different points
in space. So we would argue that 〈ϕ(~x, t)ϕ(~y, t)〉 is the
relevant quantity to be used to obtain the power spec-
trum for ϕ, and so the power spectrum should reflect the
renormalisation prescription, if any, for 〈ϕ(~x, t)ϕ(~y, t)〉,
rather than for 〈ϕ2(x)〉. Now

〈ϕ(~x, t)ϕ(~y, t)〉 =
1

2π2

∫

dk k2
[

1

2ka2
+

H2

2k3

]

sin[k|~x− ~y|]

k|~x− ~y|
(14)

This quantity does not require renormalisation as the sine
function makes the integral ultraviolet finite. 2 Therefore
there will be no need of adiabatic subtraction and hence
no modification of the integrand. Then associating δϕ(k)
with the expression in brackets in Eq. (14) we get the
standard expression for δϕ(k) = H/(2π), and thus for
the primordial curvature power spectrum. Note that if
we define the power spectrum using Eq. (14) then both
the terms in the brackets will be included but only the
second term contributes in the large wavelength limit,
k ≪ aH .
We believe that the above prescription might be the

appropriate way of obtaining the power spectrum gen-
erated during inflation. The power spectrum is also not
time dependent as in the prescription of Refs. [1–8].
In the literature different authors define the power

spectrum using either the integrand of 〈ϕ2(x)〉 or of
〈ϕ(~x, t)ϕ(~y, t)〉. If one is ignoring renormalisation of these
quantities then both approaches give the same momen-
tum space power spectrum. But, as we clarify above,
the spatial corrrelation function enters in the expression
for physical observables like Cl and so one must consider
renormalised quantities in coordinate space, and hence
in momentum space too, as argued in Refs. [1–8]. How-
ever, the spatial correlation function that is relevant is
〈ϕ(~x, t)ϕ(~y, t)〉, not the divergent 〈ϕ2(x)〉 which is con-
sidered in Refs. [1–8], and the former quantity does not
require regularisation. We thus get the standard expres-
sion for the power spectrum.

2 Note that the first term is present even in flat spacetime, and
is finite and equal to the equal time Feynman propogator for
a massless scalar field, namely i/(4π2|~x − ~y|2), in Minkowski
spacetime [12].

We must add here that we have only temporarily set
aside the necessity of renormalisation of 〈ϕ2(x)〉. In an
interacting theory, our prescription above is relevant for
calculating the power spectrum only to lowest order. For
example, in a λϕ4 theory

〈ϕ(x)ϕ(y)〉int = 〈ϕ(x)ϕ(y)〉 + iλ

∫

d4z 〈ϕ(x)ϕ(y)ϕ4(z)〉

(15)
and the second term will be proportional to 〈ϕ2(z)〉,
which will require renormalisation. (Note, however, that
a cubic self interaction will not require such renormal-
isation of the correlation function.) Renormalisation of
〈ϕ2(x)〉 will also be needed for obtaining the renormalised
energy momentum tensor in free and interacting field the-
ories. 3

We mention in passing that the expression for
〈ϕ(~x, t)ϕ(~y, t)〉 has an infrared divergence just like
〈ϕ2(x)〉. However for realistic inflation models the in-
flaton may have a mass, albeit small, or the mass may
even be generated non-perturbatively [13], or inflation
may be preceded by a radiation dominated era, which
should remove the infrared divergence.

CONCLUSION

In conclusion, in this article we have discussed two dif-
fering viewpoints on obtaining the power spectrum gen-
erated during inflation. We point out that subtracting
only the contribution of high momentum modes to 〈ϕ2〉,
as suggested by Refs. [9, 10], may not be appropriate
as one does not obtain the standard energy equation for
renormalised quantities. However we also point out that,
keeping in mind physical observables, it is more relevant
to obtain the power spectrum from 〈ϕ(~x, t)ϕ(~y, t)〉, rather
than from 〈ϕ2(x)〉ren as suggested in Refs. [1–8]. Our
prescription then gives the standard expression for the
power spectrum and thereby validates the results in the
literature based on this expression.

After completing this work, we came across Ref. [14]
which contains arguments similar to ours pertaining to
the choice of the correlation function, and divergences at
higher order. It is surprising that their arguments have
not been emphasised in the literature.

3 We point out a subtlety here. We have been using 〈ϕ2(x)〉
for 〈ϕ(x)ϕ(x)〉 while discussing the power spectrum. But this
is a slight abuse of notation. Technically speaking, ϕ2(x) is a
composite operator and

〈ϕ2(x)〉 = 〈ϕ(x)ϕ(x)〉 + ... , (16)

where we have used the operator product expansion. In fact, for
the energy momentum tensor it is the quantity on the lhs that
is needed.
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