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[1] Frequency-magnitude distributions, and their associated
uncertainties, are of key importance in statistical seismology.
When fitting these distributions, the assumption of Gaussian
residuals is invalid since event numbers are both discrete and
of unequal variance. In general, the observed number in any
given magnitude range is described by a binomial
distribution which, given a large total number of events of
all magnitudes, approximates to a Poisson distribution for a
sufficiently small probability associated with that range. In
this paper, we examine four earthquake catalogues: New
Zealand (Institute of Geological and Nuclear Sciences),
Southern California (Southern California Earthquake
Center), the Preliminary Determination of Epicentres and
the Harvard Centroid Moment Tensor (both held by the
United States Geological Survey). Using independent
Poisson distributions to model the observations, we
demonstrate a simple way of estimating the uncertainty on
the total number of events occurring in a fixed time period.
Citation: Greenhough, J., and I. G. Main (2008), A Poisson

model for earthquake frequency uncertainties in seismic hazard

analysis, Geophys. Res. Lett., 35, L19313, doi:10.1029/

2008GL035353.

1. Introduction

[2] It is well documented that typical catalogues contain-
ing large numbers of earthquake magnitudes are closely
approximated by power-law or gamma frequency distribu-
tions [Richter, 1958; Turcotte, 1992; Main, 1996; Main et
al., 2008]. This paper addresses the characterisation of
counting errors (that is, the uncertainties in histogram
frequencies) required when fitting such a distribution via
the maximum likelihood method, rather than the choice of
model itself (for which see Leonard et al. [2001]). We
follow this with an empirical demonstration of the Poisson
approximation for total event-rate uncertainty (used by
Leonard et al. [2001]). Our analysis provides evidence to
support the assumption in seismic hazard assessment that
earthquakes are Poisson processes [Reiter, 1990; Bozorgnia
and Bertero, 2004; Lombardi et al., 2005; Kossobokov,
2006], which is routinely stated yet seldom tested or used
as a constraint when fitting frequency-magnitude distribu-
tions. Use is made of the Statistical Seismology Library
(D. Harte, http://homepages.paradise.net.nz/david.harte/
SSLib), specifically the data downloaded from the New
Zealand Institute of Geological and Nuclear Sciences (GNS,
http://www.gns.cri.nz), the Southern California Earthquake
Center (SCEC, http://www.scec.org) and the United States

Geological Survey (USGS, http://www.usgs.gov), along
with associated R functions for extracting the data.
[3] Consider a large sample of N earthquakes. In order to

estimate the underlying proportions of different magnitudes,
which reflect physical properties of the system, the data are
binned into m magnitude ranges containing n events such
that

P
i=1
m ni = N. Since n are discrete, a Gaussian model for

each ni is inappropriate and may introduce significant biases
in parameter estimations [Aki, 1965; Keilis-Borok et al.,
1970; Sandri and Marzocchi, 2007]. Hence when fitting
some relationship with magnitudes M, nfit = f(M), linear
regression must take the generalised, rather than least-
squares, form [McCullagh and Nelder, 1989]. Weighted
least squares is an alternative approach which we do not
consider here. The set n is described as a multinomial
distribution; should we wish to test whether two different
samples n and n0 are significantly different given a fixed N
‘‘trials’’, confidence intervals that reflect the simultaneous
occurrence of all n must be constructed using a Bayesian
approach [Vermeesch, 2005]. However, in the case of
earthquake catalogues, it is the temporal duration rather
than the number of events that is fixed. Observational
variability is not, therefore, constrained to balance a higher
ni at some magnitude with a lower nj elsewhere, and n are
well approximated by independent binomial distributions
[Johnson and Kotz, 1969].
[4] Each incremental magnitude range (Mi � dM/2, Mi +

dM/2) contains a proportion of the total number of events
and hence a probability pi with which any event will fall in
that range. Providing the overall duration of the catalogue is
greater than that of any significant correlations between
either magnitudes or inter-event times, ni can be modeled as
a binomial experiment with N independent trials each
having a probability of ‘‘success’’ pi [Johnson and Kotz,
1969]. The binomial distribution converges towards the
Poisson distribution as N ! 1 while Npi remains fixed.
Various rules of thumb are quoted to suggest values of N
and pi for which a Poisson approximation may be valid [see,
e.g., Green and Round-Turner, 1986; Borradaile, 2003].
Here, we show empirically in Sect. 2 that the frequencies in
four natural earthquake catalogues are consistent with a
Poisson hypothesis, while in Sect. 3 we derive the resulting
Poisson distributions of the total numbers of events, which
provide simple measures of uncertainty in event rates.

2. Frequency-Magnitude Distributions

[5] Four earthquake catalogues are analysed: New Zea-
land (1460–Mar 2007), Southern California (Jan 1932–
May 2007), the Preliminary Determination of Epicentres
(PDE, Jan 1964–Sep 2006) and the Harvard Centroid
Moment Tensor (CMT, Jan 1977–June 1999, <100 km
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focal depth). While we impose no additional temporal or
spatial filters on the raw data, magnitude limits are chosen
to minimise the effects of incompleteness at lower magni-
tudes and undersampling of higher magnitudes. Following
Leonard et al. [2001], who demonstrate the use of an
objective Bayesian information criterion for choosing be-
tween functions, we seek to fit each catalogue with either a
single power-law distribution

log10 n ¼ a� bM; ð1Þ

M being already on a log scale, or a gamma distribution

log10 n ¼ a� bM� c exp kMð Þ; ð2Þ

where a, b, c and k are constants. The gamma distribution
consists of a power law of seismic moment or energy at the
lower magnitudes followed by an exponential roll-off.
Unlike pure power laws, its integration is finite and so it
represents a physical generalisation of the Gutenberg-
Richter law; for examples see Koravos et al. [2003] and
references therein. For internal consistency, the Poisson
assumption from Leonard et al. [2001] is indeed valid as we
now demonstrate.
[6] As explained in Section 1, generalised linear regres-

sion is required since we have non-Gaussian counting errors
on each bin. To test the consistency of these counting errors
with the Gaussian, binomial and Poisson distributions, the
residuals (observations minus chosen fit) are normalised to
their 95% confidence intervals and plotted in Figure 1. In all
four catalogues, the binomial and Poisson residuals are
almost indistinguishable and show no significant deviation
from the expected 1 in 20 exceedance rate when counting
those points that lie outside the 95% confidence limits.
Equal bin widths DM = 0.1 are used, as is common practice
in earthquake hazard analysis; while this underestimates the
intrinsic physical uncertainty of earthquake magnitude de-
termination, for the present purposes the Poisson model
appears to be a good proxy. By way of a further check, the
value b of the fitted power-law slope (Equations 1, 2) given
binomial errors is, to two significant figures, equal to that
given Poisson errors, for all four catalogues. Constant
Gaussian errors systematically overestimate frequency
uncertainties on the smaller magnitudes, leading to differ-
ences in b of +10% and �30% respectively for the Southern
California and PDE data (see caption of Figure 2). These are
caused by over-weighting the exponential components of
the gamma distributions and exemplify worst-case results of
incorrect error structures. In Figure 2, then, we need only
plot the fits and uncertainties using the Poisson model. Let
us now describe, in Sect. 3, the usefulness of this result for
estimating event-rate uncertainties.

3. Event-Rate Uncertainties

[7] Having established that independent Poisson distri-
butions characterise the magnitude frequencies in these four
catalogues (importantly, these data span sufficiently large
times and distances as to minimise dependencies due to
clustering), we now ask how this impacts on uncertainties in
total numbers of events. While we cannot create equivalent
catalogues by re-sampling the same regions under the same

Figure 1. Residuals of fitted frequency-magnitude dis-
tributions from GNS/SCEC/USGS catalogues: (a) New
Zealand, (b) Southern California, (c) PDE, (d) CMT. Solid
line is best fit to equation 1 or 2; dashed lines are 95%
confidence limits of respective distribution.
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physical conditions, we can simulate S = 105 samples from
each magnitude range by keeping the fitted mean li
constant (representing the underlying reality) and using
the Poisson estimate si

2 = li to capture the observational
variance. Summing these realisations, one per bin over all
magnitudes, provides a large set of plausible alternative
totals. Figure 3 shows histograms of these simulated totals
for each of the four catalogues, fitted with Poisson distri-
butions for reasons we now explain.
[8] It is straightforward to show analytically that the sum

of independent Poisson variables is itself Poisson with a
mean lN (and hence variance) equal to the sum of the
component means l [Johnson and Kotz, 1969]. This result
holds for (1) any number of independent Poisson variables
(in the current context, bins) with (2) any relationship l =
f(M), since the result is independent of f(M). In the case of
earthquakes placed into bins of width D M at magnitudes
M, for example, f(M) is commonly fitted by a power-law
or gamma distribution as in Figure 2. From the Poisson
property s2 = l, it follows that

s2
N ¼ lN ¼

X
l ¼

X
f Mð Þ: ð3Þ

[9] Thus we have a useful result: if there exists a
physically justifiable function that provides a satisfactory
fit to the histogram (that is, Poisson-distributed uncorrelated
residuals as in Figure 1) then the mean and variance of the
total number of events, over different realisations of the
catalogue, are both equal to the sum of the fitted values
(equation 3). For the simulations of our four example
catalogues (Figure 3), we have mean total event numbers
of lN = 19231,17491,46454,9301 respectively; these match
the actual observed totals to an accuracy of ±1. Empircal
evaluations confirm sN =

ffiffiffiffiffiffi
lN

p
to two significant figures,

hence our estimated uncertainties on total event numbers for
these catalogues are sN = 140,130,220,96. Since (1) a
Poisson distribution converges towards a Gaussian as l !
1, (2) a reasonable approximation to this exists where l >
5 and S � l > 5 for sample size S [Leach, 1979], and (3) we
have S = 105 with lN given above, it is not surprising that
the Poisson confidence intervals for lN ± sN are (to two
significant figures) 68% as in the Gaussian case.

4. Conclusions

[10] The purpose of this paper is to draw attention to the
simplicity with which one can formally estimate event-rate
uncertainties for applications in seismic hazard analysis,
both in small magnitude ranges and over whole catalogues.
For each of the four earthquake catalogues considered here,
we find that the best estimate of both the mean and the
variance of the total number of events, is equal to the total
calculated from the fit to the histogram. This approximation
holds where (1) the residuals of the fit are independently
Poisson distributed, and (2) the overall duration of the
catalogue is greater than that of any significant correlations
between either magnitudes or inter-event times. Note that
the ratio of binomial-to-Poisson variance for any frequency
n is sb

2/sP
2 = 1 � pn < 1, which implies that the Poisson

approximation provides an upper bound for the uncertainty
on the total event rate should any residuals generalise to the
binomial case. However, correlations between inter-event

Figure 2. Frequency-magnitude distributions from GNS/
SCEC/USGS catalogues. (solid line) Best fit to equation 1
or 2: (a) New Zealand, power law b = 1.0; (b) Southern
California, gamma b = 0.91; (c) PDE, gamma b = 0.91;
(d) CMT, gamma b = 0.85. Dashed lines are 95% Poisson
confidence limits. Unweighted Gaussian regression leads to
b-value estimates of (a) 0.98, (b) 1.03, (c) 0.66, (d) 0.83.
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times could cause significant future changes in event rates,
greater than predicted by the naive estimates of uncertainty
presented here, and this is the subject of further study.
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Figure 3. Event-rate distributions from 105 simulated
realisations of GNS/SCEC/USGS catalogues. Each total
event-rate is the sum of a random sample of frequencies,
one per bin, given Poisson uncertainties shown in Figure 2.
(a) New Zealand, (b) Southern California, (c) PDE, (d)
CMT. Solid lines are best-fit Poisson distribution; dashed
lines are 99% binomial confidence limits.
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