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Abstract

It is well known that disinfection methods that successfully kill suspended bacterial
populations often fail to eliminate bacterial biofilms. One focus of recent efforts to
understand biofilm survival has been on the existence of small, but very tolerant,
subsets of the bacterial population termed persisters. In this investigation we analyze
a mathematical model of disinfection that consists of a susceptible-persister population
system embedded within a growing domain. This system is coupled to a reaction-
diffusion system governing the antibiotic and nutrient. Previous mathematical models
either neglected the spatial aspect of the biofilm, or were explored computationally.
Here, we have analyzed the effect of periodic and continuous dosing protocols on
persisters in a one-dimensional biofilm model, both analytically and numerically.

We provide sufficient conditions for the existence of steady-state solutions and
numerically show that non-uniqueness may occur. Our results indicate that for large
periods it is more effective to apply the antibiotic for a higher percentage of the period.
For shorter periods this may not be as effective. In addition, we computationally
studied the effectiveness of periodic dosing compared to continuous dosing as a function
of the length of period and the fraction of period devoted to dosing, assuming either
that the average antibiotic dose is constant, or, that the applied dose during on-time
is constant.

1 Introduction

Bacterial biofilms arise in a wide variety of natural, industrial and medical environ-
ments [1–3]. In many situations biofilms are sources of recalcitrant infections and impu-
rities; therefore it is often the goal to eliminate the biofilm using biocides or antibiotics.
However, the biofilm lifestyle provides a wide range of protective mechanisms for the bac-
teria that exist within the biofilm [4, 5]. Understanding the protection mechanisms and
predicting novel disinfection protocols can be done experimentally or mathematically. In
this manuscript we extend previous mathematical studies that focus on physical, physio-
logical and phenotypic mechanisms [6–9] and focus on the effects of periodic disinfection
of a spatially extended model that includes an extremely tolerant sub-population of the
bacteria, termed persisters.

The material properties of the biofilm and the dynamics of the deformation response to
the bulk fluid motion has been shown to have an effect on the survival of the bacteria [10],
although this response is most likely overwhelmed by other tolerance mechanisms [11], so
we limit the mechanics in this study to the simplest response, namely erosion. The current
study includes three main tolerance mechanisms that are known to play a role in bacterial
persistence: physical, physiological and phenotypic tolerance.
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Physical protection arises because of the polymeric gel that surrounds and binds the
bacteria. Biofilms do not behave as well-mixed populations and the disinfectant reaches
the bacteria via diffusion [12–14]. Therefore the thickness of the biofilm plays a role in
the dynamics of the disinfectant since the concentration is governed by reaction/diffusion
processes. The concentration of biocide is also influenced by advection, but this does not
play a role in this investigation.

For antimicrobials that target the reproduction cycles of the bacteria (e.g. antibiotics),
respiration plays an important role [5]. It is well known that most antibiotics are more
effective in killing actively reproducing bacteria [15]. At the same time, it is well known
that most bacteria within the biofilm are in nutrient depleted regions with the layers nearer
to the bulk flow actively growing (since they have access to the nutrient source within the
bulk flow) and consuming the nutrient before it can reach deeper within the biofilm [16].
In this way, bacteria in the nutrient depleted zones are protected from disinfection while
growing slower than the more susceptible, faster growing surface layers.

We note that physiological protection is transient. If antimicrobials are constantly
applied, the surface layers will be killed allowing nutrient to penetrate further leading
the killing of bacteria deeper within the biofilm. This is in stark contrast to most ob-
servations of biofilms that indicate that biofilms are refractory to constant disinfectant
challenges [17]. Even though many bacteria are killed, not all bacteria are susceptible.
These observations have lead to a variety of hypotheses regarding the persistence of small
fractions of the population. The two dominant hypotheses are adaptive responses and
persister formation. Each of these argues that bacteria alter their activity in response to
antimicrobial challenge, although in different ways.

Adaptive response describes the process of bacterial populations altering their metabolism
in response to low levels of antimicrobial challenge. That is, before the antimicrobial con-
centration reaches a lethal level, some cells transition into an adapted state that renders
them tolerant to higher level challenge. Because the spatial heterogeneity of the biofilm
induces chemical gradients and hinders the penetration of chemicals, bacteria deep within
the biofilm may have sufficient time at sub-minimal concentration to react to the chal-
lenge [18]. A mathematical model described in [19,20] incorporates these assumptions into
a spatially extended, partial differential equation (PDE) model of the bacteria dynamics
within a one dimensional, flat slab biofilm. One of the main results in [19] is that for small
doses of antimicrobials on-off dosing is always more effective than constant dosing and
that biofilm thickness is important for effective dosing. Indeed, at low dosage levels thin
biofilms are better treated with a single dose per period which is in line with experimental
studies. Moreover, refractory treatment (where a second application of biocide is less suc-
cessful than the initial challenge) is also observed for both thin and thick biofilms. While
biologically distinct from adaptive responses, the phenomenon of persister cells leads to
models that are mathematically related to those in [19,20] and suggest the utility of on-off
type dosing protocols.

The persister cell hypothesis is well described by Lewis et al., suggesting that persister
cells are also distinct physiologically from susceptible cells [21, 22]. However, instead of a
transition into the protected stated that depends on the challenge concentration, it is the
transition out of the persistent state that is dose dependent. In particular, when bacteria
grown in planktonic environments (or from disrupted biofilm [23]) are taken at discrete
time intervals and exposed to high concentrations of antibiotic, a fraction of the popula-
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tion survives the challenge. The fraction depends on the growth stage of the planktonic
cells. Further, persisters seem to survive extremely long challenges without reversion to
the susceptible state until the challenge is removed. This motivates a novel disinfection
strategy: by periodically applying antibiotic, the entire population might be killed. The
first challenge kills the susceptible cells, leaving persister cells. Withdrawing the antibiotic
allows the persister cells to begin to revert to susceptible cells. By timing the periodic
application, these susceptible cells can be killed again before the population has full re-
covered. This hypothesis has been tested mathematically in several papers, with varying
level of details and the optimal protocol has been established [6–8,10]. We note that this
concept has not been explored fully experimentally. The only published experimental re-
sults that we are aware of focus on bacterial infection in patients with Cystic Fibrosis [24].
Interestingly, the authors find that after long-term, periodic applications of antibiotics,
there is accumulation of mutants that produce persisters at a higher rate. We do not
include this mechanism in the present investigation, but it should be noted that there was
no investigation into the optimal timing in these experiments. As we show below, there
is window of timing were periodic disinfection is the optimal protocol. It is quite easy to
find periodic regimes that are not successful. Thus we argue that it is vital to understand
the dynamics of the population to determine the optimal disinfection.

The purpose and scope of the current study is to consider analytic and computational
results for periodic disinfection of a one dimensional biofilm model. Here we study the
problem in one-dimension in order to obtain both analytic and computational results for
the optimal timing of the disinfection cycle. The analytic studies are important since the
particular computational results rely on estimating certain parameters while the analytic
results are much more general. We argue that the qualitative features of our results –
namely that there is a window of periods/dose fractions where alternating disinfection
is the optimal protocol. This study also explores the effects of the dosing period and
dose/withdrawal ratio more fully than has been done before.

The manuscript is organized as follows: We first describe the mathematical model that
governs the bacterial population (susceptible, persister and dead), nutrient and biocide
concentrations and the dynamic thickness of the biofilm. We then describe the analytic
results that have been obtained for the model including the steady-state analysis and
predictions regarding periodic disinfection. The analytic results are complemented with
numerical simulations that deal with the non-uniqueness of steady-states and consider
varying dose frequency, period, application method and key parameters. We then collect
the results into an extended conclusion/discussion section.

2 The biofilm model

We assume that the bacterial population consists of three phenotypes: susceptible cells
volume fraction, Bs, persister cells volume fraction, Bp, and dead susceptible cells vol-
ume fraction, Bsd. We consider only one growth-limiting substrate, C, and assume that
biomass constituents are incompressible. The biofilm is treated as a continuum that is
fully saturated and the fluid component is neglected; therefore Bs + Bp + Bsd = 1. The
spatial domain is x ∈ [0, L(t)], the equations governing the cell volume fractions are ob-
tained from conservation of mass (which is equivalent to conservation of volume if the

3



densities are constant [25]:

∂Bs
∂t

+
∂

∂x
(vBs)︸ ︷︷ ︸

advection

= g(C)Bs︸ ︷︷ ︸
growth

− kdAg(C)Bs︸ ︷︷ ︸
disinfection

− klg(C)Bs︸ ︷︷ ︸
loss

+ kr(A)Bp︸ ︷︷ ︸
gain

(1)

∂Bsd
∂t

+
∂

∂x
(vBsd) = kdAg(C)Bs (2)

∂Bp
∂t

+
∂

∂x
(vBp) = klg(C)Bs − kr(A)Bp︸ ︷︷ ︸

reversion

, (3)

where x = 0 represents the impermeable substratum the biofilm is attached to and x = L
represents the biofilm-bulk fluid interface. The dynamics of bacterial species is driven
by the growth-induced advective velocity, v, which is determined by the incompressibility
constraint. The population of susceptible cells in (1) changes due to growth, death due
to killing with antibiotic, A, loss due to transition to persister cells and gain as persister
cells revert back to susceptible cells. Note that in the case of persisters, reversion is often
assumed in the absence of antibiotics [8, 21]. More generally, it is reasonable to take

kr(A) =

{
k0r if A = 0

k1r if A > 0,

where k0r � k1r ≥ 0. The population of persister cells in Equation (3) changes due to the
net gain of transition between susceptible and persister cells. The dead cell population
in Equation (2) increases due to disinfection of susceptible cells. Our model is a one-
dimensional counterpart of the chemostat model of ODEs in [8] (with zero wash-out rate).
The reduction of Equations (1)-(3) to ODEs along characteristics s(t) ∈ (0,M ] for some
M > 0 gives the aforementioned ODE system in [8]. Unlike the persister model in [8], we
also consider the dynamics of the antibiotic concentration.

While biologically different from the tolerance of persisters to antibiotics, the theory
of adaptive resistance leads to models that are mathematically related to equations (1)-
(3) (see [19]- [20], where a mathematical model of bacterial adaptation without substrate
limitation, i.e., with saturation, has been analyzed). A notable difference between the
two biofilm defense mechanisms is that adapted cells grow at a growth rate comparable
to that of the susceptible ones, whereas the population of persister cells only changes
due to conversion to and from susceptible cells. Moreover, in case of adaptation, the
adapted-susceptible cell reversion rate is independent of the presence of antibiotics.

We suppose that the living and dead cells react with the antibiotic at the same rate
(i.e., we have a reactive antimicrobial such as β-lactam antibiotics) and that the substrate
is being consumed only by the susceptible population. Hence, the antibiotic and the
substrate concentration in dimensional variables will satisfy the equations

∂A

∂t
= Da

∂2A

∂x2
− kA

∂C

∂t
= Dc

∂2C

∂x2
− f(C)Bs,

where Da, Dc are the diffusion rates and k is the antibiotic-cell reaction rate. Diffusion
limitation arises in biofilms because fluid flow is reduced and the diffusion distance is
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increased with biofilm thickness. The relative effective diffusivity is expressed as the ratio
De/Daq, where De, Daq are the diffusion coefficients of the solute in biofilms and water,
respectively, and are usually on the order of 10−6 − 10−5cm2s−1. For example, the value
of De/Daq is ca. 0.6 for light gases (e.g., oxygen, methane) and ca. 0.25 for most organic
solutes [12]. For antibiotics, the values of these diffusion coefficients have been estimated
in [13].

The time scale for biofilm penetration is on the order of minutes. This is much shorter
than the duration of antibiotic exposure, which is typically tens of hours [14]. Hence, it
can be assumed that the antibiotic and substrate concentration is quasi-static, i.e, the
time derivatives ∂A

∂t ,
∂C
∂t can be neglected. If l is a characteristic biofilm thickness and τ

is a typical treatment time, then this assumption means that the characteristic times for
antibiotic and substrate diffusion (l2D−1a and l2D−1c ) are small compared to the treatment
time τ and the other time scales (1/kd, 1/kl, 1/k

0
r).

Following other one-dimensional biofilm models [19], [20], the biofilm thickness L(t)
changes in response to advection and detachment of biomass, where the detachment pro-
cess is taken as an erosion, i.e., removal of small groups of cells from the surface of the
biofilm. Unlike sloughing (detachment of large particles of biomass), erosion can be viewed
as a continuous process occurring uniformly over the surface of the biofilm [26]. Several
models for detachment have been proposed in the literature [26], [27]. Our detachment
model assumes a first-order dependence on the biomass constituents, second-order depen-
dence on the biofilm thickness and the same detachment rate coefficient for the living and
dead cells. The advective velocity v is obtained by summing equations (1)-(3) and taking
into account the incompressibility condition. Finally, the dimensionless model equations
are

∂2A

∂x2
= φ2aA (4)

∂2C

∂x2
= f(C)Bs (5)

∂Bs
∂t

+
∂

∂x
(vBs) = (1− kdA− kl)g(C)Bs + kr(A)Bp (6)

∂Bsd
∂t

+
∂

∂x
(vBsd) = kdAg(C)Bs (7)

∂Bp
∂t

+
∂

∂x
(vBp) = klg(C)Bs − kr(A)Bp (8)

∂v

∂x
= g(C)Bs (9)

dL

dt
= v(L, t)− σL2, (10)

where the function f is assumed to be nonnegative, locally Lipschitz continuous satisfying
f(0) = 0 and the function g is locally Lipschitz continuous, nondecreasing and positive for
positive values. Typically Monod kinetics are assumed and in this manuscript we specify
the functions f, g to be f(C) = βC

C+KS
and g(C) = αC

C+KS
.

We note that the dimensionless parameter φa called Thiele modulus compares the rates
of antibiotic-cell reaction and diffusion (see [19], [26]). When φa is small, diffusion is small
compared to reaction and the antibiotic penetrates well. On the other hand, when φa is
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large (� 1), the biofilm is never fully penetrated by the antibiotic. With larger reaction
rates, φa can attain values of the order of magnitude of 10 [26].

The boundary conditions associated with (4)-(10) are

∂A

∂x
(0, t) = 0, A(L(t), t) = u(t) for 0 ≤ t ≤ P

∂C

∂x
(0, t) = 0, C(L(t), t) = K for 0 ≤ t ≤ P

v(0, t) = 0 for 0 ≤ t ≤ P, (11)

where u(t), the externally applied antibiotic concentration, is a nonnegative piecewise con-
tinuous function of period P , and K > 0 is the externally applied substrate concentration.
It readily follows from (9) and (11) that

A(x, t) = u(t)
cosh(φax)

cosh(φaL(t))
. (12)

To explore optimal dosing strategies, we associate the problem (4)-(11) with function-
als to be minimized with respect to the externally applied antibiotic concentration u(t).
Antibiotics can be bactericidal (killing bacteria, e.g., β-lactam antibiotics) and bacterio-
static (inhibiting the growth of bacteria giving the immune system time to mount lethal
response to the bacteria, e.g. tetracycline). As in [19], we introduce two types of func-
tionals: functional J (the long-term average of the number of living cells) and functional
JL (the long-term average of biofilm thickness). We note that our parameter choices are
given in Table I.

Numerical simulations suggest that given any initial data, the solution of the problem
(4)-(11) becomes periodic as t→∞ with period P . Hence, we can define the functionals

J(u) = lim
T→∞

1

P

∫ T+P

T

∫ L(t)

0
(Bs(x, t) +Bp(x, t))dxdt,

JL(u) = lim
T→∞

1

P

∫ T+P

T
L(t)dt. (13)

Note that all parameters will be dimensionless in the throughout this paper. We make
estimates for the ratios max(kr(.))/α, max(kr(.))/kd, α/σ and α/kl based on [19] and [7].
In particular, we take k0r/α = 0.01 − 1 and k0r/kd = 5 − 10 for on-off dosing, but for
constant dosing, when k0r is replaced by k1r , these ratios are much smaller. Also, we take
α/σ = 5− 10 and α/kl = 100− 500.

3 Steady-state solutions

If the externally applied antibiotics concentration is constant, the solutions of equations
(6)-(10) are expected to converge to a steady-state solution. In this section we study all
possible steady-state solutions of our system. The stationary system will be reduced to a
2D non-autonomous system, which will in turn allow us to determine sufficient conditions
for the existence of trivial/non-trivial steady-states. A biofilm model of adaptive resistance
has been analytically studied in [19] - we will later draw comparisons between the steady-
state analysis results obtained here and in [19].
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The steady-state equations corresponding to equations (6)-(10) are

d

dx
(vBs) = g(C)Bs(1− kdA− kl) + kr(A)Bp (14)

d

dx
(vBsd) = kdAg(C) (15)

d

dx
(vBp) = klg(C)Bs − kr(A)Bp (16)

dv

dx
= g(C)Bs, (17)

with

A(x) = u0
cosh (φax)

cosh (φaL)
(18)

for 0 ≤ x ≤ L, where L is the steady-state biofilm thickness, u0 is the constant antibiotics
concentration applied through the interface and C solves (5). The corresponding boundary
conditions are

v(0) = 0, v(L) = σL2,
dC

dx
(0) = 0, C(L) = K. (19)

Since Bsd is uniquely determined by Bs, we can restrict ourselves to a system of two
equations with unknowns Bs, Bp satisfying the ODEs

dBs
dx

v = g(C)Bs(1− kdA− kl −Bs) + kr(A)Bp (20)

dBp
dx

v = g(C)Bs(kl −Bp)− kr(A)Bp. (21)

The re-parametrization by characteristics has been used earlier for a similar model [] and
we are going to use it again. The equation of characteristics corresponding to (20)-(21)
reads

ds

dt
= v(s(t)), v(0) = L, (22)

where the parameter t is chosen such that range of the function s(t) is (0, L] or a subset
of it. We note that Eq. (22) has a C1-solution on (−∞, 0] and that this statement is also
true when there are only dead cells remaining deep in the biofilm, i.e., Bs + Bp = 0 on
[0, x0] for some 0 ≤ x0 ≤ L (for details see [20]).

From now on we will use the re-parametrization of the steady-state solutions Bs, Bp, C
and A. Define

bs(t) := Bs(s(t)), bp(t) := Bp(s(t)), c(t) := C(s(t)), a(t) := A(s(t)).

Then, by Eq. (20)-(21), the functions bs, bp satisfy the non-autonomous system

dbs
dt

= g(c(t))bs(1− kda(a)− kl − bs) + kr(a(t))bp (23)

dbp
dt

= g(c(t))bs(kl − bp)− kr(a(t))bp. (24)

System (23)-(24) does not depend on v and by the continuity of s, a, and c we have
a(t)→ A0 and c(t)→ C0 as t→ −∞, where A0 = A(x0), C0 = C(x0). Hence, in the limit
t → −∞ the non-autonomous system (23)-(24) can be approximated by an autonomous
ODE system (25)-(26) that we study next.
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3.1 Autonomous system

We consider the autonomous system

dbs
dt

= g(C0)bs(1− kdA0 − kl − bs) + kr(A0)bp (25)

dbp
dt

= g(C0)bs(kl − bp)− kr(A0)bp, (26)

where A0, C0 are defined in Section 3. One can show that the range of solutions for the
system (25)-(26) is a triangle in the first quadrant given by

∆ = {(bs, bp) ∈ R2 : bs, bp ≥ 0, bs + bp ≤ 1}

and that ∆ is a positively invariant region.
Obviously, the autonomous system always has a trivial equilibrium and possibly a

non-trivial one that we show in the Lemma below.

Lemma 1. Denote m := 1− kdA0. Let kr(A0) > 0. For m > 0, the autonomous system
(25)-(26) has a non-trivial equilibrium in the region ∆. If m ≤ 0 the only equilibrium in
∆ is (0, 0).

If kr(A0) = 0, all points on the line {(0, t); t ∈ [0, 1]} are equilibria. In addition, if
m > kl, the point (m− kl, kl) is also an equilibrium.

Proof. The steady-state solutions corresponding to Eq. (25)-(26) satisfy

bsg(C0)(m− kl − bs) + kr(A0)bp = 0

bsg(C0)(kl − bp)− kr(A0)bp = 0,

from which follows that m = bs + bp and

bs =
g(C0)(m− kl)− kr(A0) +

√
D

2g(C0)
, bp =

g(C0)(m+ kl) + kr(A0)−
√
D

2g(C0)
, (27)

where

D = (g(C0)(m− kl)− kr(A0))
2 + 4g(C0)mkr(A0). (28)

(We will later use the notation (bes, b
e
p) to refer to the coordinates of the non-trivial equi-

librium.)
We obtain that the coordinates of the non-trivial equilibrium given in (27) are both

non-negative if

|
√
D − g(C0)kl − kr(A0)|

2g(C0)
≤ m

2
. (29)

It can be shown that the inequality in (29) is true for m ≥ 0. Hence, the claim follows. If
kr(A0) = 0 it follows immediately from the equations that bs = 0 guarantees that a given
point is an equilibrium.

The following statements deal with the stability of the trivial/non-trivial equilibria.
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Lemma 2. If kr(A0) > 0, for m < 0, the trivial equilibrium is a sink, otherwise, for
m > 0, the trivial equilibrium is a saddle point. If kr(A0) = 0, then the trivial equilibrium
is not an isolated fixed point.

Proof. If A is matrix of linearization corresponding to the autonomous system (25)-(26)
about (0, 0), then the characteristic matrix A− λI becomes

A− λI =

(
g(C0)(m− kl)− λ kr(A0)

g(C0)kl −kr(A0)− λ

)
.

Hence, the eigenvalues are determined by the formula

λ1,2 =
g(C0)(m− kl)− kr(A0)±

√
D

2
,

where D is given by (28). From this the claim follows.

Lemma 3. If kr(A0) > 0 and m > 0, then the non-trivial equilibrium (bes, b
e
p) given by

(27) is a sink. If kr(A0) = 0 and m− kl > 0, the point (m− kl, kl) is a stable node.

Proof. If Aε is matrix of linearization corresponding to the autonomous system (25)-(26)
about (bes, b

e
p), then the characteristic matrix A− λεI becomes

Aε − λεI =

(
g(C0)(m− kl − 2bes)− λ kr(A0)

g(C0)kl −kr(A0)− g(C0)b
e
s − λ

)
.

Considering that bes + bep = m, we can show that the eigenvalues satisfy

λe1,2 + g(C0)b
e
s =

g(C0)(b
e
p − kl)− kr(A0)±

√
De

2
,

where De = (g(C0)(b
e
p − kl) − kr(A0))

2 + 4g(C0)kr(A0)(m − bes) ≥ 0. We will show that
the trace and determinant of Aε are Tr(Aε) < 0 and det(Aε) > 0, which proves the claim.

We have Tr(Aε) = g(C0)(m− kl − 3bes)− kr(A0). Taking the formula for bes from (27)
implies that the condition Tr(Ae) < 0 is equivalent to

0 < g(C0)(m− kl)− kr(A0) + 3
√
D,

where D is given by (28). This shows that Tr(Ae) < 0.
We also have det(Ae) = −g(C0)(m − kl − 2bes)(kr(A0) + g(C0)b

e
s) − kr(A0)g(C0)kl.

Again, taking the formula for bes from (27) gives

det(Ae) =
1

2

[
D − kr(A0)

2 +
√
Dg(C0)(m− kl)− kr(A0)g(C0)(m+ kl)

]
=

g(C0)

2

[
g(C0)(m− kl)2 + kr(A0)(m+ kl) +

√
D(m− kl)

]
. (30)

It could be shown that (30) is positive for all m > 0.

If kr(A0) = 0 and m− ll > 0, then the eigenvalues are λ1 = λ2 = −g(C0)(m− kl) < 0
which corresponds to a stable node.

It follows that whenever (0,0) is a saddle point, there is a nontrivial equilibrium. Now,
it follows from the characteristic matrix A− λI that the eigenvectors of the characteristic
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matrix could be taken(
1,
−g(C0)(m− kl)− kr(A0)±

√
D

2kr(A0)

)
. (31)

If (0, 0) is a saddle point (λ1 > 0, λ2 < 0), it could be shown that the sign of the
coordinates of the eigenvectors is (+,+) for λ1 and (+,−) for λ2.

Define the line corresponding to λ1

l13 =
(

(bs, bp) : bp =
−g(C0)(m− kl)− kr(A0) +

√
D

2kr(A0)
bs

)
.

We will show that l13 going through the first and third quadrant is an unstable invariant
manifold. As a consequence we will have that the line corresponding to λ2

l24 =
(

(bs, bp) : bp =
−g(C0)(m− kl)− kr(A0)−

√
D

2kr(A0)
bs

)
going through the second and fourth quadrant is a stable invariant manifold.

Lemma 4. The line l13 is an invariant manifold, i.e., if (bs(0), bp(0)) ∈ l13, then (bs(t), bp(t)) ∈
l13 for all t. Moreover, if m > 0, the coordinates of the non-trivial equilibrium (bes, b

e
p) lie

on the line segment l+ = l13
⋂

∆.

Proof. If the coordinates of (bs, bp) ∈ l13, then they satisfy

(g(C0)(m− kl − λ)bs + kr(A0)bp = 0

g(C0)klbs − (kr(A0) + λ)bp = 0,

where λ is the eigenvalue of the characteristic matrix A− λI. Hence,

dbs
dbp

=
dbs
dt

(dbp
dbt

)−1
=

λbs − g(C0)b
2
s

−g(C0)bsbp + λbp
=

2kr(A0)

−g(C0)(m− kl)− kr(A0) +
√
D

=
bs
bp

(32)

for any (bs, bp) 6= (0, 0) ∈ l13 and this is what we wanted. The statement that (bes, b
e
p) ∈ l+

could be shown algebraically.

We will show below that if (0, 0) is the only equilibrium, it is globally asymptotically
stable, and if there are two equilibria, then (bes, b

e
p) given by (27) is globally asymptotically

stable.

Lemma 5. If m < 0 and kr(A0) > 0, the trivial equilibrium is globally asymptotically
stable.

Proof. We will show that for any point X = (bs, bp) ∈ ∆ the ω-limit set of the autonomous
system (25)-(26) is ω(X) = (0, 0). Obviously, ω(X) is connected and nonempty. Since the
triangular domain ∆ is compact and positively invariant, it contains either a limit cycle,
or an equilibrium point. We can exclude ω(X) being a limit cycle, since in this case, by
the Poincare-Bendixon Theorem ω(X) would be a periodic orbit. Inside the loop of a
periodic orbit there must be an equilibrium point, i.e., we would have (0, 0). However,
part of the loop would be outside ∆ which is not possible. Hence, ω(X) = (0, 0) and this
proves the claim.
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Lemma 6. If m > 0 and kr(A0) > 0, the nontrivial equilibrium is globally asymptotically
stable.

Proof. Consider the ω-limit set of the system (25)-(26) for any point X = (bs, bp) ∈
∆ \ {(0, 0)}. First we will show that ω(X) 6= (0, 0). Since the trivial equilibrium is an
unstable saddle point (λ1 > 0, λ2 < 0), there exists a stable manifold given by the line l24
going through the second and fourth quadrant which is outside the triangular region ∆.
Hence, any solution starting inside ∆ will not converge to (0, 0) as t→∞.

We are left to show that ω(X) = (bes, b
e
p). By the same argument as in Lemma 4, ω(X)

is either a limit cycle or the nontrivial equilibrium. If ω(X) was a limit cycle, again by the
Poincare-Bendixon Theorem ω(X) would be a periodic orbit with (bes, b

e
p) inside its loop.

However, the nontrivial equilibrium also lies on the line segment l+ and hence, the loop
around (bes, b

e
p) would intersect l+ in at least two points, which is contradiction with the

uniqueness of solutions. Hence, the proof is complete.

3.2 Existence of steady-state solutions

We observe first that the system (4)-(10) always has a steady-state solution such that
L = 0. The question is whether there is a steady-state solution for L > 0. We shall
answer this in two steps. Initially we will ignore the equation (10) for L and assume that
L > 0 is given to us. We have the following two results:

Theorem 1. Suppose that L > 0 is given and

m = 1− kdA(0) > 0, where: A(0) = u0/ cosh(φaL). (33)

Then there exists at least one continuous nonzero steady-state solution of the system (4)-
(10) satisfying boundary conditions (11).

Conversely, for given L > 0 if (Bs, Bp, C, v) is a continuous nonzero steady-state
solution of the system (4)-(10) on the interval [0, L] satisfying boundary conditions (11),
then (Bs, Bp, C, v) solves the ODE system

dBs
dx

=
1

v
[g(C)Bs(1− kdA− kl −Bs) + kr(A)Bp] ,

dBp
dx

=
1

v
[g(C)Bs(kl −Bp)− kr(A)Bp] ,

d2C

dx2
= f(C)Bs, (34)

dv

dx
= g(C)Bs,

on the interval [0, L] with initial conditions:

Bs(0) = bs, Bp(0) = bp, C(0) = C0,
dC

dx
(0) = 0, v(0) = 0. (35)

Here C0 is a number from the interval (0,K] and (bs, bp) is the nontrivial equilibrium
shown to exist in Lemma 1 given by (27).
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Theorem 2. Suppose that L > 0 is given and

m = 1− kdA(0) ≤ 0, where: A(0) = u0/ cosh(φaL). (36)

Then the only continuous steady-state solution of the system (4)-(10) satisfies Bs = Bp = 0
on [0, L].

Proof of Theorem 1. We have to overcome the issue that C solves a second order
equation on [0, L] and depends on Bp, hence we cannot solve it as easily as the equation
for A whose solution is A(x) = u0 cosh(φax)/ cosh(φaL). We deal with this issue by
considering the ODE system (34) [0, L] with initial conditions (35).

Here the initial condition for the nutrient, C0 (which will be chosen later), is any
number from the interval (0,K] and (bs, bp) is the nontrivial equilibrium given by (27).
We want to show that there is a value C0 such that C(L) = K, for that value of C0

the solution of the ODE system (34) is also a steady state solution of (4)-(10) satisfying
boundary conditions (11).

The solvability of the system (34) with initial conditions (35) follows from standard
ODE theory provided v > 0 (to avoid the case 1/v being undefined). This unfortunately
is the case at x = 0. To deal with this let us write Bs(x) and Bp(x) near x = 0 as

Bs(x) = bs +O(x), Bp(x) = bp +O(x). (37)

If follows that v(x) = g(C0)bsx + o(x), hence if g is positive for nonzero values of C0 we
see that v(x) = O(x). Now writing

g(C)Bs(1− kdA− kl −Bs) + kr(A)Bp = O(x), (38)

due to cancellations as (bs, bp) is the equilibrium. Hence

dBs
dx

=
1

v
[g(C)Bs(1− kdA− kl −Bs) + kr(A)Bp] = O(1),

with similar statement holding for
dBp

dx near x = 0. This implies that the ODE system
(34) is regular even at x = 0, hence the standard solvability theory applies on the whole
interval [0, L]. From this we get that the system (34) with initial conditions (35) has a
unique solution on [0, L] for any C0 > 0.

Consider now a map F : C0 7→ CC0(L) where CC0(x) is the solution of (34) - (35) where
CC0(0) = C0. We claim that due to continuous dependence of solvability of (34) on initial
conditions F is continuous. Also note that if C0 → 0+ then F (C0) → 0+ (see equation
(4) and the assumption that f(0) = 0). Finally F (C0) ≥ C0 as C ′′ ≥ 0 and C ′(0) = 0.
Hence by the intermediate value theorem there is at least one value C0 ∈ (0,K] such that
F (C0) = K. For this value, the system (34) - (35) is the non-zero steady-state solution of
(4)-(10) satisfying boundary conditions (11).

For the converse, if (Bs, Bp, C, v) is a continuous nonzero steady-state solution of the
system (4)-(10), then it must satisfy (34) on the interval (0, L]. Also obviously in the
boundary conditions (11) we have that v(0) = 0, C ′(0) = 0 and C(0) ∈ (0,K]. We only
have to establish that (Bs(0), Bp(0)) must equal to (bs, bp) given by (27).

To see this we recall the re-parametrization s : (−∞, 0] → (0, L] introduced above
that turns equations (34) for Bs and Bp into non-autonomous system (23)-(24) where
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bs(t) := Bs(s(t)), bp(t) := Bp(s(t)). We want to understand the behavior of (bs(t), bp(t))
as t → −∞. Recall, that α-limit set of a solution is the set of all accumulations points
of the solution as t → −∞. As (bs(t), bp(t)) ∈ ∆ the α-limit set of this solution is a
nonempty subset of ∆. Notice also that as t→ −∞ the system (23)-(24) approaches the
autonomous system (25)-(26). Thus the α-limit set of the solution (bs(t), bp(t)) is either
an equilibrium or a limit cycle of the autonomous system (25)-(26). However, we have
shown that (25)-(26) has no limit cycle and only two equilibria: (0, 0) and (bs, bp) given
by (27). Thus either

Bs(0) = lim
t→−∞

bs(t) = 0, Bp(0) = lim
t→−∞

bp(t) = 0,

or
Bs(0) = bs, Bp(0) = bp.

To finish our proof we have to show the the first option does not happen. We will prove this
by contradiction, let us assume that indeed limt→−∞ bs(t) = limt→−∞ bp(t) = 0. Recall
also that ds

dt = v(s(t)), hence

L = L− 0 = s(0)− s(−∞) =

∫ 0

−∞
v(s(t)) dt.

Since v is monotone nondecreasing it follows that w(t) = v(s(t))→ 0 as t→ −∞. Hence
by the ODE v satisfies we see that

dw

dt
=
dv

ds

ds

dt
= g(C(s(t)))Bs(s(t))v(s(t)) = g(C(s(t)))bs(t)w(t).

Hence
d

dt
(lnw) =

1

w

dw

dt
= g(C(s(t)))bs(t) ≤ g(K)bs(t),

since g is a monotone function. It follows that

lnw(0)− lnw(−T ) ≤ g(K)

∫ 0

−T
bs(t) dt,

for all T > 0. Since w(0) = v(L) and w(−T )→ 0 as T →∞ we get that∫ 0

−∞
bs(t) dt =∞.

Recall that we do know how solutions bs(t) will look near 0. The equilibrium at (0, 0) has
one positive eigenvalue λ > 0, hence we get that near this point

dbs
dt

= λbs + o(bs),

i.e., d
dt(ln bs) = λ+ o(1), hence

bs(−T ) = bs(0) exp[−(λ+ o(1))T ], as T →∞.

This means that the integral
∫ 0
−∞ bs(t) dt is finite which is a contradiction.
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Proof of Theorem 2. The argument is similar as the one given above. Assume that
there is a continuous nonzero steady-state solution of the system (4)-(10). Again, consider
the re-parametrization s : (−∞, 0]→ (0, L] introduced above that turns equations (34) for
Bs and Bp into non-autonomous system (23)-(24). By same argument as given above, if
we consider the α-limit set of the solution (bs(t), bp(t)) on (−∞, 0] then this set will consist
of equilibria and limit cycles of the autonomous system (25)-(26). Given the assumption
m ≤ 0 the only equilibrium is (0, 0) and there is no limit cycle. Hence bs(t), bu(t) → 0
as t → −∞. We claim that this implies that bs(t) = bu(t) = 0 for all t ≤ 0 (hence
Bs = Bp = 0 on [0, L]) from which the claim of Theorem 2 follows.

Indeed, assume that this is false. Then bs(t) + bu(t) > 0 for t < 0 and bs(t), bu(t)→ 0
as t→ −∞. This is however impossible. For a fixed large nonnegative t we have that

m(t) = 1− kdA(t) < 1− kdA(0) ≤ 0,

which implies that (0, 0) is an equilibrium with two negative eigenvalues. Since we looking
at the limit t → −∞ we are reversing time. In the reverse time (0, 0) is therefore totally
unstable and (bs(t), bu(t)) cannot approach zero but has to move away from it as t→ −∞.
Hence the only option is that bs(t) = bu(t) = 0 for all t ≤ 0.

In the previous two theorems we have ignored the steady state equation for L, namely
that v(L) = σL2 and instead we have assumed that L is given. We shall prove now that
the existence (and non-existence) of continuous nonvanishing steady-state solution of the
full system (4)-(10) satisfying boundary conditions (11) depends on the size of u0, for small
values there is such solution, on the other hand for large values of u0 the only continuous
steady state solution has L = 0.

Theorem 3. Assume that the parameters φa, φc, α, kr, kd, kl, K, σ > 0 and the function
f (monotone nondecreasing, continuous and nonzero for positive values) are given and
fixed.

Then there exist a value u1 such that for all u0 ∈ [0, u1) there is at least one continuous
nonzero steady state solution of the system (4)-(10) satisfying boundary conditions (11).
Moreover, we have an estimate:

u1 ≥ 1

kd
.

On the other hand, there exists a value u2 ≥ u1 such that for all u0 ≥ u2 the only
continuous steady state solution of the system (4)-(10) satisfying boundary conditions (11)
has length zero, i.e., L = 0. Moreover we have an estimate:

u2 ≤ cosh(φag(K)/σ)

kd
.

Remark. Realistically, we expect u1 = u2 however in order to do that we would have to
establish that for all u0 ∈ [u1, u2) there is a nonzero steady state solution. We, however,
lack the monotonicity of the map u0 7→ C0(u0), where C0 is the value of the function C
at zero. It might happen then that for some u in this interval this map is not monotone,
and hence, it might be possible to have u1 < u2. We have not observed such situation in
our simulations, but this scenario cannot be excluded.

Proof. We start by dealing with the nonexistence result. Let us assume first that u0 ≥
cosh(φag(K)/σ)

kd
. By contradiction let us assume that there is a nonzero steady-state solution
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of the system (4)-(10) satisfying boundary conditions (11) of positive length L > 0. Then
L ≤ Lmax = g(K)/σ, since

v(L) ≤ g(K)L, hence: 0 = v(L)− σL2 ≤ L(g(K)− σL).

Clearly for L > g(K)/σ the right-hand side is negative so the upper bound on L must
hold. It follows that

A(0) =
u0

cosh(φaL)
≥ u0

cosh(φaLmax)
=

u0
cosh(φag(K)/σ)

.

Hence,

m = 1− kdA(0) ≤ 1− kd
u0

cosh(φag(K)/σ)
≤ 0.

From this by Theorem 2 we have that Bs = Bp = 0 on [0, L], so v(L) = 0 and hence
0 = v(L)− σL2 = −σL2. From this L = 0. It follows that if we define

u2 = inf{z ≥ 0; if u0 ≥ z then (4)-(10) with boundary conditions (11)

has no continuous steady state of nonzero length}, (39)

then

u2 ≤ cosh(φag(K)/σ)

kd
.

Now, define

u1 = sup{z ≥ 0; if 0 ≤ u0 < z then (4)-(10) with boundary conditions (11)

has a continuous steady state of nonzero length}. (40)

Clearly u1 ≤ u2. If we prove that for any u0 <
1
kd

there is a non-zero steady state of
positive length then the whole claim is established.

Once again, any such steady-state solution has to satisfy L ≤ Lmax = g(K)/σ by the
same argument as given above. This gives a lower bound on the value of C(0) = C0 since
it follows that any C that solves (4) on [0, L] has a subsolution c defined on [0, Lmax] by

∂2c

∂x2
=

(
sup

x∈[0,K]

f(x)

x

)
c, c′(0) = 0, c(Lmax) = K.

Here, the supremum of f(x)/x exists as we assume that f(0) = 0 and f is Lipschitz on
[0,K]. Hence always C ≥ c on [0, L] so we see that we only have to consider C0 ∈ [c(0),K]
(and c(0) > 0 provided K > 0).

It also follows by our assumption that

A(0) =
u0

cosh(φaL)
≤ u0 <

1

kd
,

hence
m = 1− kdA(0) > 0

and Theorem 1 applies.
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Consider a map F : [c(0),K] × [0, Lmax] → R2 defined as follows. For each pair
(C0, L) we consider the unique solution (Bs, Bp, C, v) of the ODE system (34) with initial
conditions (35) and A given by (18) on [0, L]. Here (bs, bp) is the nontrivial equilibrium
given by (27). We define

F (C0, L) = (C(L)−K, v(L)− σL2).

By continuous dependence of solutions of ODE on its initial condition we get that F is a
continuous function of two variables C0 and L. We now want to restrict the domain of F
to a smaller box [c(0),K]× [Lmin, Lmax] where Lmin > 0 is chosen as follows:

F2(C0, Lmin) = v(Lmin)− σL2
min ≥ ε > 0, for some ε > 0 and all C(0) ∈ [c(0),K].

Here F2 is the second component of the map F = (F1, F2). Such value Lmin exists because

∂F2

∂L
(., 0) ≥ δ > 0, and F2(., 0) = 0.

Indeed, ∂F2
∂L (., 0) = g(C0)Bs(0) ≥ g(c(0)) inf bs. Here g(c(0)) > 0 and the infimum is

taken over all bs given by (27) for C(0) ∈ [c(0),K]. Due to our assumptions inf bs > 0.
The question is whether for some pair (C0, L) in the domainD = [c(0),K]×[Lmin, Lmax]

of the map F we have F (C0, L) = (0, 0), as for such pair the solution (Bs, Bp, C, v) of the
ODE system (34) with initial conditions (35) is a nonzero steady-state solution of the
system (4)-(10) satisfying boundary conditions (11).

We know that at the boundary ∂D of our domain we have:

F2(., Lmin) > 0, F2(., Lmax) ≤ 0, F1(c(0), .) ≤ 0, F1(K, .) ≥ 0. (41)

Hence we either have (0, 0) ∈ F (∂D) and we are done or

deg(F, (0, 0)) = −1.

This can be seen from (41) as the image of the ∂D is a closed curve F (∂D) that loops
once around (0, 0) and has orientation reverse to ∂D. Hence as deg(F, (0, 0)) 6= 0 it
follows that (0, 0) ∈ F (D). This establishes existence of nonzero steady-state solution for
all u0 < 1/kd.

3.3 Uniqueness/Non-uniqueness of steady-state solutions

Theorem 3 does not exclude the possibility that for given u0 ∈ [0, u1) there is more than
one solution - as exemplified by numerical simulations (Figures 1-4). Due to substrate
limitation we cannot make statements about the uniqueness of steady-states even for small
antibiotic doses. However, the bifurcation diagram shown in Figure 2 indicates that for
large antibiotic doses there may be non-unique solutions. This is similar to results obtained
for models of bacterial adaptation in [19] and [20]. The latter paper deals with saturating
substrate kinetics. A similar mechanism is at work in case of substrate-limitation, when an
appropriate initial dose can influence dosing efficacy. That is, the time dependent solution
L(t) may converge to different steady-states depending on the initial dose of antibiotic
(Figure 3). From the proof of Theorem 3 it follows that the nullsets of the map F will
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determine the non-trivial steady-states of the system (4)-(10). As Figure 4 shows, multiple
solutions are possible.

Figure 1. For given u0 = 9.68, the function v(L)−σL2 has been plotted for 0 ≤ L ≤ 5.
There are three intersection points with the x-axis (Figure 1 (a)). This becomes obvious
when zooming in the neighborhood of L = 0 in Figure 1 (b).

Figure 2. To further explore the solutions L of the equation v(L)−σL2 = 0, they have
been plotted as the function of u0. The lower estimate of u1 from Theorem 3 is k−1d = 10
in this example, whereas u1 = u2 ≈ 25.8. A vertical line in close proximity to u0 = 10
intersects the curve at three different points, hence, there are three different solutions of
L (with two being stable). For example, as in Figure 1, for u0 = 9.68, there are two stable
solutions, L = 0.2 and L = 4.6. For 10 < u < u1, there are two solutions, with one being
stable.

Figure 3. Two stable solutions of L are also possible in the case of substrate limitation.
When antibiotic dose of u0 = 50 is added on the time interval [0, 25) and u0 = 100 is added
otherwise, the biofilm thickness would converge to L = 0 (Figure 3 (a)). However, a smaller
initial dose would affect the biofilm thickness by converging to the larger value L = 1.2
(Figure 3 (b)).

Figure 4. As shown in Theorem 3, the nullsets of the map F (C0, L) = (C(L)−K, v(L)−
σL2) determine the solutions (Bs, Bp, C, v) of (34), and hence, the nontrivial equilibria of
the system (4)-(10). For given L and C(0) = c0, the solutions of the equations C(L) = K
and v(L) = σL2 are plotted for different values of σ. For small detachment rates only
trivial steady-state exists (Figure 4 (a)), however, as σ is increased, even three intersection
points of the nullsets are possible, in which case there are two stable solutions (Figure 4
(c)).

As a final remark we add that as in the case of adaptation [20], uniqueness of steady-
states can be shown for small doses of antibiotic in the saturated case. Indeed, when no

antibiotic is given (u0 = 0), the steady-state solutions satisfy Bs = α(1−kl)−k0r+
√
D

2α and

L = αBs
σ , where D = (α(1− kl)− k0r)2 + 4αk0r . The argument goes then as in [20].
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Figure 1: We show the function v(L)− σL2 (i.e. the difference between erosion and the interface
velocity) for the case of substrate saturation. We find three intersections. The left panel shows
intersection near zero and one larger intersection. The right panel shows that there are two
intersections at small thicknesses. The parameters are: α = 1, u0 = 9.68, φ = 1, kd = 0.1, kl =
0.01, k1r = 0.005, σ = 0.2
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Bifurcation diagram in case of substrate saturation

L

Figure 2: We show the bifurcation diagram, using u0 as the bifurcation parameter, for the case of
substrate saturation. Here the parameters are: α = 1, φ = 1, kd = 0.1, kl = 0.01, k1r = 0.005, σ =
0.2
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Figure 3: We show the dynamics of the steady-state for different parameter sets. This
numerical results complements the analytic observation of the existence of two stable
steady-states (one positive and one zero). Depending on the disinfection, either may be
achieved. The parameters are: α = 1, φ = 1, kd = 0.1, kl = 0.01, k1r = 0, σ = 0.2,K =
1,KS = 1, β = 1 a) u0 = 50 for 0 ≤ t < 25 and u0 = 100 for t ≥ 25 b) u0 = 8 for
0 ≤ t < 25 and u0 = 100 for t ≥ 25
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Figure 4: We show the nullsets of C(L)−K and v(L)− σL2 for varying σ, showing cases
with one or three intersections. The parameters are: α = 1, u0 = 9.5, φ = 1, kd = 0.1, kl =
0.01, k1r = 0.005, σ = 0.2,K = 1,KS = 0.5, β = 1
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4 Periodic dosing

In the previous section, we analyzed the steady-state behavior; however, recent mathe-
matical studies of disinfection argue that periodic dosing might accelerate the removal
of the bacteria [6–8]. The structure of this model is more complicated than the well-
mixed studies, but more amenable to analysis than the same model in two-dimensions
that was introduced in [10]. In this section, we describe the analytic results that have
been obtained–that periodic dosing is effective and that the optimal regime depends on
the method of dosing. We are able to make predictive bounds on the period of dosing and
the corresponding decline of the population. These are complemented with computational
exploration of the parameter regime.

4.1 Limit of J, JL for frequencies ω →∞ and ω → 0+

Let u be a positive, periodic, piecewise continuous function with period 1. For any ω > 0
we introduce the function

uω(t) = u(ωt), t ∈ R. (42)

Since uω is a periodic function with period P = 1/ω, hence, ω is its frequency. Denote by
Aω, Cω, Bω

s , B
ω
sd, B

ω
p , v

ω, Lω the corresponding periodic solutions of the system (4)-(10) on
the interval [0, 1]. We denote the values of the corresponding functionals by Jω and JωL ,
respectively. Now, let µ be the Lebesgue measure of the set {t ∈ [0, 1];u(t) > 0} and hence,
µ ∈ (0, 1]. In the case of on-off dosing, where u(t) is a step function such that u(t) > 0
on [0, µ] and u(t) = 0 on (µ, 1], the parameter µ is the ratio of the dosing time to period.
Following [19], we will use the term ’dosing ratio’ for µ. Note that µ = 1 corresponds
to constant dosing and µ = 0 would correspond to an unrealistic delta distribution-type
dosing.

We make statements about the limiting values of the periodic solutions for ω → ∞
and ω → 0+, respectively. We will, however, skip the proofs of these theorems as they are
based on similar results in [19]. The proofs are almost identical, the only difference is the
presence of an additional equation for C, this however does not change substantially the
gist of the argument.

Theorem 4. Let u > 0 on (0, 1) and let u0 =
∫ 1
0 u(t)dt be the average value of u over

[0,1]. Then any increasing sequence ω1, ω2... such that ωn →∞ has a subsequence (ωni)n∈N
satisfying

L∞ = lim
i→∞

Lωni (t) uniformly for all t > 0, (43)

and all functions Aωni (x, t), Cωni (x, t), B
ωni
s (x, t), B

ωni
sd (x, t), B

ωni
p (x, t), vωni (x, t), Lωni (x, t)

for x ∈ [0, L∞) and t > 0 converge to functions A∞(x), C∞(x), B∞s (x), B∞sd(x), B∞p (x),
v∞(x), L∞(x) that are independent of t. For the function A∞ the convergence is only in
the weak sense, but all other functions converge locally uniformly in x. Moreover, these
functions satisfy on [0, L∞] the steady-state equations (14)-(19) with boundary condition
A(L∞) = u0 and with kr(A

∞) replaced by Θ = µk1r + (1− µ)k0r .
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Remark. In the limiting cases for µ → 0+ and µ → 1−, the term Θ → k0r and Θ → k1r ,
respectively. This means that for µ ≈ 1 the reversion from persister to susceptible cells is
very slow, but it increases with decreasing µ. We cannot prove that increased reversion
increases the steady-state biofilm thickness L, but numerical simulations indicate that this
is the case. In fact, for small periods on-off dosing will be somewhat worse than constant
dosing, although the differences are not significant.

Theorem 5. Let u(t) be a piecewise periodic function of period 1 and consider as in (42)
the functions uω of period 1/ω and their corresponding periodic solutions Aω, Cω, Bω

s , B
ω
sd, B

ω
p ,

vω, Lω of the system (4)-(10) on the interval [0, 1]. Assume that for each u0 ∈ {u(t); t ∈
R} there is a unique nonzero continuous steady-state solution with boundary condition
A(L) = u0. Let J(u0), JL(u0) be the values of the two functionals (13) for this steady-
state solution. Then

lim
ω→0+

Jω = lim
ω→0+

ω

∫ 1/ω

0

∫ Lω(t)

0
Bω
s (x, t) +Bω

p (x, t)dxdt =

∫ 1

0
J(u(t))dt,

lim
ω→0+

JωL = lim
ω→0+

ω

∫ 1/ω

0
Lω(t)dt =

∫ 1

0
JL(u(t))dt. (44)

In case of on-off dosing with u(t) = u0/µ on [0, µ] and u(t) = 0 on (µ, 1], (44) simplifies
to

lim
ω→0+

Jω = µJ(u0/µ) + (1− µ)J(0), lim
ω→0+

JωL = µJL(u0/µ) + (1− µ)JL(0). (45)

Remark. In the limiting cases for µ → 0+ and µ → 1−, the term µJ(u0/µ) + (1 −
µ)J(0) → J(0) and J(u0), respectively. This suggests that for large periods it is better
to have long dosing ratios µ than short ones; this is also demonstrated by numerical
results shown below (Figure 5). In the case of unlimited substrate J(0) and JL(0) can be

calculated explicitly and equal to J(0) = JL(0) = αBs
σ , where Bs = α(1−kl)−k0r+

√
D

2α and
D = (α(1− kl)− k0r)2 + 4αk0r .

It follows from Theorem 5 that in the limit ω → 0+, it is the concavity/convexity of
the function J(u) which determines whether or not periodic dosing is better than constant
dosing.

Corollary 1. Let J(u) be the value of the functional (13) for the steady-state solution
with constant dose u. Assume that J is a concave down function on the interval [A1, A2]
and u(t) ∈ [A1, A2]. Then

lim
ω→0+

Jω =

∫ 1

0
J(u(t))dt < J(u0),

i.e., for sufficiently small frequencies ω periodic dosing is more effective than constant
dosing with dose u0. Conversely, if J is concave up on the interval [A1, A2] and u(t) ∈
[A1, A2], then for sufficiently small frequencies ω, periodic dosing is less effective than
constant dosing with dose u0. In particular, if J(u) > 0 for all u, then J is a concave up
function for sufficiently large values of u0; hence, periodic dosing for large doses and small
frequencies is less effective than constant dosing. Similar claim holds for the functional
JL.
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More explicit results can be obtained in the case of saturation. As in [19], it can be
shown that for u0 > 0 sufficiently small on-off dosing with average dose u0 is better than
constant dosing with dose u0. We remark here that the results in Sections 3 and 4 could be
reformulated and extended to the case when the disinfection term kdA in Equations (6)-(7)
is replaced by a nonlinear function Φ(A) with at most polynomial growth. However, since
the numerical results in Section 4.2 for nonlinear disinfection did not yield to substantial
differences between the linear and nonlinear case, we will focus on the linear case kdA.

4.2 Computational Studies

In this section we consider numerical approximations to the system of equations (4)-
(10) during periodic disinfection. The main goals for the computational studies are to
determine how successful disinfection depends on several parameters of the system. It
has already been demonstrated ( [6, 8]) that success depends on the ratio of dose time
to withdrawal time. In [10] the time scale for success as well as the spatial dynamics of
the bacteria was setting was investigated. There has been little investigation into other
parameter dependence. Here we will vary the period of disinfection, P ; the dosing ratio,
µ; the disinfectant concentration, u0.

The last deserves a bit of attention since other studies have assumed that disinfectant
was applied at a uniform concentration for a fixed duration. The duration was varied while
the concentration was held constant. In this investigation, we also consider the case where
the total biocide is fixed and vary the rate of application of the biocide. This follows the
methods introduced in [18, 20]. We use the term constant average to refer to application
of a constant biocide concentration for a period of time and constant total to refer to the
second protocol. The numerical simulations are based on the method of characteristics
and use a second-order explicit Runge-Kutte method [19], however, to account for the
presence of substrate, Newton’s method has been applied.

Throughout this section, we will use two methods to consider successful disinfection
and optimal disinfection. The first connects the the theorems in the previous section,
namely how well does periodic dosing compare with constant dosing and was used in
[18,20].The functional J(µ, P ) describes the average concentration of bacteria as the length
of periodic disinfection goes to infinity. Minima of J indicate optimal regimes since the
total bacterial concentration is the smallest. The ratio of J(µ, P ) to constant dosing,
J(µ = 1, P ) determines whether periodic disinfection is better or worse than constant
dosing. This compares well with the theorems described in the previous section.

The second method is to calculate the survival curves similar to curves developed in [6].

For fixed parameters the total bacterial concentration,
∫ L(t)
0 Bs +Bp dx dt, is a function of

time. Clearly this must tend to zero if the disinfection cycle is successful. By comparing
survival curves for different parameters, we get a different view of success/failure of disin-
fection and can compare the effectiveness of different disinfection protocols.

Study 1: Constant Average

Similar to [18, 20], we vary the fraction of the period corresponding to antibiotic ap-
plication. That is we let u(t) be a piecewise constant function that is positive on the
interval (0, µP ) and zero on (µP, P ). We then vary µ and P while other parameters are
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shown in Table 1. The surface shown in the left panel of Figure 5 is J(µ, P )/J(1, P ) and
compares the values of J with varying fractional time to that of constant dosing for each
fixed period. We see that the top left (small fraction of application and large period)
corresponds to protocols that are unsuccessful. For large enough fraction of application
we have successful treatment and for a given P the optimal protocol is periodic dosing
rather than constant dosing.

We also compare results of two different simulations in the right panel of Figure 5. As
the period of application becomes longer while the fraction is fixed, the window of optimal
treatment changes. This is qualitatively different from the next set of simulations. We
note that there is actually more biocide being used in the unsuccessful treatment since
u0 × 40 × 0.2 > u0 × 20 × 0.2. Thus it is the disinfection regime rather than amount of
biocide that distinguishes the success/failure.

Study II: Constant Total

In this study, we fix the total amount of disinfectant that can be applied, which is
more compatible with clinic applications where it is not possible to maintain a constant
source of antibiotic (e.g. within the blood stream). The amount of antibiotic in the
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Figure 5: (a) The surface J(µ, P ) for disinfection with constant antibiotic applied for a
fraction, µ of a period, P . The upper region corresponds to unsuccessful treatment. As
the dosing period becomes larger, the region for successful disinfection becomes smaller.
The markers indicate parameter pairs used to compare survival curves in the right panel.
(b): A comparison of survival curves for varying periods. These two parameter pairs were
chosen to be representative of the effect of varying the period for fixed fractional length.
The symbols correspond to the left panel (µ = 0.20): The symbol x corresponds to P = 20,
triangle corresponds to P = 40. The inset curves are the las 20 time steps of the same
data with a different scale to emphasize the difference between the two parameter sets at
the end of the simulation. Parameters are given in Table I.
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system is therefore related to the fraction of the period where the antibiotic is applied,
u0 = û

µ . For small fractions (i.e. short application cycle relative to the period) the biocide
concentration that is applied is large. In Figure 6, we show the surface, J (left panel), and
several survival curves for fixed values of µ and P (right panel). We see that there is a
window where periodic disinfection is more successful than constant dosing. However, as
the period increases, too small a fraction is not successful at all (upper left corner in 6.

We see that there are regions where constant dosing is more effective than periodic
dosing; however, the optimal choice occurs in a central band of parameters. Therefore
the optimal timing depends on the period and application fractional period. This has
particular implications for treatment. For biocides that have side effects that occur only
for high concentrations, it is better to extend the period so that the application can be
spread out further. This may explain why the periodic treatment in [24] was ineffective.

Study III: Varying Growth Rates

In this section, we consider the effect of varying the growth rate of the bacteria on
survival using constant total application in this set. Very small µ is rapid application
of high concentration of antibiotic. The previous simulations indicate that the time the
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Figure 6: (a): The surface J(µ, P ) for disinfection where the total biocide that is applied
is held constant as the fractional application time and period are varied. The central band
of dark blue corresponds to optimal treatments. The markers indicate parameter pairs
used to compare survival curves in the right panel.
(b): A comparison of survival curves for varying fractions. These three parameter pairs
were chosen to be representative of an optimal protocol with a moderate fraction µ. The
symbols correspond to the left panel (P = 40): The symbol circle corresponds to µ = 0.06,
the symbol x corresponds to µ = 0.5 and the triangle symbol corresponds to µ = 0.82.
We see that parameters in the blue region are successful while the others are unsuccessful.
Parameters are given in Table I.
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population has to recover from an antibiotic challenge is one of the key factors in success
or failure. If the bacteria that revert from persister have ample time to replace the killed
bacteria, the treatment will be unsuccessful. This means that if the bacteria grow faster,
it will alter the distribution of success and failure. Figure 7 shows the surface J(µ, α)
(left panel) indicating that as the growth rate increases, the window of success shrinks.
In fact, for slow growth, instantaneous application is the best course. The same figure
(right panel) compares the survival curves again indicating that the optimal is in fact
successful. The key results here is that the withdrawal time should be measured relative
to the potential growth for reproducing bacteria and, therefore, the nutrient regime may
also play a more complicated role in disinfection.
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Figure 7: (a): The surface J(µ, α) showing the narrowing window of successful treatment
as the growth rate increases. The survival curves at particular parameter pairs are shown
in the right panel.
(b): A comparison of survival curves for varying fractions and fixed growth rate. These
three parameter pairs were chosen to be representative of an optimal protocol with a
moderate fraction µ. The symbols correspond to the left panel (α = 0.6): The circle
corresponds to µ = 0.06, the x corresponds to µ = 0.6 and the triangle corresponds to
µ = 0.9. We see that parameters in the blue region are successful while the others are
unsuccessful. Parameters are given in Table I except that α now varies between 0.2 and
0.65.
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5 Summary

This manuscript deals with the important question of removal of bacteria bound within a
biofilm matrix. We take into account both susceptible bacteria and a small subpopulation
of tolerant bacteria. Evidence of persister subpopulations has been accumulating recently;
however, there is still quite a bit that is not understood. Furthermore, the implications of
persister dynamics is not yet well described. In this manuscript, the dynamics between the
two populations incorporates current hypotheses of persisters. Namely, that susceptible
bacteria can convert to persisters at a rate that depends on the nutrient level (i.e. the
growth stage). Persister reversion to susceptibles occurs at a slower rate and is inhibited
by the presence of an antibiotic. Disinfection depends on the growth rate, which means
that the biofilm structure and subsequent nutrient gradients has a profound affect on the
disinfection. The main motivation for this study is to couple analytic and computational
studies of the impact of persister dynamics on disinfection of bacterial biofilms, especially
in the case of periodic disinfection.

In Theorem 3 we give sufficient conditions for the existence of trivial/nontrivial steady
states and show numerically that non-unique steady-states can occur, which seem to de-
pend on the rate of detachment (Figure 4). Moreover, a sufficiently large initial antibiotic
dose can influence dosing efficacy, since the time dependent solutions may converge to a
steady-state with smaller biofilm thickness (Figure 3). In Theorems 4-5 the limiting be-
havior of periodic solutions for small and large periods has been summarized, which allows
us to compare the analytical results with simulations. For large periods, longer dosing time
is more effective than short one (as shown also in Figure 5) and, for very small periods,
reversion from persister to susceptible cells decreases with increasing dosing time. In the
latter case numerical examples suggest that on-off dosing becomes worse than constant
dosing, thought the differences are negligible. As a consequence of Theorem 5 we also
provide sufficient conditions under which period dosing is better or worse than constant
dosing. The presence of substrate in the model does not allow us to obtain such explicit
results for periodic dosing as in [19]. For example, we can only state under the assump-
tion of saturation in the persister model that for small doses of antibiotics, on-off dosing
is always more effective than constant dosing. Hence, detailed computational studies of
the model are necessary.

The particular simulations that we have presented explore the role of the period and
dose ratio for different dosing methods (e.g. constant total and constant average) and
growth rates. The main observation is that periodic dosing may be the optimal method,
but ensuring that it is requires determining the dose ratio for a given period. In general, for
intermediate periods and intermediate dose ratios, periodic disinfection is more effective
than constant dosing. The extends observations mode in previous studies ( [6–8] to explore
the role of the period more fully. As the period becomes longer, all our simulations
indicate that the window of success becomes narrower. Moreover, the simulation in Study
III indicates that the window is larger if the bacteria are growing more rapidly. This
is because the important processes–disinfection and persister reversion– depend on the
growth rate. As these become larger, it is easier to eliminate the biofilm. We emphasize
that although we have estimated our specific parameters, the analysis in the preceding
sections indicate that the general behavior is quite robust.

There are several novel aspects of this study including robust biofilm dynamics and
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analysis in one-dimension. Previous models either neglect the spatial aspect of the biofilm
or study the model in two-dimensions only computationally. Using methods similar to
those used to analyze an adaptive response, we are able to prove the existence and stability
of the steady-state system and predict the optimal dosing period. One of the most useful
aspects of the analytic studies is that the qualitative results do not depend strongly on the
forms of the transition rates. Although the forms of f and g have been specified for the
quantitative numerical studies, the theorems carry over for a wide variety of functional
dependencies. Because there is some debate about the mechanisms of persister formation
[28,29], it is not clear whether the quantitative predictions are correct; however, it is quite
reasonable to conclude that the qualitative results are valid.

A second extension that is developed in this study has to to with the interplay between
the period and optimal fraction of the period for disinfection. The computational studies
indicate that there is a complicated relationship that is due primarily to the interplay
between the reversion of persisters and the presence of the antibiotic. Because the time
scale of disinfection is quite long (perhaps not infinite, but certainly longer than optimal),
it seems that the bacteria can be prevented from reverting back to susceptible phenotype
if the antibiotic is present. Additionally, the reversion rate has been demonstrated to be
much slower than other phenotypic transitions. Therefore, it is crucial that the off period
is long enough to allow much of the persister population to revert. This is evident in the
two-dimensional plots of the surface J . We find that, when the average disinfectant applied
during the on-period is held constant, the region for successful disinfection becomes smaller
as the period increases. Similarly, if the disinfection concentration during the on-period is
held constant, there is a window of successful disinfection. This has consequences in clinical
settings and the design of drug delivery devices and protocols. Clearly, the quantitative
predictions in this manuscript might be incorrect but we argue that the generality of the
qualitative results argue for more investigation into the processes so that more accurate
predictions can be derived.
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Parameter Notation Value

Substrate Utilization f(C) βC
C+KS

Growth Function g(C) αC
C+KS

Maximal Consumption Rate β 2.08

Maximal Growth Rate α 0.417

Disinfection Scale kd 0.1

Loss Scale kl 0.001

Reversion Scale kr 0.05

Thiele Modulus φa 1.0

Detachement Rate σ 0.01

Table 1: Model notation and parameters for the simulations of the solutions to Equations
4-10.
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