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Detectable regional changes in the number of warm nights
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[1] In this study we analyse gridded observed and multi‐
model simulated trends in the annual number of warm nights
during the second half of the 20th century. We show that
there is evidence that external forcing has significantly
increased the number of warm nights, both globally and
over many regions. We define thirteen regions with a high
density of observational data over two datasets, for which
we compare observed and simulated trends from 20th cen-
tury simulations. The main analysis period is 1951–1999,
with a sub‐period of 1970–1999. In order to investigate if
observed trends changed past 1999, we also analysed periods
of 1955–2003 and 1974–2003. Both observed and ensemble
mean model data from all models analysed show a positive
trend for the regional mean number of warm nights in all
regions within this 49 year period (1951–1999). The trends
tend to become more pronounced over the sub‐period
1970–1999 and even more so up to 2003. We apply a finger-
print analysis to assess if trends are detectable relative to inter-
nal climate variability. We find that changes in the global scale
analysis, and in 9 out of 13 regions, are detectable at the 5%
significance level. A large part of the observed global‐scale
trend in TN90 results from the trend in mean temperature,
which has been attributed largely to anthropogenic green-
house gas increase. This suggests that the detected global‐
scale trends in the number of warm nights are at least partly
anthropogenic. Citation: Morak, S., G. C. Hegerl, and J. Kenyon
(2011), Detectable regional changes in the number of warm nights,
Geophys. Res. Lett., 38, L17703, doi:10.1029/2011GL048531.

1. Introduction

[2] Station data extending over more than a hundred
years show a strong increase in temperature over the last
50–100 years, which affects both mean and extreme tem-
perature. Changes in temperature extremes have been docu-
mented and analysed with the guidance of the expert team on
climate change detection and indices (ETCCDI) [Karl et al.,
1999; Alexander et al., 2006].
[3] Understanding, attributing and predicting changes in

the probability of extremes is of great importance, as extreme
events can have a strong influence on society and ecosystems.
For example, extremely hot nights can seriously affect human
health during heat waves [Karl et al., 2008].
[4] Alexander et al. [2006] and the work by Tebaldi et al.

[2006] [see also Karl et al., 2008] show increases in tem-
perature extremes, in particular a significant increase in the
number of warm minimum temperatures and a generally

smaller increase in the number of warm maximum tempera-
tures. A decrease in the cold tails of both minimum and
maximum temperature [Alexander et al., 2006; Karl et al.,
2008; Tebaldi et al., 2006] and a decrease in the daily tem-
perature range (DTR) has been observed during the second
half of the 20th century [Vose et al., 2005], the latter of which
has flattened in the last two decades [Trenberth et al., 2007].
Furthermore, widespread increases in heat waves and
decreases in frost days have also been recorded [Tebaldi
et al., 2006].
[5] The changes in extremes described above show distinct

geographical patterns. For instance, a strong reduction in frost
days accompanied by an increase in season length are found
in the north western region of the US and Eastern Europe,
while South Western North America shows a development
towards higher numbers of heat waves [Tebaldi et al., 2006].
In contrast, increases in the number of hot extremes across
Eastern North America are modest, with decreases in parts
of the South Eastern North America region [Portmann et al.,
2009]. Besides external influences, global circulation patterns
can also influence the number and intensity of temperature
extremes [Kenyon and Hegerl, 2007; Scaife et al., 2008].
[6] Detection and attribution is used to identify if a detect-

able climate change signal is caused by external forcing, for
example anthropogenic influences. This method compares an
observed change in climate to the expected change in response
to changes in external forcing. A significant change in climate
is detected if the likelihood of the occurrence of this change
solely due to internal variability is small. Stott [2003] and Stott
et al. [2010] show, using optimal fingerprints, that changes in
global and regional surface temperatures can be detected and
largely attributed to greenhouse gas increases [see alsoHegerl
et al., 2007]. Christidis et al. [2005] show that the pattern of
change in the warmest night, and the coldest day and night
during the second half of the 20th century can be detected,
and attributed at least in part to anthropogenic forcing, while
no change could be detected in the warmest day.

2. Data and Pre‐processing

[7] This study is based on a comparison of observed and
modeled annual data of the index TN90. This index is defined
as the mean number of warm nights with a minimum tem-
perature exceeding the 90th percentile of the daily minimum
temperatures of the climatological period 1961–1990 at a given
location and over one year. We used five different coupled
climate models, each of which consist of three individual runs,
giving 15 model simulations and compare these to two
observational datasets. For our analysis we selected eleven out
of 32 regions introduced by Giorgi [Giorgi and Francisco,
2000], whose data coverage for TN90 is deemed suffi-
cient to provide a credible regional average (see Table 1,
regions 1–11). We also analyse two smaller subregions, one
in the South East of North America (SENA) and one in
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Central Europe (CEU), for a more detailed description of
these two regions of interest see Table 1 (regions 12 and 13).

2.1. Observational Data Sets

[8] The two observational datasets are based on similar
input stations [Kenyon and Hegerl, 2007; Alexander et al.,
2006] but on different processing techniques to arrive at
gridded data for TN90. Thus, they provide a first estimate of
the role of processing uncertainty:
[9] 1. The “Duke Data Set,” covering 1886–2005, with a

grid resolution 5° × 5° was produced by binning values of
the TN90 index into grid boxes and then averaging to pro-
vide a grid box value. The station data are the same as used
by Kenyon and Hegerl [2007]. The ETCCDI station data
were provided from Lisa Alexander [Alexander et al.,
2006]. The gridded values are based on a varying number
of observations per grid and thus can be noisy if there is just
a single or a few point measurements representing the value
of an entire grid box. Furthermore there are quite a lot of
unobserved regions in this data set, as grid boxes without
stations remain blank.
[10] 2. The HadEX data set (grid resolution 3.75° × 2.5°)

was produced by the Hadley Centre [Alexander et al., 2006],
by applying a spatial interpolation scheme to the ETCCDI
index data. The HadEX data set shows a higher spatial
coverage than the gridded station‐based data set, but inter-
polates further between stations. Thismakes the data set much
more spatially uniform, but also less anchored in close‐by
station data. The data set covers the years 1950–2003.
[11] For analysing causes of the observed change, we also

used monthly mean daily minimum, mean and maximum
surface temperature data from the Climatic Research Unit
(CRU) [Brohan et al., 2006].

2.2. Modeled Data Sets

[12] The model simulated data sets were calculated from
daily data from CMIP3 climate model simulations by Julie
Arblaster and Claudia Tebaldi [Tebaldi et al., 2006]. We
picked five models (listed below) that offered at least three
single runs. We use three runs each in order to give equal
weight to each of the models in the multi‐model mean. The
data cover the years 1951–1999 and have been linearly
interpolated to a grid resolution of 2.5° × 2.5° by Tebaldi

and Arblaster [Tebaldi et al., 2006]. All climate model
simulations were forced with estimates of observed forcing
over the 20th century, including changing concentrations of
greenhouse gases, tropospheric and stratospheric aerosols,
changes in solar radiation and volcanoes, although forcing
details and implementation vary between models. We use
data of the following OAGCMs.
[13] 1. GFDL‐CM2.0 has an atmospheric resolution of the

2° × 2.5° and L24. The oceanic resolution is 0.3° − 1.0° × 1.0°.
[14] 2. GFDL‐CM2.1 has the same resolution as GFDL‐

CM2.0 but the atmospheric circulation is based on semi‐
Lagrangian transports.
[15] 3. MIROC3.2 (hires) has an atmospheric resolution

of T106 (∼1.1° × 1.1°) and L56. The resolution of the ocean
is 0.2° × 0.3° and L47.
[16] 4. MRI‐CGCM2.3.2 has a atmospheric resolution of

T42 (∼2.8° × 2.8°) and L30, with its top at 0.4 hPa. The
oceanic resolution is 0.5° − 2.0° × 2.5° and L23.
[17] 5. PCM1 has an atmospheric resolution of T42

(∼2.8° × 2.8°) and L26. Its oceanic resolution is 0.5° − 0.7° ×
1.1° and L40.
[18] For comparison with the Duke gridded indices, the

model data and the HadEX data are re‐gridded to a reso-
lution of 5° × 5° per grid box by linear 2D interpolation.
Furthermore, the model data and the HadEX data are
masked in space and time to reflect the sampling of the
Duke data (referred to as “MASK DUKE”). The longest
period that is covered by both observed and model simu-
lated data is 1951–1999. Having 49 years of data, we first
calculate the decadal trend for each 5° × 5° grid box by
fitting a slope‐line with a least square fit (Figure 1a). Linear
trends are only fitted to grid‐boxes where at least five years
are available during the first and last decade of the trend
period. In order to reduce the noise of the spatial trend
pattern we apply a 5‐point smoother to all trend patterns, by
averaging each grid‐box with its nearest neighbours, or a
subset thereof, based on availability. After computing the
trend values and after the smoothing we determine the spatial
average of the trend for all 13 regions as well as the global‐
scale trend by averaging over 11 out of 13 regions (see
Figures 2a and 2b). The South‐Eastern North American
region (SENA) and the Central European region (CEU) are

Table 1. Table of Regionsa

Number Acronym Name of Region Latitude (°N) Longitude (°E) Corr (Tmean)
TrendTmean
TrendTN90

(%)

0 GLOB Global Mean −85/85 −175/180 0.8804 72%
1 SAU Southern Australia −45/−30 110/155 0.8254 71%
2 ALA Alaska 60/85 −170/−105 0.8858 91%
3 WNA Western North America 30/60 −130/−105 0.7890 45%
4 CNA Central North America 30/50 −105/−85 0.7909 18%
5 ENA Eastern North America 25/50 −85/−60 0.8038 13%
6 NEU Norther Europe 45/75 −10/40 0.8630 60%
7 MED Mediterranean 30/45 −10/40 0.7599 53%
8 NAS Northern Asia 50/70 40/180 0.8814 64%
9 WAS Western Asia 30/50 40/75 0.8419 58%
10 TIB Tibet 30/50 75/100 0.7338 19%
11 EAS Eastern Asia 20/50 100/145 0.8839 90%
12 SENA South‐East North America 30/40 −100/−75 0.7717 1%
13 CEU Central Europe 45/50 0/20 0.7999 75%

aColumns 1–3 show the number of the region, its acronym and its name. Columns 4 and 5 list the latitudinal and longitudinal span of each region.
Column 6 shows the correlation coefficient of inter‐annual variation (trend subtracted) in observed TN90 with the observed annual mean Tmean.
Column 7 explains how much of the observed trend in TN90 can be explained by the observed trend in Tmean. Bold numbers highlight the regions
where at least 50% of the observed trend in TN90 can be explained by Tmean.
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excluded from averaging as they overlap with other larger
regions.

3. Methods

[19] We determined if the observed trend could be
explained by the fingerprint of externally driven changes
plus variability. The fingerprint is derived from the average of
all climate model simulations used, while the deviation from
the ensemble mean, which is distinct for each ensemble
member, is used to estimate variability. For the fingerprint
analysis we calculate how the spatial pattern of trends from
themulti model mean (fingerprint f ) needs to be scaled to best
match the observed trends y. This is done for individual
regions as well as for a global pattern of regional mean trends.
The scaling factors (a) are estimated using least squares
regression (we do not use an “optimal” fingerprinting
method, seeHegerl et al. [2007] and Allen and Tett [1999] for
a description of fingerprint methods):

y ¼ �f þ res ð1Þ

� ¼ f T y

f T f
ð2Þ

f denotes the fingerprint vector ( f1…fj), where fi is the decadal
trend value of TN90 of the multi‐model mean for one grid
box, y(y1…yj) represents the decadal trend value of TN90 of
the observations (either Duke or HadEX) or of the samples
of variability (see below), where yi is the decadal trend
value of TN90 for one grid box. To determine the uncertainty
range of this scaling factor we estimated scaling factors from
samples of trend patterns associated with internal climate
variability.
[20] These samples for uncertainty due to internal climate

variability (i = 1,…, j) are estimated from the model simu-
lated variability of each individual model modeli, around
the mean change (model) using

uncertaintyi ¼ modeli � model
� �

* correction ð3Þ

The model uncertainty uncertaintyi covers the model error
combined with the internal variability. By applying the
fingerprint analysis to all available values of “uncertaintyi”,
we get an estimate of the internal variability. The correction
against bias due to subtraction of the mean is given by:

correction ¼
ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
; ð4Þ

with n being the number of individual simulations, 15 in
this case. The uncertainty in a is estimated by calculating the
5–95% range of scaling factors arising from these individual
noise samples, using a t‐test with 14 degrees of freedom
[see von Storch and Zwiers, 2000]. If the scaling factor a,
estimated from the observations, is significantly larger than
explained by noise externally forced climate change is
detected. If a is consistent with 1, given its uncertainty, the
multi‐model mean does not need to be rescaled to match
the observations.
[21] We compare the regression residuals “res” from the

observations with the samples of uncertainty “uncertaintyi”,
for both time intervals 1951–1999 and 1970–1999. For the
long period we find that, in 9 out of 13 regions, the residuals
lie within the range of model uncertainty. Exceptions are
Central Europe (CEU), Eastern Asia (EAS), Western Asia
(WAS) and the Tibetan Regions (TIB). Over the sub‐period
of 1970–1999, 11 out of 13 regions are within the range,
with only the residuals of EAS and TIB outside the model
range.

4. Results

[22] The 1951–1999 decadal global spatial trend pattern
predominantly shows increases in the number of warm nights
(see Figure 1a).
[23] All regional trend values of both observations and the

model ensemble means are positive (see Figure 2a), however,
the spread of individual model simulations do include some
regional negative trends (see grey bars in Figure 2a). The
spread of the model trend covers the observational trends in
all regions, which underlines that the models perform rea-
sonably well in explaining the observed values, taking into
account internal variability.
[24] The sub‐period 1970–1999 (Figure 2b) shows an

overall increase in magnitude of the decadal trend values
compared to the period 1951–1999, which agrees well

Figure 1. (a) 1951–1999 observed decadal trend of TN90
(in % change per decade) derived from the Duke data set.
The zonal average of the observations (black line) and the
model spread (green shaded area), is shown on the side of
the plot. (b) Global mean time series of observed TN90 (blue
line) and regressed time series of observed Tmean (orange
line) onto TN90. Shading shows the model spread of TN90
in blue and the regressed model spread of Tmean on TN90
for individual simulations in yellow.
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between models and observations (Figures 2a and 2b). The
shorter period captures the temperature increase which fol-
lowed a period of stagnation of the 1950s and 1960s. This
stagnation or rather reduction in extreme values of TN90
during the 1960s can be seen in all regions, in both the
observed and the modelled data (see Figure 1b). This
resembles changes for both observed and modeled data of
the mean surface temperature.
[25] As the 20th century simulations only extend to 1999,

but the observations extend at least up to 2003, we also
computed observed trends over the periods 1955–2003 and
1974–2003. This allows us to assess whether more recent
trends in the observed data show the same tendency as the
earlier trends of 1951–1999 and 1970–1999 (see black mar-
kers Figures 2a and 2b). The results show an increase in trend
for most regions, which is generally more pronounced for
the 30 year period 1974–2003 (see black markers Figure 2b).
[26] Figure 2c shows the results of the fingerprint analysis.

9 out of 13 regions show a fingerprint that is significantly
detectable at the 5% level, since the scaling factors of the
observations are significantly larger than those from noise
only, and of those 5 show a residual variability within the
model range. For many regions the scaling factors are larger
than one, which indicates that the observations show stronger
changes than the model ensemble mean, however this dif-
ference is not significant.
[27] The results for sub‐period 1970–1999 are very similar

to those of the entire period (see Figure 2d). We loose the

ability to detect a change in the Southern Australian (SAU)
region, but now detect changes in Northern Europe (NEU)
andmost regions show variability within themodel range. For
assessing if changes in warm nights are detectable globally, we
performed the regression on a vector of regional means for all
11 non‐overlapping regions using area weighting and find a
highly significant change both for the long and the short
period (see Figures 2c and 2d, at x = 0, labelled ”GLOB”). If
the trends ending in 2003 are regressed onto the model fin-
gerprints (for the period ending in 1999), detection results are
similar.

5. Possible Causes

[28] Having found a significant externally forced increase
in the number of warm nights during the second half of the
20th century, a question arises, what caused the change?
[29] Over the same period as considered here, global daily

mean temperature has increased [Trenberth et al., 2007],
along with a rise in the number of warm days between 1951–
1999 and a decrease in the diurnal temperature range (DTR)
[Vose et al., 2005].
[30] In order to relate these changes to each other, we

investigated how monthly mean, daily mean, minimum and
maximum temperature are related to the number of warm
nights on inter‐annual to inter‐decadal timescales. Table 1,
column 6, shows a tight correlation of detrended TN90 with
annual mean daily mean temperatures for all regions and

Figure 2. Spatially averaged trend of TN90 from observations (red markers) and model ensemble means (blue markers) as
well as the spread of individual simulations (grey bar) for the selected regions (labelled on top and depicted against values
1–13 on x‐axis) and the regional mean (labelled ”GLOB”, and plotted against ’0’ at x‐axis) for the periods (a) 1951–1999
and (b) 1970–1999 (in % per decade). The black markers show results for the observed trend 1955–2003 (Figure 2a) and
1974–2003 (Figure 2b). The scaling factors (red markers) of observed changes onto the multi‐model mean fingerprint for
the period (c) 1951–1999 and (d) 1970–1999 are shown. Its estimated 5–95% uncertainty range is shown by the grey bar,
which has been placed around the scaling factors for the Duke data. Regions with significantly detectable trend (5%) are
marked by an asterisk.
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global‐scale data. TN90 correlates most strongly with the
observed mean surface temperature, followed by the observed
annual daily mean, minimum and maximum temperature (not
shown). Surprisingly, the northern regions, ALA, NEU and
NAS show a higher correlation of TN90 with the observed
annual daily mean maximum than with the mean minimum
temperature (not shown). In order to see what fraction of the
significant changes in TN90 can be explained by changes in
the mean surface temperature, we first regress the time series
of annual mean daily mean temperature of each region on the
one of TN90. Both time series have been de‐trended before
the regression analysis in order to base the connection on
well‐sampled inter‐annual fluctuations only. The values of
the regression coefficients are used to scale the raw time series
of Tmean to determine which aspects of the changes in TN90
are explained by changes in Tmean. If the same physical
connection between mean and extreme temperature operates
on trend‐timescales as on the shorter timescales, a large part
of the trend in TN90 would be explained by the trend in mean
temperature. This is found to be the case for global‐scale data
and many regions for both observations and model data
(Figure 1b). Table 1 shows that for most regions more than
half of the observed trend is explained by the observed trend
in Tmean.
[31] The smoothed global‐scale spatial pattern of trends in

TN90 (mean subtracted) correlates, at 0.7 with that of trends
in mean temperatures over the same time period (pattern not
shown). This indicates that regions where mean tempera-
tures warm stronger than the large‐scale mean also tend to
show stronger trends in TN90.

6. Discussion and Conclusions

[32] This study shows that the observed trends in TN90
are captured by climatemodel simulations. Fingerprints for the
response to external forcing are detected in 9 out of 13 regions,
showing that the observed trend can not be explained by
internal variability alone. The residuals, unexplained vari-
ability from observations is consistent with the range of inter‐
model variability for most regions, which leads to a robust
detection of changes globally and for SAU, ALA, WNA,
MED and NAS and additionally, for the 30‐year trend only,
for WAS and CEU. Based on a regression of mean temper-
ature on the number of warm nights, most of the observed
trend in the number of warm nights globally, as well as for
many regions, is predicted based on the trend in annual mean
temperatures. Hegerl et al. [2007] and Stott et al. [2010]
assessed that greenhouse gases very likely play a key role in
the positive trend in the global and continental mean temper-
ature records of the 20th century. Based on a multi‐step attri-
bution [see Hegerl et al., 2010], we conclude that the global
increase in the number ofwarmnights is probably in part due to
anthropogenic influences. Thismay also be the case for regions
with detectable changes, SAU, ALA, WNA, MED and NAS.
However, as regional changes can also be affected by small‐
scale forcings and are more difficult to attribute to causes [see
Hegerl et al., 2007; Stott et al., 2010], themulti‐step attribution
is only conclusive for global scale data.
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